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EXECUTIVE SUMMARY 
The hydrodynamics (including temperature, salinity, and currents) and water quality (including 

nutrients, chlorophyll, and dissolved oxygen) of Massachusetts Bay, Cape Cod Bay, and Boston 

Harbor during 2015 were simulated by University of Massachusetts Dartmouth. Methods were as in 

simulations of 2014 (MWRA Technical Report, http://www.mwra.state.ma.us/harbor/enquad/pdf/ 

2016-03.pdf) except that the system was upgraded to use the regional hydrodynamic model of the 

North East Coastal Ocean Forecast System (NECOFS). Advantages of the new approach include 

higher grid resolution and improvements to offshore boundary forcing from use of a global-scale 

simulation; in addition NECOFS is an operational product that is generated for, and being used by, 

many others so a regional hydrodynamics simulation dedicated to this project is no longer 

necessary. Hydrodynamic results were in good agreement with available observations for the 

geographic and vertical structure, and temporal variability, of temperature and salinity distributions 

(including density stratification) and currents (non-tidal and tidal). 

The water quality simulation captured general patterns in observed seasonal variations, 

geographic distributions, and vertical structure for many variables. This included the late spring 

reduction in near-surface dissolved inorganic nitrogen (DIN), due to phytoplankton uptake, and its 

replenishment when stratification broke down in fall. It also included seasonal dissolved oxygen 

variations, with peak values in spring at shallow depths due to colder water and phytoplankton 

growth, and late summer minima deep in the water column where stratification inhibits reaeration 

by air-sea exchange. In addition to those more bay-wide patterns, DIN was elevated near the 

seafloor within 10-20 km of the outfall. Model-observation agreement was modest for dissolved 

and particulate organic nitrogen and weakest for particulate organic carbon, particularly its vertical 

structure, and for chlorophyll. In general, as in prior years, most modeled water quality variables 

exhibited a smaller range of values, and smaller surface-bottom differences during stratified 

conditions, than did field observations. The simulations support the conclusion of the field 

monitoring program, that bay-wide ecological function is not appreciably influenced by the outfall. 

A 1995-2015 hindcast simulation was used for an initial investigation of the importance of 

variations in physical transport, due to the flow into Massachusetts Bay south of Cape Ann, to 

variations of dissolved oxygen and chlorophyll in northern Massachusetts Bay including the outfall 

site. The results of this preliminary analysis, while not definitive, are consistent with prior studies 

that suggested transport plays a role in seasonal and inter-annual variations of oxygen.  

http://www.mwra.state.ma.us/harbor/enquad/pdf/2016-03.pdf
http://www.mwra.state.ma.us/harbor/enquad/pdf/2016-03.pdf
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1. Introduction 

1.1 Project overview 
The Massachusetts Water Resources Authority (MWRA) has established a long-term 

monitoring program to evaluate the impact of MWRA sewage treatment plant effluent on the water 

quality and ecosystem function of Massachusetts Bay, Cape Cod Bay, and Boston Harbor. The 

monitoring program primarily consists of a series of ongoing field observation surveys and includes 

complementary water quality modeling as required by the permit for effluent discharge into 

Massachusetts Bay. The water quality simulations are carried out using the Bays Eutrophication 

Model (BEM), which consists of the UG-RCA (Unstructured Grid - Row Column Advanced) water 

quality model and the MB-FVCOM (Massachusetts Bay - Finite Volume Community Ocean 

Model) hydrodynamic model. This report presents simulation results for the 2015 calendar year. 

1.2 Background on oceanographic processes influencing water quality 
Massachusetts Bay and Cape Cod Bay (Figure 1-1) comprise a temperate coastal embayment 

system. Readers unfamiliar with its geography and the current understanding of its physical and 

biological oceanographic processes are referred to the introductory summaries found in sections 1.2 

and 1.3 of MWRA Technical Report 2011-13 (Zhao et al., 2012), in the annual MWRA water 

column monitoring report (e.g., for calendar year 2015, Libby et al., 2016), and in references cited 

by them. (All MWRA Technical Reports, including those just cited, are available online at 

http://www.mwra.state.ma.us/harbor/enquad/trlist.html.) A brief summary follows here.  

System hydrodynamics are characterized by a persistent general circulation pattern driving the 

flow of offshore Gulf of Maine waters into Massachusetts Bay via the Western Maine Coastal 

Current off Cape Ann, then southward before returning offshore just to the north of Cape Cod, with 

a portion of the flow first passing through Cape Cod Bay to the south. Rough estimates of the water 

residence time are about a month based on the surface currents, somewhat longer at mid-depth or 

deeper where currents are weaker, and also longer in Cape Cod Bay than in Massachusetts Bay. 

While this slow general circulation is important in determining long-term average transport 

pathways, superposed on it are stronger and more variable wind-driven currents, and oscillatory 

tidal motions. Temperatures follow the characteristic temperate seasonal pattern of minima in late 

winter and peaks in late summer. Salinities  are freshest inshore  and in the upper several meters;  in  

http://www.mwra.state.ma.us/harbor/enquad/trlist.html
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Figure 1-1. Geography, bathymetry, schematic long-term mean circulation.  

WMCC = Western Maine Coastal Current. 
A01 = Oceanographic mooring (Northeastern Regional Association of Coastal 

 Ocean Observing Systems). 
44013 = Weather buoy (National Data Buoy Center). 
Contours = water depth in meters. 
Green line = Transect used for volume transport analysis in Section 6. 

Figure adapted from Xue et al. (2014). 
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addition to the influence of offshore oceanographic conditions, they vary mainly in response to 

riverine inputs including primarily those brought by the Western Maine Coastal Current and the 

Merrimack River outflow to the north, and to a lesser extent the smaller amounts delivered via 

Boston Harbor. There is a seasonal cycle in vertical structure that includes transitions between 

well-mixed conditions, present from fall through early spring due to higher winds and atmospheric 

cooling, and strong density stratification during the late spring and summer due mainly to 

preferential heating of surface water by the atmosphere.  

The biology of the system is plankton-based and exhibits clear seasonal cycles that are tied 

closely to those hydrodynamic features, but with more pronounced spatial and interannual 

variability. Phytoplankton abundance typically peaks most strongly during bloom-favorable 

conditions in the late winter and early spring, as temperatures rise, light increases, and nutrients 

remain plentiful near the surface due to the active vertical mixing. Following the transition from 

spring to summer, near-surface nutrient concentrations become depleted as density stratification 

impedes the vertical mixing that replenishes them. Zooplankton abundance and biomass generally 

peak in late summer, following the spring increase in phytoplankton prey levels. Primary 

productivity is commonly sustained at modest levels through summer and typically there is a 

second increase in phytoplankton during fall, when vertical mixing increases again and delivers 

nutrients to the surface while temperature and light conditions are still favorable before winter. 

Dissolved oxygen concentrations are influenced by a combination of biological and physical 

processes; the net result is a seasonal peak in late spring, due to phytoplankton production 

increasing winter levels already high due to strong reaeration, then steady decreases to a late 

summer minimum due to respiration and reduced reaeration. Oxygen is depleted more strongly at 

depth, where stratification limits reaeration. 

1.3 Summary of observed 2015 conditions 
To provide context for descriptions of model simulations of 2015 throughout this report, a brief 

summary is given here of observed 2015 conditions based on MWRA monitoring results (Libby et 

al., 2016). For the fourth year in a row, February nutrient concentrations were at relatively low to 

moderate levels and chlorophyll concentrations were sustained at slightly elevated levels through 

the winter months, suggesting that the system remained more biologically productive through the 

winter than in a typical year. Winds were particularly strong in February and regional water 

temperatures were lower than normal in February to April. River flow was well below the median 
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throughout almost the entire year. No winter/spring diatom bloom was observed. There was a 

modest late-spring phytoplankton bloom, later than typical (in late April and May), due mainly to 

Phaeocystis which therefore led to depletion of nitrate but not silicate in near-surface waters. 

Chlorophyll concentrations in summer were lower than typical and no summer blooms were 

observed in coastal waters. In September and October there were fall blooms comparable to typical 

conditions, but the annual total phytoplankton abundance was the 21st lowest recorded during the 

past 24 years. Zooplankton abundances were nearly 10 times higher than typical levels in the prior 

24 years, due mainly to exceptionally high bivalve veliger abundances in July and August, but also 

due to high copepod abundances. Dissolved oxygen levels followed the typical seasonal pattern and 

were relatively high, compared to past years, throughout most of 2015. 
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2. Methods 

2.1 Overview 
The present-day BEM is the result of extensive development begun in the early 1990s. 

Complete background information is in MWRA technical reports, where the model development 

and updating process has been documented. MWRA Technical Report 2015-02 (Zhao et al., 2015a) 

provides a comprehensive listing (their Table 1.1) of MWRA technical reports about the modeling 

(up to and including simulations of 2011), including for each report a summary of its topic, 

highlighted aspects of its content, the full citation, and (when viewed electronically) a hyperlink to 

the downloadable PDF file in the online repository. Section 1.4 of Zhao et al. (2012) reviews some 

of the key improvements incorporated to modeling methods, with emphasis on the several years 

leading up to the simulations of 2011. Simulations of years 2008 and later use MB-FVCOM for 

hydrodynamics and UG-RCA for water quality. The methods used in the simulations of 2015 are 

the same as for simulations of 2014 (Zhao et al., 2016), except for the important improvements 

described in Section 2.2 below. A brief overview of the methods is as follows.  

The model grids consist of four domains. The largest domain is the Global-FVCOM 

simulation, with worldwide coverage (Figure 2-1; Chen et al., 2016). Nested within Global-

FVCOM is the regional Gulf of Maine (GOM) FVCOM hydrodynamic model (GOM3-FVCOM; 

lower panel, Figure 2-2). Circulation in GOM3-FVCOM along its offshore boundary, including 

tidal variability, is driven (“forced”) by circulation of the Global-FVCOM simulation. Nested 

within the GOM3-FVCOM domain is the higher-resolution grid of the Massachusetts Bay FVCOM 

(MB-FVCOM) hydrodynamic model (upper panel, Figure 2-2). The MB-FVCOM domain extends 

offshore to an open boundary along an arc southeastward from north of Portsmouth, New 

Hampshire that passes about 25 km offshore from Cape Cod. Circulation in MB-FVCOM along 

this boundary, including tidal variability, is driven by circulation of the GOM3-FVCOM 

simulation. The fourth and smallest domain is that for the UG-RCA water quality model, which is 

the same as the MB-FVCOM grid except that it extends less far offshore, having an open boundary 

along an arc from near Cape Ann to the eastern shore of Cape Cod (upper panel, Figure 2-2). In 

MB-FVCOM and UG-RCA, horizontal resolution ranges from about 0.29 km near the coast to 0.7-

2.5 km at the eastern boundary of UG-RCA and 5-10 km near the offshore MB-FVCOM nested 

boundary. In the vertical, the models have 45 grid levels. In areas shallower than 225 m deep, the 

levels are uniformly distributed; in deeper areas, the shallowest and deepest levels are concentrated  
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Figure 2-1. GOM3-FVCOM grid and Global-FVCOM grid. 

GOM3-FVCOM is the new regional grid introduced for the 2015 simulation. It extends farther 
offshore and to the north and south, with finer coverage over the continental slope, as compared to 
the GOM1-FVCOM grid (shown in Figure 2-1 of Zhao et al., 2016) used in past years. Red dots in 
left panel show locations of freshwater input. 
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Figure 2-2. Model grids: GOM3-FVCOM, MB-FVCOM, and UG-RCA. 

Lower panel: Gulf of Maine grid, GOM3-FVCOM; the red line shows the offshore boundary of the 
nested Massachusetts Bay grid, MB-FVCOM. Upper panel: nested MB-FVCOM domain; red line 
shows offshore boundary of the smaller domain of the water quality model, UG-RCA. 
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in constant-thickness boundary layers, between which the remaining levels are uniformly 

distributed. The GOM3-FVCOM and MB-FVCOM hydrodynamic models are forced at the surface 

by the data-assimilative Weather Research and Forecast (WRF) meteorological model, along the 

coast by freshwater inputs from rivers, and at the seafloor by the MWRA outfall. In addition to 

satellite sea surface temperature, the models assimilate all available observed temperature and 

salinity profiles and moored timeseries collected throughout their geographic coverage areas (as 

described in Zhao et al., 2016).  

The water quality model UG-RCA is driven using the circulation and eddy diffusivity from 

the MB-FVCOM hydrodynamic model output. UG-RCA is an unstructured grid version of RCA-

v3.0 (Hydroqual, 2004), which simulates 26 water column parameters and 23 sediment variables, a 

subset of which are shown in a schematic diagram of modeled processes (Figure 2-3). Three 

phytoplankton functional groups are included: a winter-spring group favoring low temperatures, 

low light, and high nutrients (representative of diatoms); a summer group that favors higher 

temperature and light conditions, and tolerates lower nutrients (representative of a mixture of 

species including dinoflagellates); and a fall group most responsive to moderate temperatures and 

lower nutrients (representative of a second diatom group). Growth of phytoplankton is based on 

solar radiation and nutrient availability. Grazing by zooplankton, which are not directly modeled, is 

treated as a transformation of mass in the phytoplankton groups to particulate and dissolved organic 

matter at rates that increase linearly with temperature. Nutrients (including nitrate NO3
-, nitrite 

NO2
-, ammonium NH4

+, phosphate PO4
3-, and dissolved silica SiO3

2-) are formed through 

mineralization of organic substances in the water column and at the sediment-water interface. 

Cycling of labile and refractory forms of dissolved and particulate organic carbon, nitrogen, and 

phosphorous is included. Dissolved oxygen concentration is computed by the reaeration flux at the 

sea surface, sediment oxygen demand at the bottom, and biological and biogeochemical dynamics 

in the water column including phytoplankton photosynthetic production, consumption by 

respiration, biogeochemical oxygen demand through the mineralization of particulate and dissolved 

organic matter, and nitrification. Open boundary condition fields are specified using MWRA 

monitoring program observations and the method of objective analysis (e.g., Tian et al., 2009). 

MWRA outfall nutrient and carbon loadings are specified using Deer Island Treatment Plant data. 
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Figure 2-3. Water quality model dynamics, schematic (reproduced from Hydroqual, 2004).  

 

2.2 Transition to GOM3-based modeling system 
For the 2015 simulation the Bays Eutrophication Model was updated by replacing the 

GOM1-FVCOM regional hydrodynamics model, used in past years, by GOM3-FVCOM. The main 

motivation was to capitalize on recently developed advances in capabilities of the Northeast 

Coastal Ocean Forecast System (NECOFS), because GOM3-FVCOM is already being run as part 

of NECOFS on an ongoing basis. NECOFS is an integrated atmosphere/surface wave/ocean 

forecast model system designed for the northeast U.S. coastal region covering a computational 

domain from central New Jersey to the eastern end of the Nova Scotia shelf. NECOFS includes the 

Weather Research and Forecasting (WRF) community mesoscale meteorological model, and a 

regional FVCOM (GOM3-FVCOM) with domain covering the Gulf of Maine, Georges Bank, and 

New England Shelf regions (Figure 2-2). GOM3-FVCOM features unstructured triangular meshes 

with horizontal resolution of ~0.3-25 km and 45 layers in the vertical. GOM3-FVCOM is nested in 

a global ocean model (Global-FVCOM, Chen et al., 2016; Figure 2-1), which provides the 

upstream and open ocean boundary conditions. NECOFS was placed into 24/7 forecast operations 
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in late 2007 and its core components continue to be improved to the present 

(http://134.88.228.119:8080/fvcomwms/). UMass Dartmouth used NECOFS to complete a 38-year 

(1978-2015) hindcast simulation with data assimilation of sea surface temperature, sea surface 

height, and hydrographic (temperature and salinity) profiles. This simulation includes 1) the surface 

heat flux, wind forcing, precipitation minus evaporation, and river discharges, 2) the inflow of the 

cool and lower salinity water from the upstream Scotian Shelf, and 3) interaction with the Gulf 

Stream. The hindcast successfully captured observed spatial and temporal variability in regional 

hydrodynamic fields as documented by Cowles et al. (2008) for vertical mixing and subtidal 

currents, Chen et al. (2011) for tidal elevations and currents, Li et al. (2015) for density 

stratification, and Sun et al. (2016) for spatially explicit patterns of surface currents.  

The Bays Eutrophication Model used for simulations of 2006-2014 consisted (see Figure 

2-1 of Zhao et al., 2016) of two hydrodynamic models (the regional GOM1-FVCOM, and nested 

within it the higher-resolution MB-FVCOM) and a water quality model (UG-RCA). GOM1-

FVCOM and MB-FVCOM were coupled by a one-way nesting approach through common 

boundary cells and nodes. The water quality assessment was done by three steps. The first step was 

to run GOM1-FVCOM and output all variables on nesting boundary cells and nodes at every time 

step. The second step was to run MB-FVCOM under the same meteorological forcing, using 

boundary conditions specified by the GOM1-FVCOM output. The final step was to use the MB-

FVCOM hydrodynamic fields to drive UG-RCA. Results from this system have been validated 

against observations and demonstrate the ability to capture the seasonal and inter-annual variability 

of water quality model fields, for example dissolved oxygen, in Massachusetts Bay both in MWRA 

simulations (e.g., Tian et al. 2009, Chen et al. 2010, Zhao et al. 2016) and in extensions to them 

that also included earlier years (e.g., 1995-2014 by Xue et al., 2014). However, GOM1-FVCOM 

had shortcomings associated with its open ocean boundaries. Water exchanges with the Gulf 

Stream, which mainly occur farther offshore over the outer slope, were not accounted for by 

GOM1-FVCOM because its grid extended offshore by a limited distance and did not have high 

resolution there. In addition, although GOM1-FVCOM had a means to include non-tidal inflow on 

the upstream Nova Scotia shelf (Cowles et al., 2008), the forcing specified on the GOM1-FVCOM 

open boundary included tidal variability only. Thus non-tidal variability, such as the important 

buoyancy-driven flow from offshore and upstream, was not optimally simulated. 

http://134.88.228.119:8080/fvcomwms/
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In addition to the fact that GOM3-FVCOM is already being run operationally as part of 

NECOFS, so that its outputs are available without need to separately run a regional 

hydrodynamical model specifically for MWRA, there are several performance advantages of 

replacing GOM1-FVCOM with GOM3-FVCOM. In GOM3-FVCOM the grid extends farther 

offshore and a more realistic bathymetric dataset has been used. It thus produces more accurate 

tidal simulation results (e.g., Chen et al., 2011). The one-way nesting of GOM3-FVCOM in 

Global-FVCOM, through common nesting boundary cells and nodes, means that it captures non-

tidal inflow from the upstream region, and water exchange with the Gulf Stream over the outer 

shelf, better than GOM1-FVCOM and is therefore capable of capturing climate change signals due 

to inter-annual variability of the inflow. Finally, GOM3-FVCOM has higher vertical and horizontal 

resolution. GOM3-FVCOM horizontal resolution reaches ~0.3 km near the coast, while the finest 

horizontal resolution of GOM1-FVCOM was ~1.3 km. In the vertical, GOM1-FVCOM had a σ-

coordinate with 30 layers; GOM3-FVCOM has a hybrid terrain-following coordinate with 45 

layers. The hybrid coordinate uses a σ-coordinate shallower than 225 m and an s-coordinate with 

10 and 5 uniform layers near the surface and bottom, respectively, in deeper regions; at the 

transition between the two, the 225-m isobath, the thickness of all 45 layers is 5 m. This hybrid 

coordinate prevents numerical errors in the simulation of the surface mixed layer and bottom 

boundary layer dynamics offshore, while maintaining high resolution in shallower coastal regions. 

To be consistent with GOM3-FVCOM, both the MB-FVCOM and the UG-RCA grids were 

upgraded to use the same 45 layers in the vertical.  

The performance of the upgraded GOM3-based system was evaluated by running the 2015 

simulations separately using both the GOM3-based system and the GOM1-based system, and 

comparing the two results at the Mooring A01 site (Figure 1-1) to time series observations 

collected there at 1m, 20m, and 50m deep. Statistics of the model-observation comparisons (Table 

2-1) quantify the improved performance of the GOM3-based system in capturing the observations, 

as compared to the GOM1-based system. For GOM3-based results the magnitudes of mean model-

observation differences are all substantially lower than GOM1-based results except for 1m deep 

salinity, which is essentially unchanged; the GOM3-based standard deviations are all modestly 

lower than GOM1-based results except for 1m deep temperature and 50m deep salinity, for which 

the two cases are comparable to each other. 
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Table 2-1.  Statistics of differences between modeled and observed temperature and salinity. 

 

Parameter Depth Statistic GOM3-based 
(Figure 2-4) 

GOM1-based 
(Figure 2-5) 

Temperature 
(deg C) 

1m Mean 0.069 0.197 
Standard deviation 0.759 0.768 

20m Mean -0.001 0.581 
Standard deviation 0.865 1.134 

50m Mean 0.298 0.682 
Standard deviation 0.600 0.799 

Salinity 
(PSS) 

1m Mean 0.064 -0.065 
Standard deviation 0.230 0.394 

20m Mean 0.013 -0.149 
Standard deviation 0.168 0.200 

50m Mean 0.018 -0.106 
Standard deviation 0.136 0.128 

 

The nature of the improvements underlying these statistics is illustrated by a series of plots. 

GOM3-based results are compared to observations in Figure 2-4. The model accurately captures 

both the overall seasonal patterns and the weather-band variations superposed on them. Agreement 

is best at 1 m and 20 m, while at 50 m deep the model temperature and salinity are both biased high 

(positive mean model-observation difference), particularly during the stratified period (mid-April to 

mid or late October). Results from the GOM1-based simulation, compared to the same observations 

(Figure 2-5), show similar agreement with the exception that the 20 m GOM1- based temperatures 

are notably higher than the observations during the late spring and early summer, and the deep 

temperature is biased high more strongly than in the GOM3-results. Super-posed GOM3-based 

model and GOM1-based model results (Figure 2-6) make these differences clear.  

In summary, the success of the transition to the GOM3-based system has been demonstrated 

by comparisons between GOM3-based and GOM1-based simulations of the same year, and some 

aspects of the hydrodynamics results for the GOM3-based results are improved over the GOM1-

based results. 
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Figure 2-4. Comparison of GOM3-based model results with observed temperature and salinity. 

From Mooring A01 location (see Figure 1-1) at 1 m, 20 m, and 50 m depths. Temperature values 
given in units of degrees Celsius. Salinity values given on the Practical Salinity Scale (PSS). 
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Figure 2-5. Comparison of GOM1-based results with observed temperature and salinity. 

The GOM1-FVCOM grid (not shown; see Figure 2-1 of Zhao et al. 2016) was the regional grid 
used in simulations of years prior to 2015.
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Figure 2-6. Comparison of GOM3-based (“model”) and GOM1-based (“MB-GOM1”) results. 
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3. Forcing conditions 

3.1 Wind, heat flux, light, and rivers 
 

The main characteristics of 2015 wind forcing are revealed by comparisons with the long-

term mean and standard deviation of previous years from 1995 to 2014 (Figure 3-1). The seasonal 

pattern of vector-averaged velocities (top frame) showed significantly larger magnitudes than the 

long-term mean in the months of January to March.  In the months of May and June the mean wind 

was from the southwest and southeast, in contrast to the long-term mean which was from the 

southeast and southwest respectively. The wind speeds (second frame) in 2015 are generally larger 

than the long-term mean; in January and October, the monthly wind speed was larger than the 

maximum values in the past 20 years. The wind stress magnitude (third frame) showed the same 

pattern, and the north-south wind stress (bottom frame), a diagnostic for upwelling, was slightly 

higher than the long-term mean during the summer. 

The main attributes of the 2015 air-sea heat flux are seen on comparisons with the long-

term mean and standard deviation (Figure 3-2). The seasonal pattern in 2015 (top frame) had 

negative heat flux (loss of heat from surface; cooling of ocean) during winter and positive heat flux 

(heating of ocean) during summer, as does the long-term mean. The cumulative flux (middle frame) 

results emphasize that 2015 had a notably lower than average heat flux, which was lower than the 

long-term mean throughout the year. The anomaly of 2015 relative to the long-term mean (bottom 

frame) was therefore substantially negative throughout the year.  

The largest riverine influence on Massachusetts Bay is the Merrimack River, which on 

entering coastal waters north of the bay joins the Western Maine Coastal Current and flows into the 

bay off Cape Ann (Figure 1-1). The 2015 Merrimack volume transport (Figure 3-3) was 

substantially smaller than the long-term mean throughout nearly the entire year, with cumulative 

values (middle frame) distinctly lower than the long-term average except during the first half of 

January, such that the cumulative anomaly (bottom frame) was large and negative. 
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Figure 3-1. Surface wind forcing, monthly averages. 
Top frame: Vector-averaged wind velocities. Second frame: Wind speed. Third frame: Wind stress 
magnitude. Bottom frame: North-south component of wind stress, an indicator for wind-driven 
upwelling.  
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Figure 3-2. Surface heat flux. 
Top frame: Net heat flux into ocean. Middle frame: Cumulative net heat flux relative to January 1. 
Bottom frame: Anomaly of 2015 net heat flux (blue, left vertical axis) relative to 1995-2014 
average; cumulative anomaly relative to January 1 (red, right vertical axis). 
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Figure 3-3. Merrimack River daily/cumulative flux, and anomaly relative to long-term mean. 
Top frame: Merrimack River volume flux. Middle frame: Cumulative flux relative to January 1. 
Bottom frame: Anomaly of flux in 2015 relative to 1995-2014 average (blue, left vertical axis); 
cumnulative anomaly relative to January 1 (red, right vertical axis). 
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3.2 Loading of organic carbon, nitrogen, and phosphorous 
There are both oceanic and non-oceanic sources of organic materials and nutrients to the bays. 

The oceanic component stems from exchange with adjacent offshore waters of the Gulf of Maine. 

These offshore waters are not characterized by particularly high concentrations, but the volume of 

the exchange is very large. A systemwide budget for total nitrogen in the bays, based on results 

from BEM simulations of 1992 conditions, concluded that approximately 93% originated offshore 

in the Gulf of Maine (Hunt et al., 1999; Hydroqual, 2000). Consequently, oceanic input is by far the 

single largest source of organic materials and nutrients to the bays. While conditions change from 

year to year and it is recognized there have been long-term changes to loads since 1992, the 

estimated 93% oceanic fraction remains broadly representative of today’s conditions, and is likely 

roughly applicable to organic materials and nutrients other than total nitrogen. 

The smaller non-oceanic sources include rivers, terrestrial runoff other than rivers (referred to 

as non-point sources), atmospheric deposition, and sewage outfalls (referred to as point sources). 

Point sources include both the MWRA outfall and non-MWRA outfalls. To help put the MWRA 

outfall contribution in context, estimates of the non-oceanic sources have been made and compared 

(Figure 3-4). In 2015 the non-MWRA outfalls contributed most to organic carbon loading, 

followed by the MWRA outfall, atmospheric deposition, non-point sources and rivers. The MWRA 

outfall was the largest input to nitrogen loading (ammonium, nitrate, and nitrite), followed by 

atmospheric deposition, non-MWRA outfalls, non-point sources, and rivers. For phosphorus 

loading, the MWRA outfall again contributed the largest portion, followed by non-MWRA outfalls, 

non-point sources, rivers, and atmospheric deposition. Note that for non-MWRA outfalls, use has 

been made of the only available dataset for conditions across the Massachusetts Bays system 

(Menzie-Cura and Associates, 1991), for which there are recognized limitations to applicability 

given that treatment levels at some non-MWRA outfalls have changed since that study. 

For the MWRA outfall the annual mean volume flow in 2015 (Figure 3-5) was about 410 

million m3/yr, substantially lower than the average over the past 10 years, and only slightly higher 

than the minimum recorded in 2012. The 2015 outfall carbon load was also below the average over 

the past 10 years. The 2015 nitrogen load was about the same as the average over the past 10 years. 

The 2015 phosphorous load was comparable to that of the past 5 years and lower than in most years 

prior to them. 
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Figure 3-4. Mean daily 2015 non-oceanic loads (carbon, nitrogen, phosphorous). 
MWRA = MWRA Outfall; NON-MWRA = Non-MWRA point sources; NPS = Non-point sources; 
RIVER = River loadings. ATM = Atmospheric deposition.  
 
Top pie chart: Representative estimate of oceanic/non-oceanic sources of total nitrogen (see text). 
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Figure 3-5. MWRA outfall mean annual flow and carbon/nitrogen/phosphorous loads, 2005-15. 
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3.3 Open boundary of the UG-RCA water quality model 
The open boundary condition values for UG-RCA at the offshore edge of its grid domain 

(red line in upper frame of Figure 2-2) are determined using field survey observations from the 

MWRA monitoring program in Massachusetts and Cape Cod Bays and the objective analysis 

method (Tian et al., 2009). These observations are collected during 9 surveys annually, at 14 

stations in the two bays. Figure 3-6 shows the representative subset (10 stations; with N and F 

prefixes) of these 14 stations that is used, for clarity of presentation, below in the water quality 

section of this report (all 14 stations are shown, for example, in Figure 3-1 on page 10 of Werme et 

al. 2015). Open boundary condition results for April 15, June 15, August 15, and October 15 

illustrate representative seasonal changes (Figure 3-7 and Figure 3-8; colorscale ranges are the 

same as in earlier reports for ease of comparison). As explained in Zhao et al. (2012), for dissolved 

organic carbon and biogenic silica (not shown), which are no longer being sampled, a seasonal 

cycle constructed by averaging observations from 1992-2010 is used. The field observations on 

which the objective analysis method is based are collected relatively infrequently, and located at 

large distances from the open boundary, particularly for the South Passage near Cape Cod. It is 

therefore recognized that, while the method is appropriate and effective, the results include a high 

degree of uncertainty.  
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Figure 3-6. Station groups: northern (circles), southern (squares), and harbor (triangles).
For reference in later figures: 
Red arc = Offshore boundary, water quality model domain, where open boundary conditions apply. 
Black line = East-west transect through outfall. 
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Figure 3-7. Open boundary forcing, water quality model: chlorophyll, oxygen, and nutrients. 

Horizontal axis: distance along offshore arc (red in Figure 3-6) of open boundary, from its 
southernmost point; left endpoint (“S”, distance 0 km) is the southernmost end of arc at Cape Cod 
and right endpoint (“N”, distance 90 km) is the northernmost end of arc off Cape Ann.  

        Apr 15                Jun 15                 Aug 15        Oct 15 

-100
-80
-60
-40
-20

0
D

ep
th

 (m
)

Chl (µg l-1)S N

0
1
2
3
4
5 Chl (µg l-1)S N

0
1
2
3
4
5 Chl (µg l-1)S N

0
1
2
3
4
5 Chl (µg l-1)S N

0
1
2
3
4
5

-100
-80
-60
-40
-20

0

D
ep

th
 (m

)

DO (mmol m-3)S N

7
8
9
10
11
12 DO (mmol m-3)S N

7
8
9
10
11
12 DO (mmol m-3)S N

7
8
9
10
11
12 DO (mmol m-3)S N

7
8
9
10
11
12

-100
-80
-60
-40
-20

0

D
ep

th
 (m

)

NO3
− (mmol m-3)S N

0
2
4
6
8
10 NO3

− (mmol m-3)S N

0
2
4
6
8
10 NO3

− (mmol m-3)S N

0
2
4
6
8
10 NO3

− (mmol m-3)S N

0
2
4
6
8
10

-100
-80
-60
-40
-20

0

D
ep

th
 (m

)

NH4
+ (mmol m-3)S N

0.0
0.4
0.8
1.2
1.6
2.0 NH4

+ (mmol m-3)S N

0.0
0.4
0.8
1.2
1.6
2.0 NH4

+ (mmol m-3)S N

0.0
0.4
0.8
1.2
1.6
2.0 NH4

+ (mmol m-3)S N

0.0
0.4
0.8
1.2
1.6
2.0

-100
-80
-60
-40
-20

0

D
ep

th
 (m

)

PO4
3- (mmol m-3)S N

0.0

0.4

0.8

1.2 PO4
3- (mmol m-3)S N

0.0

0.4

0.8

1.2 PO4
3- (mmol m-3)S N

0.0

0.4

0.8

1.2 PO4
3- (mmol m-3)S N

0.0

0.4

0.8

1.2

0 30 60 90
Distance (km)

-100
-80
-60
-40
-20

0

D
ep

th
 (m

)

SiO3
2- (mmol m-3)S N

0

3

6

9

12

0 30 60 90
Distance (km)

SiO3
2- (mmol m-3)S N

0

3

6

9

12

0 30 60 90
Distance (km)

SiO3
2- (mmol m-3)S N

0

3

6

9

12

0 30 60 90
Distance (km)

SiO3
2- (mmol m-3)S N

0

3

6

9

12



34 
 

 
Figure 3-8. Open boundary forcing, water quality model: organics. Presented as in Figure 3-7. 

POC = Particulate Organic Carbon, DOC = Dissolved Organic Carbon 
PON = Particulate Organic Nitrogen, DON = Dissolved Organic Nitrogen 
POP = Particulate Organic Phosphorus, DOP = Dissolved Organic Phosphorus 

        Apr 15                Jun 15                 Aug 15        Oct 15 

-100
-80
-60
-40
-20

0
D

ep
th

 (m
)

POC (mmol m-3)S N

0

12

25

38

50 POC (mmol m-3)S N

0

12

25

38

50 POC (mmol m-3)S N

0

12

25

38

50 POC (mmol m-3)S N

0

12

25

38

50

-100
-80
-60
-40
-20

0

D
ep

th
 (m

)

DOC (mmol m-3)S N

90
100
110
120
130
140 DOC (mmol m-3)S N

90
100
110
120
130
140 DOC (mmol m-3)S N

90
100
110
120
130
140 DOC (mmol m-3)S N

90
100
110
120
130
140

-100
-80
-60
-40
-20

0

D
ep

th
 (m

)

PON (mmol m-3)S N

0

2

4

6

8 PON (mmol m-3)S N

0

2

4

6

8 PON (mmol m-3)S N

0

2

4

6

8 PON (mmol m-3)S N

0

2

4

6

8

-100
-80
-60
-40
-20

0

D
ep

th
 (m

)

DON (mmol m-3)S N

4.0
4.8
5.6
6.4
7.2
8.0 DON (mmol m-3)S N

4.0
4.8
5.6
6.4
7.2
8.0 DON (mmol m-3)S N

4.0
4.8
5.6
6.4
7.2
8.0 DON (mmol m-3)S N

4.0
4.8
5.6
6.4
7.2
8.0

-100
-80
-60
-40
-20

0

D
ep

th
 (m

)

POP (mmol m-3)S N

0.0

0.1

0.2

0.3 POP (mmol m-3)S N

0.0

0.1

0.2

0.3 POP (mmol m-3)S N

0.0

0.1

0.2

0.3 POP (mmol m-3)S N

0.0

0.1

0.2

0.3

0 30 60 90
Distance (km)

-100
-80
-60
-40
-20

0

D
ep

th
 (m

)

DOP (mmol m-3)S N

0.0

0.1

0.2

0.3

0 30 60 90
Distance (km)

DOP (mmol m-3)S N

0.0

0.1

0.2

0.3

0 30 60 90
Distance (km)

DOP (mmol m-3)S N

0.0

0.1

0.2

0.3

0 30 60 90
Distance (km)

DOP (mmol m-3)S N

0.0

0.1

0.2

0.3



35 
 

4. Hydrodynamics 
 

The focus of BEM is water quality, which is strongly influenced by physical processes such as 

the evolution of temperature and salinity patterns and water circulation. The fidelity of the UG-

RCA water quality simulations therefore depends on the capability of the MB-FVCOM 

hydrodynamic model to capture realistic physical processes of the bays. This section describes the 

hydrodynamic model characteristics and performance. 

4.1 Model-observation comparisons 
Comparisons between the model results and observations from 2015 make clear the level of 

agreement between them for the time evolution of the geographic and vertical structure of 

temperature (Figure 4-1) and salinity (Figure 4-2). Salinity is given in units on the Practical Salinity 

Scale throughout this report. Stations in these figures include locations spanning Massachusetts 

Bay (N01, F22, N07, F06), in and near Cape Cod Bay (F01, F02, F29), and at the mouth of Boston 

Harbor (F23; Figure 5-5 shows the location of F23, 1 km west of station 142 which is shown in 

Figure 3-6). Vessel-based observations from 9 survey dates in 2015 are shown as individual 

symbols, from both shallow (near-surface, less than 5m deep) and deep (near-bottom, within 5 m of 

seafloor) depths, at each station in Figure 4-1 and Figure 4-2. In addition, in the panels for Station 

F22, time series observations are shown from Mooring A01 (located about 5 km northeast of F22 

and operated by University of Maine as part of the Northeast Regional Association of Coastal and 

Ocean Observing Systems) at 1m and 51 m deep. The model generally captured the seasonal cycle, 

and most event-timescale characteristics, of observed temperature and salinity. This indicates the 

effectiveness of data assimilation of both satellite sea surface temperature and in situ hydrographic 

measurements. Stratification developed in April, peaked between late July and early September, 

and was eliminated during October or November depending on the station. For temperatures the 

most notable model-observation differences were model temperatures not cold enough to match 

observations in February at some stations (F23, F01, F02), and the tendency for deep temperatures 

to be warmer than observed by up to several degrees except within a few days of observation dates, 

when the model values are reduced to nearer the observed values by data assimilation as expected. 

For salinities the most notable model-observation differences were model salinities fresher than 

observed during events in April and May at N01, and the tendency for deep salinities to be higher  
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Figure 4-1. Temperature time series, model-observation comparison. 

Model results: black/red lines. MWRA vessel-based survey observations: black/red symbols. Value 
in parentheses (after each station name) is the bathymetric depth of the station location. 

Black: Near-surface 
Red: Near-seafloor 

Mooring A01 Observations: 
Green: 1m deep  
Magenta: 51m deep  
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Figure 4-2. Salinity time series, model-observation comparison. 

Shown as in Figure 4-1. Salinity units: Practical Salinity Scale. 

Black: Near-surface 
Red: Near-seafloor 

Mooring A01 Observations: 
Green: 1m deep  
Magenta: 51m deep  
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than observed by as much as 0.5, at some stations (F22, F06, N07, F29) after the first few months 

of the year. This latter difference was reduced by the data assimilation, as expected, within a few 

days of the dates of observations.  

For more complete spatial information, model-observation comparisons have been made of the 

monthly-mean geographic structure, during a series of months spanning the seasonal cycle, of near-

surface and near-bottom temperature (Figure 4-3a,b) and salinity (Figure 4-4a,b). The observed 

fields in these figures are computed using measurements from all stations (black dots) sampled 

during each month-long period. For most months there was a one-day survey in Massachusetts Bay 

and Cape Cod Bay, and Boston Harbor stations were sampled weekly or biweekly (for more detail 

on harbor station locations see, e.g., Taylor, 2015). The model fields in these figures are computed 

using the subset of model outputs from the dates and locations corresponding to the associated set 

of observations. (Consequently they are not expected to match exactly the monthly-means of all 

modeled times, which are shown in Figure 4-6 and Figure 4-7 below.) 

The seasonal cycle and general spatial structure of the model fields is in reasonably good 

agreement with the observations. The most notable model-observation differences for shallow 

temperatures (Figure 4-3a) were that model results were typically more spatially uniform than the 

observations; relative to observations the model results were also notably warmer in June and 

October. For deep temperatures (Figure 4-3b) the agreement was better, with the most notable 

differences being a different spatial structure in June and higher temperatures in October. The 

model shallow salinities (Figure 4-4a) have less spatial structure during April, and are notably 

fresher during August and October, compared to observations. The model deep salinities (Figure 

4-4b) were not as spatially uniform as observations during April and June. The model captured the 

general spatial pattern of onshore freshening throughout the year.  

Comparisons between modeled and observed 2015 non-tidal currents are shown in Figure 

4-5a,b at the Mooring A01 site in northeastern Massachusetts Bay off Cape Ann, the only location 

where time series observations are available. (Tidal currents, while important in controlling vertical 

mixing and dispersal of materials, are not examined in this report. Tidal currents in these 

simulations are very similar to tidal currents in other similarly-configured FVCOM simulations 

spanning the Gulf of Maine, and have been shown—e.g., see Appendix of Chen et al., 2011—to be 

in very good agreement with observed tidal currents.) The model-observation comparisons of non-

tidal currents include time variations and vertical structure, with wind forcing included for context. 
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Figure 4-3a. Temperature spatial structure, at/near sea surface, model-observation comparison. 
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Figure 4-3b. Temperature spatial structure, at/near seafloor, model-observation comparison. 
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Figure 4-4a. Salinity spatial structure, at/near sea surface, model-observation comparison. 
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Figure 4-4b. Salinity spatial structure, at/near seafloor, model-observation comparison. 

Model 

Observations 



43 
 

-20
-10

0
10
20

W
in

d 
(m

/s
) Model

-100
-50

0
50

100 Model2m

-100
-50

0
50

100

C
ur

re
nt

 (c
m

/s
)

Observation2m

-100
-50

0
50

100 Model10m

-100
-50

0
50

100

C
ur

re
nt

 (c
m

/s
)

Observation10m

-100
-50

0
50

100 Model22m

-100
-50

0
50

100

C
ur

re
nt

 (c
m

/s
)

Observation22m

-100
-50

0
50

100 Model50m

0 30 60 90 120 150 180
Times (Day of 2015)

-100
-50

0
50

100

C
ur

re
nt

 (c
m

/s
)

Observation50m

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-5a. Currents time series model-observation comparison, Jan – Jun. Winds top frame. 

Sticks point in the direction of flow, away from zero line; north/eastward flow up/rightward. 
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Figure 4-5b. Currents time series model-observation comparison, Jul - Dec. 
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In order to isolate the non-tidal variability of interest, consisting mainly of weather-related and 

seasonal changes, the tidal variability has been removed using a low-pass filter (38-hr half-power 

period, PL66TN; e.g., Limeburner 1985) and the results subsampled to 6 hour resolution.  

As expected, the main features of the winds (from the WRF model) are weather-band changes 

on timescales of about 3-10 days. These features include: wind directions spanning the full 

compass range; generally weaker magnitudes in the summer; and a tendency for longer-term 

(monthly or longer) average winds to be weaker than weather-band changes, and directed towards 

the east year round, southward in winter, and northward in summer.  

Observed currents are generally toward the south and west at this location (see Figure 1-1) 

and the model adequately captures this feature. The most prominent model-observation difference 

is that the model currents tend to have slightly larger magnitudes than observed. Most of the 

individual storm events seen in the observed currents occur in the model currents, and for most 

events the timing and direction of the flow is similar in the model and observations. These detailed 

comparisons of the time variations and vertical structure of currents in the model to direct 

observations at a particular site form a challenging test of the hydrodynamic simulation 

performance. Agreement is sufficient to conclude that the hydrodynamic model represents observed 

processes adequately to support the water quality modeling. 

4.2 Model monthly-mean temperature, salinity, and circulation  
Based on the above comparisons having demonstrated a level of agreement between the 2015 

simulation and available observations, this subsection presents a more complete view of the 

monthly-averaged simulation temperature, salinity, and circulation throughout the year. 

Model temperatures followed the expected seasonal cycle (Figure 4-6a,b) with peak values in 

summer and early fall and minima in late winter. Horizontal gradients are notable, with inshore 

temperatures generally colder during winter and spring and warmer during summer and fall. From 

about April/May to October/November the surface temperatures (Figure 4-6a) are markedly higher 

than bottom temperatures (Figure 4-6b). Model salinities (Figure 4-7a,b) have a weaker seasonal 

cycle than temperature, particularly at depth. Water near the coastlines is generally fresher year-

round, both at the surface (Figure 4-7a) and the seafloor (Figure 4-7b). At the surface, from April to 

June the offshore extent of relatively fresh water increased, first in the southern Gulf of Maine and 

then in Massachusetts Bay, where it then decreased from July to September. 
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Figure 4-6a. Model temperature, monthly-mean spatial structure, at sea surface. 
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Figure 4-6b. Model temperature, monthly-mean spatial structure, at seafloor. 
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Figure 4-7a. Model salinity, monthly-mean spatial structure, at sea surface. 
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Figure 4-7b. Model salinity, monthly-mean spatial structure, at seafloor. 
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The temporal progression of the geographic pattern of 2015 monthly-mean currents at the 

surface (Figure 4-8a) and at 15 m deep (Figure 4-8b) is consistent with the schematic in Figure 1-1 

and characterized by the following main features. At the surface (Figure 4-8a), in January and 

October-December currents within the bays were generally weak. Southward flow within about 10-

20 km of the western coast of Massachusetts and Cape Cod Bays was strongest in January and 

February, reaching about 20 cm s-1, associated with the unusually strong winds discussed above 

(Section 3.1). Flow into Massachusetts Bay south of Cape Ann was strongest in April. From May 

through October a counterclockwise flow occupied Massachusetts Bay with water moving 

eastward just north of the northern tip of Cape Cod. For most of the year currents were strongest, 

reaching up to 30-40 cm s-1, along the area offshore extending from Cape Ann to Cape Cod, having 

originated in the Western Maine Coastal Current north of Cape Ann. 

At 15 m deep (Figure 4-8b) the flow patterns are generally similar to the surface, with the main 

difference being that currents are generally not stronger than about 10-15 cm/s, and are thus 

substantially weaker than currents at the surface. At this depth, the flow into Massachusetts Bay 

south of Cape Ann occurred throughout most of the summer months. 
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Figure 4-8a. Model currents, monthly-mean spatial structure, at sea surface.  
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Figure 4-8b. Model currents, monthly-mean spatial structure, 15 m deep
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5. Water quality 
Model-observation correlation and regression analyses of key water quality variables from the 

2015 simulation are presented in Figure 5-1, including surface chlorophyll, surface inorganic 

nutrients (nitrate NO3
-, ammonium NH4

+, and silicate SiO3
2-), bottom dissolved oxygen (DO) 

concentration (mg L-1) and DO saturation (%). These comparisons use observations from all 

Massachusetts Bay and Cape Cod Bay sites sampled by MWRA during 2015, comprising a total of 

14 stations (see, for example, Figure 3-1 on page 8 of Werme et al. 2016). (For clarity of 

presentation, as noted above, figures in the remainder of this section use a subset of 10 such 

stations, as shown in Figure 3-6.) In 2015 there was no meaningful correlation for near-surface 

chlorophyll, silicate, or ammonium. The model significantly underestimated chlorophyll when its 

concentration was higher than about 2 µg L-1. For surface NO3
- the correlation of 0.92 is 

comparable to values near 0.9 in past years. For DO concentration the correlation coefficient is 

0.94. The DO saturation was not directly modeled, rather it was calculated based on temperature, 

salinity and DO concentration using the approximate relation given in equation 2.3 of Zhao et al. 

(2012); biases in the simulation for these parameters could be factors that contribute to the lower 

correlation coefficient for DO percent saturation than for DO concentration. 

The remainder of this section describes the 2015 annual progressions of a representative set of 

water quality model variables from representative locations. Individual figures generally show 

results of model-observation comparisons for stations from one of the three groups in Figure 3-6 

(northern, southern, and harbor), or monthly-mean model output along an east-west transect (shown 

in Figure 3-6) that originates at the coast, passes through the outfall site, and extends offshore 

across the Stellwagen Basin depression and the shoaling Stellwagen Bank. 
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Figure 5-1. Model-observation correlations/regressions for key water quality parameters. 

All stations outside Boston Harbor; regressions are solid lines, dashed lines indicate equality 
between observed and modeled results.  
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5.1 Light  
For light, model-observation comparisons use extinction coefficients for attenuation of 

photosynthetically active radiation (PAR) in the water column, as described in Section 2.2 of Zhao 

et al. 2016. At stations in the northern group (Figure 5-2a) and southern group (Figure 5-2b) 

spanning Massachusetts Bay and Cape Cod Bay, the model extinction coefficient results include 

annual-average values that differ modestly from site to site. Temporal variations during the year are 

minor, and the late-spring peak associated with chlorophyll self-shading (Hydroqual, 2001) typical 

in other years (e.g., see Zhao et al., 2016) is modest or absent, consistent with the lack of an 

observed 2015 spring phytoplankton bloom.  At all stations the range of temporal variability in the 

model is much lower than that in the observations. The modeled values are generally within the 

range of observations and model-observation bias is generally not pronounced.  

The extinction coefficient results for the harbor group of stations (Figure 5-2c) are similar to 

those in the bays, with respect to site-to-site variations in the model being modest, and annual-

average levels generally consistent with the observations. As expected, extinction is much more 

rapid in the harbor than in the bay. At sites in the harbor (station 140, and to a lesser extent station 

124) where the temporal variability of observations is more pronounced, this leads to larger model-

observation differences. At the other sites (024, 142, 139) there is evidence of modest positive bias 

in the model extinction coefficient relative to the observations.  
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Figure 5-2a. Light extinction. Northern stations. Line: Model. Symbols: Observations. 

In this and all similar plots to follow, upper left of frame shows “station name (bathymetric depth)”.  
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Figure 5-2b. Light extinction. Southern stations. Line: Model. Symbols: Observations. 
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Figure 5-2c. Light extinction. Harbor stations. Line: Model. Symbols: Observations. 

Note different y-axis scale than for bay stations in Figure 5-2a and Figure 5-2b.  
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5.2 Dissolved inorganic nitrogen 
Dissolved inorganic nitrogen (DIN) is the sum of the nitrogen in ammonium (NH4), nitrate 

(NO3), and nitrite (NO2). Seasonal variations in modeled and observed DIN during 2015 at the 

northern and southern station groups were mostly typical (Figure 5-3a,b). At the start of the year 

the shallow and deep DIN concentrations were comparable. By May the shallow values were drawn 

down to nearly zero by phytoplankton consumption, and remained low through summer. Deep 

concentrations were also reduced in the summer, though by a much smaller amount. Unlike 2014, 

in 2015 at the outfall/N21 site some observations (notably Feb, Mar, Nov) had higher 

concentrations near the surface, in contrast to other stations; the simulation did not capture this 

feature. At stations in and near Cape Cod Bay (F29, F01, F02; Figure 5-3b) the measured early-

year concentrations (until at least late April) were very low both near the surface and near the 

seafloor, which the model did not capture; in addition the model concentrations at depth became 

substantially lower than observed at stations F22 and N04. 

At many stations, in particular the offshore station F22, the near-seafloor concentrations in the 

model underestimated the observed values. An exception occurs at the outfall/N21 station, where 

the model concentrations substantially exceeded measured for most of the year. 

For harbor stations the magnitudes and seasonal cycles of DIN in the model were generally 

similar to observations (Figure 5-3c). At most stations the observed differences between shallow 

and deep concentrations were minor and surface-bottom differences in the model were very small. 

At station 140 the observations had a more pronounced difference between shallow and deep, while 

the model results had no shallow-deep difference and were notably lower than nearly all the 

observations. 

The modeled signature of the outfall in DIN is made clear by monthly-mean concentrations on 

the east-west transect (Figure 5-3d). The highest DIN levels generally occur near the seafloor, and 

within about 10 km of the outfall, year-round. High concentrations occurred within 5-10 km of the 

coast during January and, to a lesser extent, February and October. Away from the outfall, during 

winter conditions (Jan-Apr and Oct-Dec) vertical gradients are weak in association with more 

vigorous vertical mixing and reduced plankton uptake, while for the rest of the year concentrations 

in the upper water column are substantially lower than at depth due to uptake when stratification 

impedes vertical exchange. These patterns in 2015 were generally similar to simulations of prior 

years.  
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Figure 5-3a. Dissolved inorganic nitrogen. Northern stations. Model-observation comparisons.  

Black: Observations near-surface, model at surface  
Red: Observations near-seafloor, model at seafloor 
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Figure 5-3b. Dissolved inorganic nitrogen. Southern stations. Model-observation comparisons. 

Black: Observations near-surface, model at surface  
Red: Observations near-seafloor, model at seafloor 
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Figure 5-3c. Dissolved inorganic nitrogen. Harbor stations. Model-observation comparisons. 
Note different y-axis scale than for bay stations in Figure 5-3a and Figure 5-3b. 

Black: Observations near-surface, model at surface  
Red: Observations near-seafloor, model at seafloor 
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Figure 5-3d. Dissolved inorganic nitrogen (µM). Model results, east-west transect (Fig. 3-7). 
Horizontal axis is distance eastward from coast; outfall is on seafloor at approximately 13 km. 

Outfall 
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5.3 Chlorophyll 
Model chlorophyll concentrations at Massachusetts Bay and Cape Cod Bay stations in 2015 

(Figure 5-4a,b) showed modest temporal variations through the year. The model was generally 

within the observed ranges. However, at most stations the model did not capture certain features of 

the observations well: the observations were notably higher near the surface than near the seafloor 

throughout most of the year, and both shallow and deep observed concentrations were reduced 

from the spring through the summer. 

At some harbor stations (Figure 5-4c; 140, 142, 139) the seasonal cycle of chlorophyll in the 

model featured increased levels during the summer, in particular the late summer. At 140 and 139 

the deep concentrations were notably higher than shallow concentrations in the model, which was 

not observed. At 024 and 124 the observed late summer increase in concentrations was not captured 

by the model.  

Model chlorophyll on the east-west transect (Figure 5-4d) had relatively low and vertically 

uniform concentrations early in the year. They increased weakly in March, April, and May. 

Concentrations were relatively low, with modest spatial variations, through the summer and fall. 

From October to December there were high concentrations at the far offshore end of the transect. In 

contrast to DIN, in model chlorophyll there was no signature of the outfall plume. 
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Figure 5-4a. Chlorophyll. Northern stations. Model-observation comparisons. 

Black: Observations near-surface, model at surface  
Red: Observations near-seafloor, model at seafloor 
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Figure 5-4b. Chlorophyll. Southern stations. Model-observation comparisons. 

Black: Observations near-surface, model at surface  
Red: Observations near-seafloor, model at seafloor 
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Figure 5-4c. Chlorophyll. Harbor stations. Model-observation comparisons. 
Note different y-axis scale than for bay stations in Figure 5-4a and Figure 5-4b. 

Black: Observations near-surface, model at surface  
Red: Observations near-seafloor, model at seafloor 
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Figure 5-4d. Chlorophyll (µg L-1). Model results, east-west transect (Fig. 3-7). 
Horizontal axis is distance eastward from coast; outfall is on seafloor at approximately 13 km. 

Outfall 
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5.4 Primary productivity 
Primary productivity in the 2015 model run is shown in Figure 5-5 at three monitoring stations 

(F23 at the mouth of BH; N04 to the northeast of the outfall; and N18 nearest to the outfall) where 

observations of primary productivity had been made in past years. Ongoing field sampling no 

longer includes primary productivity measurements, but for context the observations from 1995-

2010 are superimposed as box-whisker plots on the model outputs (a review of the field results is 

included as part of Keay et al., 2012; methods are described in Appendix C of Libby et al., 2005). 

The box-whisker plots consist of a box with the 25th and 75th percentiles at its lower and upper 

bounds and a horizontal line bisecting the box at the median (50th percentile), with whiskers that 

extend to the 9th and 91st percentiles. For most of the year, 2015 modeled primary productivity was 

within ranges of historic observations. At F23 there was a pronounced increase in late summer. The 

springtime increase was modest, occurred somewhat later than observed in past years, and 

increased levels were sustained at N04 and N18 through about mid-summer. In fall, the modeled 

primary productivity decreased to low levels earlier than was observed in many past years. These 

features are all within similar ranges of results from model simulations of past years. 
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Figure 5-5. Primary production, vertically integrated, model-observation comparison. 

Line is 2015 model result. Box-whiskers are 1995-2010 observations; box shows 25th, 50th, and 75th 
percentiles and whiskers are 9th and 91st percentiles.  
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5.5 Dissolved and particulate organic nitrogen 
Model dissolved organic nitrogen (DON) levels during 2015 were generally within the range of 

variability of observations (Figure 5-6a,b). Temporal variations in the model were somewhat 

weaker than observations, and neither model nor observations included a strong seasonal signal. 

Vertical difference in model DON were modest, with surface vaules slightly higher, particularly in 

the late summer, as evidenced in the east-west transect results (Figure 5-6). 

Model particulate organic nitrogen (PON) during 2015 showed a stronger seasonal cycle than in 

DON, with low concentrations in winter, then elevated levels in spring and summer that slowly 

decreased through fall (Figure 5-7a,b); at most stations, deep concentrations were modestly less 

than shallow concentrations. The range of temporal variability in the model was less than in 

observations, and at most stations the deep observed values remained markedly lower than shallow 

values for all or most of the year, a feature the model did not capture. The east-west transect results 

for PON (Figure 5-7c) demonstrate that the seasonal changes and vertical structure just described 

generally occurred regionwide. 

As noted for chlorophyll above, in both model and observations there was not a persistent 

anomalous signal near the outfall in either DON or PON. This is evidence supporting the 

conclusion that these variables are not detectably influenced by outfall effluent. 
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Figure 5-6a. Dissolved organic nitrogen. Northern stations. Model-observation comparisons. 

Because observed DON is computed using measurements of TDN (total dissolved nitrogen), NO2, 
NO3, and NH4, if any of those four measurements was unavailable the observed DON does not 
appear on these plots. This was the case for many near-surface samples during the summer months. 

Black: Observations near-surface, model at surface  
Red: Observations near-seafloor, model at seafloor 
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Figure 5-6b. Dissolved organic nitrogen. Southern stations. Model-observation comparisons. 
No observations were collected at stations F29, F01, or F02. 

Black: Observations near-surface, model at surface  
Red: Observations near-seafloor, model at seafloor 
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Figure 5-6c. Dissolved organic nitrogen (µM). Model results, east-west transect (Fig. 3-7). 
Horizontal axis is distance eastward from coast; outfall is on seafloor at approximately 13 km. 

Outfall 
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Figure 5-7a. Particulate organic nitrogen. Northern stations. Model-observation comparisons. 
 

Black: Observations near-surface, model at surface  
Red: Observations near-seafloor, model at seafloor 
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Figure 5-7b. Particulate organic nitrogen. Southern stations. Model-observation comparisons. 

No observations were collected at stations F29, F01, or F02. 

Black: Observations near-surface, model at surface  
Red: Observations near-seafloor, model at seafloor 
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Figure 5-7c. Particulate organic nitrogen (µM). Model results, east-west transect (Fig. 3-7). 
Horizontal axis is distance eastward from coast; outfall is on seafloor at approximately 13 km. 

Outfall 
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5.6 Particulate organic carbon 
The seasonal cycle in model particulate organic carbon (POC) during 2015 at Massachusetts 

Bay stations was modest (Figure 5-8a,b) and included low values January through March or April, 

then higher levels for the remainder of the year. The ranges of model values were generally near the 

range of observed values, but at many stations the model results were biased higher than 

observations. In the observations, deep concentrations were almost all substantially lower than 

shallow values, while the opposite was true for much of the year at many stations in the model. 

This mismatch between the vertical structure of POC in the model and observations is apparently 

due to parameterization of biogeochemical processes in UG-RCA, given that the hydrodynamic 

model is capturing observed variations of vertical structure (stratification) well, as described above. 

Model POC on the east-west transect in 2015 (Figure 5-8c) showed generally higher 

concentrations from April to December, consistent with Figure 5-8a,b. Highest concentrations 

occurred at the surface or at mid-depth. There were also high concentrations at the far offshore end 

of the transect.  
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Figure 5-8a. Particulate organic carbon. Northern stations. Model-observation comparisons. 

Black: Observations near-surface, model at surface  
Red: Observations near-seafloor, model at seafloor 
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Figure 5-8b. Particulate organic carbon. Southern stations. Model-observation comparisons. 

No observations were collected at stations F29, F01, or F02. 

Black: Observations near-surface, model at surface  
Red: Observations near-seafloor, model at seafloor 
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Figure 5-8c. Particulate organic carbon (µM). Model results, east-west transect (Fig. 3-7). 
Horizontal axis is distance eastward from coast; outfall is on seafloor at approximately 13 km. 

Outfall 
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5.7 Dissolved oxygen 
The observed seasonal cycle in dissolved oxygen concentration (peak in spring, decrease 

through summer to minimum in late fall, then increase) in 2015 was reproduced well by the model 

at Massachusetts Bay and Cape Cod Bay stations (Figure 5-9a,b). As noted above (Figure 5-1) the 

correlation between modeled and observed DO concentrations was 0.94 near the bottom, with root-

mean square (RMS) error of 0.48 mg L-1. Concentrations are highest in spring and lowest in late 

summer, with values near the surface generally higher than near the bottom. The late summer and 

fall observed values at F02 and, to a lesser extent, F01 were substantially lower than at other 

stations, a feature the model did not capture. The model-observation differences in the 2015 

simulation were similar in magnitude to those of previous years. Model DO concentration on the 

west-east transect (Figure 5-9c) showed the same general patterns as those found in previous years 

but with somewhat less-pronounced vertical structure, which could be due to the weak or absent 

spring phytoplankton bloom which would further increase near-surface concentrations. 

DO percent saturation depends on temperature and salinity as well as oxygen concentration, and 

is a useful quantity to help understand the relative influence of temperature and photosynthesis on 

DO. Percent saturation above 100% can result from photosynthetic production. We computed DO 

saturation from observations of DO concentration, temperature, and salinity using the approximate 

relation given in equation 2.3 of Zhao et al. (2012). Comparisons between this result and observed 

DO saturation (Figure 5-10a, b) reveal reasonable agreement. The pattern is similar at most 

stations, and on the east-west transect (Figure 5-10c), with reaeration due to exchange between 

atmosphere and ocean playing a dominant role as described by Xue et al. (2014). In winter, DO 

saturation levels are modest due to weaker reaeration, and vertical mixing keeps them nearly 

vertically uniform; in spring, photosynthesis helps increase surface values, which remain higher 

through summer when reaeration is most active, while levels in deeper water steadily decrease 

because they are isolated by stratification. The deep minimum is reached in late summer, after 

which the fall overturn returns the system to winter conditions.  

Finally, model DO concentration and percent saturation have also been compared (Figure 5-11) 

directly to the only available time series observations of DO, from near the surface (2 m deep) and 

51 m deep at the Mooring A01 site (see Figure 1-1) in northeastern Massachusetts Bay. In order to 

minimize the influence of intermittent sensor noise due to bubble sweepdown, daily medians of the 

raw hourly near-surface measurements are used. The daily medians are averaged over 3 day 
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intervals to match the temporal resolution of the model output. The general patterns of seasonal 

variations in the model, as described above, are similar to the observations. However, the model 

oxygen concentration (upper frame, Figure 5-11) near the surface is systematically lower than 

observed; it is recognized that the observations can require calibration offsets at least as large as 

these differences, and the process of ground-truthing and correcting the observations for these 

offsets is still underway as of the time of publication of this report. Due to the high winds during 

the early months of 2015 (discussed above), vertical mixing can be expected to have been vigorous 

such that the observations from near the surface and near the bottom should be nearly the same, as 

occurs in the model results. Presuming that a constant calibration offset was present in the 

observations, this implies that a negative offset correction is applicable to the shallow sensor, such 

that corrected results from both sensors would align with the shallow and deep model outputs 

(nearly equal to each other) during that time of the year. For DO percent saturation (lower frame, 

Figure 5-11) the relationships between model results and observations are similar to those for DO 

concentration. These model results, for both DO concentration and DO percent saturation, and for 

both annual-mean levels and seasonal variations about them, are similar to model simulations of 

past years. 
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Figure 5-9a. Oxygen concentration. Northern stations. Model-observation comparisons. 
 

Black: Observations near-surface, model at surface  
Red: Observations near-seafloor, model at seafloor 
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Figure 5-9b. Oxygen concentration. Southern stations. Model-observation comparisons. 

Black: Observations near-surface, model at surface  
Red: Observations near-seafloor, model at seafloor 
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Figure 5-9c. Oxygen concentration (mg L-1). Model results, east-west transect (Fig. 3-7). 

Horizontal axis is distance eastward from coast; outfall is on seafloor at approximately 13 km. 
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Figure 5-10a. Oxygen percent saturation. Northern stations. Model-observation comparisons. 

Black: Observations near-surface, model at surface  
Red: Observations near-seafloor, model at seafloor 
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Figure 5-10b. Oxygen percent saturation. Southern stations. Model-observation comparisons. 

Black: Observations near-surface, model at surface  
Red: Observations near-seafloor, model at seafloor 
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Figure 5-10c. Oxygen percent saturation. Model results, east-west transect (Fig. 3-7). 

Horizontal axis is distance eastward from coast; outfall is on seafloor at approximately 13 km. 

Outfall 
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Figure 5-11. Oxygen time series, Mooring A01 site, model-observation comparison. 
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5.8 Sediment fluxes 
Sediment NH4

+ fluxes and sediment oxygen demand (SOD) from the 2015 simulation are 

shown in Figure 5-12 and Figure 5-13, for the Massachusetts Bay and Boston Harbor stations 

where flux measurements had been made most consistently in earlier years to best facilitate model-

observation comparisons. Ongoing field sampling no longer includes these benthic fluxes, but to 

provide context the observations from 2000-2010 are superimposed as box-whisker plots (as 

described in Section 5.4) on the model results (the field program and its results are described in 

MWRA technical reports, for example Tucker et al., 2010). Observations from prior to 2001 were 

not included, because diversion of the outfall to its current location occurred in 2000. At harbor 

stations the model NH4
+ flux in 2015 was nearly zero except during about 5 months from summer 

to early fall, when it was systematically lower than the central range of observed values except at 

BH03 during summer and early fall. At bay stations it was nearly zero except between May and 

December, when model values were generally within the range of historic observations, though 

they were higher than observations at stations MB03 and MB05 in the fall. Model SOD at harbor 

stations exhibited seasonality, and low bias relative to observations, similar to the NH4
+ flux there. 

At bay stations, model SOD had similar seasonality to the NH4
+ flux there; relative to the range of 

observations, model values were low in the spring and early summer, near the lower end of the 

range in summer, and within or nearer to the range in fall. These characteristics and relationships to 

observations for the 2015 simulation are similar to those of simulations from earlier years.  
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Figure 5-12. Sediment NH4+ flux. Model 2015 (line), observed 2001-2010 (box-whiskers). 

Select Boston Harbor stations (left column) and Massachusetts Bay stations (right column).  
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Figure 5-13. Sediment oxygen demand. Model 2015 (line), observed 2001-2010 (box-whiskers). 

Select Boston Harbor stations (left column) and Massachusetts Bay stations (right column).
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5.9 Summary 
In summary, the UG-RCA 2015 simulation captured many of the observed seasonal and vertical 

variations of an array of key water quality parameters examined here. Among them, agreement of 

the model with observations was generally strongest for DIN and DO, was modest for light, DON, 

and PON, and was weakest for POC and chlorophyll. Temporal and spatial variability in the model 

is typically less than observed, and at most stations surface-bottom differences in the model are 

smaller than observed. These results are typical of model-observation comparisons for the water 

quality parameters in BEM. 
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6. Synthesis: Preliminary study of bay oxygen and
chlorophyll variations in relation to inflow from offshore

This section describes results of a preliminary investigation of the potential relationship between 

temporal variations in the water inflow on the northern boundary of Massachusetts Bay with 

variations of DO and chlorophyll concentrations within the bay. The hypothesis explored is that the 

major influence on DO and chlorophyll variability within the bay is variability of the inflowing 

current from offshore, and its associated physical transport of DO and chlorophyll—referred to as 

horizontal advection—as opposed to variability in biological processes local to the bay, in which 

the outfall may play a role. Advection was inferred by Geyer et al. (2002) to play a role in inter-

annual variations of near-bottom DO at the outfall, based on correlations between inter-annual 

variations in observed near-bottom DO and temperature and salinity. In addition, analysis of 

observations and simulations by Xue et al. (2014) concluded that advection is important to seasonal 

variability of DO in northern Massachusetts Bay. This investigation uses the 21-year time series of 

the UG-RCA output over the period 1995-2015, for which UG-RCA results are available with 3-

day time resolution. Temporal variability is examined on timescales from 3 days to inter-annual.   

The transect used for the model net volume transport computation extends from Cape Ann about 

18 km to the south and east (green line, Figure 1-1). The inflow to Massachusetts Bay typically 

occurs as a current flowing southward and westward south of Cape Ann, with a width that extends 

some distance from the coast. Because this distance varies but is generally not farther than 18 km 

offshore, computing the transport through this transect is considered to capture the inflow well. 

Volume transport is computed using the component of velocity perpendicular to the transect, with 

negative transport values corresponding to flow through the transect toward the south and west. 

Over the 21-year hindcast simulation the long-term mean (1995-2015) transport across the transect 

was -7.6 x 104 m3 s-1 directed in to Massachusetts Bay.  

The 3-day, monthly-mean and annual-mean volume transport through the transect were 

computed, and the anomalies from the long-term mean transport are shown in the top frames of 

Figure 6-1, Figure 6-2, and Figure 6-3 respectively. Seasonal and inter-annual changes in transport 

anomaly are appreciable. Larger-magnitude anomalies, both positive and negative, tend to occur in 

the fall-winter seasons. Northeasterly winds are prevalent during that time of year, but anomalies of 

either sign can occur, for example depending on whether the frequency of nor’easter storms in each 

year is higher or lower than typical. Negative anomaly peaks (stronger flow in to Massachusetts 
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Figure 6-1. Transport anomaly and DO concentration anomalies, 3-day resolution. 
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Figure 6-2. Transport anomaly and DO concentration anomalies, monthly-means. 
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Figure 6-3. Transport anomaly and DO concentration anomalies, annual means. 
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Bay) occurred in winters of 1997, 2001, 2004, and 2007, and positive anomaly peaks were evident 

in fall-winter of 2000, 2005, 2007, 2012 and 2013. 

Variability in model DO at the surface and at the seafloor was investigated at two locations 

(Figure 1-1): Mooring A01 about 7 km to the south and west of the transport transect, and the 

MWRA outfall about 24 km farther to the south and west. The near-surface inflow current typically 

ranges in strength from about 10 to 35 cm s-1 (Section 4). The advective timescales, or durations it 

would take for water to travel over those distances at those speeds, range from about 6 hours to 

about 3.6 days. These are lower bounds because they assume motion in a direct line from point to 

point, while paths of actual currents are not direct. Near the bottom, currents are weaker, with a 

representative range roughly between 3 and 10 cm s-1, corresponding to a lower-bound advective 

timescale as long as about 12 days. These timescales are consistent with estimated residence times, 

for the larger area spanning all of the bay, that range from about 2 weeks to a few months (Geyer et 

al. 1992). 

The 3-day, monthly-mean, and annual-mean surface and bottom anomalies in DO concentration, 

relative to the long-term (1995-2015) mean, at the outfall and Mooring A01 sites are shown in the 

middle and bottom frames respectively of Figure 6-1, Figure 6-2, and Figure 6-3. After some of the 

large negative volume transport anomaly (inflow to the bay) events, the DO anomaly is positive the 

following year. A prominent example was 1997-1998. Conversely, after some of the large positive 

anomalies, a negative DO anomaly occurred the following year. Table 6-1 shows results of 

correlation analysis between transport anomaly and DO concentration anomaly using the 3-day, 

monthly-mean, and annual-mean data. Correlations are negative, meaning a stronger inflow 

(negative transport anomaly) is associated with positive DO anomaly (higher DO concentrations). 

This is consistent with the expectation for higher DO offshore being advected in to the bay. 

Correlation coefficient magnitudes at the bottom are higher than at the surface, which is consistent 

with the expectation that advection is a larger contributor to DO variability at depth as opposed to 

near the surface, where air-sea interactions more strongly influence surface DO. Correlation 

coefficient magnitudes are highest (up to 0.30-0.42) at the monthly and annual timescales, which is 

consistent with the conclusions of Xue et al. (2014) that advection is important to seasonal 

variability and of Geyer et al. (2002) that advection is important to inter-annual variability.  

If inward transport off Cape Ann advectively influenced DO at Mooring A01 or at the outfall, 

DO anomalies in the bay would occur with a time delay relative to transport anomalies off Cape 
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Table 6-1.  Correlation coefficient of transport anomaly and DO concentration anomaly. 

Ann. Correlations were therefore also computed, using the monthly-mean data, with inclusion of a 

lag between 0 and 6 months. Lags of up to 6 months were included based on the example of the 

1998 positive DO anomaly, which occurred about 6 months later than the peak negative transport 

anomaly in September 1997. The resulting coefficients (Table 6-2) have lower magnitudes than the 

original correlations, and they decrease with increasing lag.  

Table 6-2.  Correlation coefficient of monthly-mean transport anomaly and lagged DO 
concentration anomaly. 

Anomalies in chlorophyll concentration, computed the same way as the DO anomalies, are 

shown together with the transport anomalies at 3-day, monthly-mean, and annual-mean timescales 

in Figure 6-4, Figure 6-5, and Figure 6-6 respectively. Prominent relationships between transport 

anomaly and chlorophyll anomaly are not apparent on visual inspection. Correlations computed by 

the same methods as for DO, with and without lags (Table 6-3 and Table 6-4 respectively), give 

coefficient magnitudes that are mostly much smaller than those for DO. The magnitudes are 

generally higher at the surface than the bottom, which seems consistent with the known higher 

concentrations and therefore higher variability of chlorophyll at the surface. However, the signs of  

Time A01_surf A01_bot Outfall_surf Outfall_bot
3-day -0.07 -0.21 -0.09 -0.18

monthly -0.12 -0.35 -0.18 -0.30
yearly -0.10 -0.42 -0.25 -0.37

Time lag (month) A01_surf A01_bot Outfall_surf Outfall_bot
0 -0.10 -0.36 -0.16 -0.30
1 -0.07 -0.31 -0.14 -0.27
2 -0.03 -0.25 -0.07 -0.20
3 -0.05 -0.24 -0.08 -0.19
4 -0.01 -0.19 -0.06 -0.16
5 0.03 -0.12 -0.02 -0.11
6 0.01 -0.11 -0.05 -0.09
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Figure 6-4. Transport anomaly and chlorophyll concentration anomalies, 3-day resolution. 
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Figure 6-5. Transport anomaly and chlorophyll concentration anomalies, monthly means. 
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Figure 6-6. Transport anomaly and chlorophyll concentration anomalies, annual means. 
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Table 6-3.  Correlation coefficient of transport anomaly and chlorophyll concentration anomaly. 

Table 6-4.  Correlation coefficient of monthly-mean transport anomaly and lagged chlorophyll 
concentration anomaly. 

the correlation coefficients are mostly positive at the surface and negative at the bottom, for which 

the responsible process is not obvious. In the lagged correlations, for the surface results at both sites 

the coefficients at 2 month lag are marginally higher than for other lags. However, the magnitudes 

of the coefficients are small enough to limit confidence in any conclusions or interpretations that 

could be made. 

In summary, for DO the correlation coefficients with transport have modest magnitudes, signs 

that are consistent with the expected current advection mechanism, and decreasing values when a 

lag is included. This suggests the importance of the flow from offshore in influencing seasonal and 

inter-annual variations of DO in the bay, a result that supports the findings of earlier studies. In 

contrast, for chlorophyll the correlation coefficients are not as high, and their signs are not easy to 

interpret in terms of a known process or mechanism. This suggests advection is not a major 

contributor to chlorophyll variability, based on this preliminary investigation. Differing results for 

DO and chlorophyll are not unexpected because, while DO and chlorophyll are related to each 

other, each is influenced by its own set of numerous processes.  

In the event that a follow-on investigation was of interest, there are many possible modifications 

and extensions to the approach taken in this initial analysis. Instead of the volume transport, the 

Time A01_surf A01_bot Outfall_surf Outfall_bot
3-day 0.08 -0.03 0.01 -0.09

monthly 0.14 -0.04 0.04 -0.08
yearly 0.27 0.11 0.10 -0.08

Time lag (month) A01_surf A01_bot Outfall_surf Outfall_bot
0 0.15 -0.07 0.08 -0.07
1 0.19 0.02 0.10 0.01
2 0.22 0.10 0.14 0.07
3 0.19 0.10 0.12 0.06
4 0.17 0.13 0.12 0.06
5 0.14 0.18 0.11 0.06
6 0.08 0.19 0.07 0.03
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transport of DO or chlorophyll (computed as the product of the velocity and the DO or chlorophyll 

concentration) through the transect off Cape Ann could be computed and investigated. 

Additionally, instead of the transport through the transect at all depths, the transport in a near-

bottom layer (expected to be more applicable to DO), and the transport in a near-surface layer 

(expected to be more applicable to chlorophyll), could be computed and investigated independenly. 

Finally, ground-truthing the temporal variations in the model velocities (from which the transports 

are computed) against observed velocities (available at Mooring A01), and ground-truthing the 

temporal variations in the model DO and chlorophyll concentrations against observations, would 

increase confidence that the findings are applicable to Massachusetts Bay. 
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7. Summary
The Marine Ecosystem Dynamics Modeling Laboratory at University of Massachusetts

Dartmouth simulated hydrodynamic and water quality parameters for calendar year 2015 in 

Massachusetts Bay, Cape Cod Bay, and Boston Harbor using the unstructured-grid Bays 

Eutrophication Model (BEM). BEM consists of a system of nested models including data-

assimilative hydrodynamic simulations at global (Global-FVCOM), regional (GOM3-FVCOM), 

and coastal embayment (MB-FVCOM) scales, together with the UG-RCA water quality model 

applied within a subset of the latter.  

The methods were the same as in the prior year’s simulation (described in Zhao et al., 2016) 

except that the system was upgraded to be based on the regional model of the North East Coastal 

Ocean Forecast System (NECOFS). One major advantage of the new approach is that NECOFS is 

an operational product generated for, and being used by, many others meaning it is no longer 

necessary to independently execute the regional simulations dedicated to this project as has been 

done in past years.  

The main features of observed seasonal cycles in temperature and salinity were captured well 

by the hydrodynamic model. The seasonal cycle of stratification in the model also agreed well with 

observations. Comparisons to observed currents were favorable. 

Overall patterns in seasonal variations and vertical structure of many water quality parameters 

in the model were in good agreement with observations. In comparison to field measurements, the 

model typically showed a smaller range of values, and smaller surface-bottom differences during 

the stratified season. The well-known observed spring/summer reduction in shallow DIN 

concentrations due to phytoplankton uptake, and later fall replenishment due to enhanced mixing 

when stratification breaks down, were apparent in the model and consistent with observations. The 

model also reproduced the main characteristics of the observed seasonal cycle of DO, with peaks in 

spring when shallow values increase due to phytoplankton growth, followed by continuous 

decreases at depth through summer and early fall, with replenishment during the winter mixed 

period. In addition to these bay-wide patterns, near the seafloor local to the outfall (within 10-20 

km) dissolved inorganic nitrogen was elevated, but this was not the case for other water quality 

parameters including chlorophyll.  Agreement of model DON and PON with observations was 

modest, and model POC showed relatively poor agreement with measurements, particularly with 

regard to vertical structure. In summary, model-observation agreement was generally strongest for 
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DIN and DO, modest for DON and PON, and weakest for POC and chlorophyll. Overall, the 

simulations support the conclusions of the field monitoring program, that the outfall does not have 

an appreciable influence on bay-wide ecosystem function. 

Agreement with observations was generally better for the hydrodynamic model than for the 

water quality model. This is not unusual, in the context of current research methods for simulations 

of coastal waterbodies such as Massachusetts Bay and Cape Cod Bay. In part this is a result of the 

less complete scientific understanding of the complex biological and chemical processes that are 

represented in water quality models. The model must include such processes but can only use 

substantially simplified formulations for them, leading to larger differences when compared to 

observations. In addition, for the biological and chemical parameters of the water quality model, 

observations available to drive and verify the model are less spatially and temporally extensive 

compared to parameters important to the hydrodynamic model. An example of the latter is that 

water temperatures, and the strength and direction of winds, are monitored at least hourly at 

multiple Gulf of Maine locations. In contrast, the most substantial field sampling effort for water 

quality parameters has been the MWRA Ambient Monitoring program, which consists of vessel-

based surveys 3-4 weeks apart and focuses on measuring and understanding outfall effects, so can 

only partially characterize the regional nutrient and plankton dynamics. 

To help improve understanding of temporal variability of dissolved oxygen and chlorophyll 

concentrations near the outfall, a preliminary investigation was carried out using a 21-year (1995-

2015) hindcast simulation. The focus was the potential importance of variations in physical 

transport by the inflow to Massachusetts Bay occurring south of Cape Ann, as distinct from the 

influence of local biological processes which could be impacted by outfall discharge. The volume 

transport through a transect extending offshore from Cape Ann across the inflow was computed at 

3-day temporal resolution, and the transport anomaly was computed relative to the long-term

(1995-2015) mean. Near-surface and near-bottom model dissolved oxygen and chlorophyll

concentrations from the same years at two locations—the Mooring A01 site between the transect

and the outfall, and the outfall site—were used to compute anomalies similarly. Correlations

between transport anomaly and dissolved oxygen and chlorophyll anomalies were computed for the

3-day record, monthly means, and annual means; lagged correlations were computed, using the

monthly-means, for lags ranging from 0 to 6 months.
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Results for dissolved oxygen included modest correlation coefficients, which decreased 

when lags were included. For the monthly means and annual means the deep anomalies were 

negatively correlated with the transport. This associates higher inflow (negative transport anomaly) 

with higher oxygen concentration, which is consistent with the hypothesized mechanism of 

offshore high-oxygen water moving in to the bay at depth causing an increase in bay 

concentrations. This is consistent with findings of prior studies, that variations in transport in to the 

bay are important to variability of DO at seasonal and inter-annual timescales within the bay (Xue 

et al., 2014 and Geyer et al., 2002, respectively). Results for chlorophyll differed from DO, as may 

be expected given that although chlorophyll is related to DO it is controlled by a wide range of 

processes different from those affecting DO. The correlation coefficients between chlorophyll and 

transport from offshore were low, and their signs were not easily interpretable in terms of the 

hypothesized mechanism. This preliminary investigation therefore suggests that variations in 

inflow from offshore do not make a major contribution to chlorophyll variability within the bay. A 

number of ways to enhance or expand the investigation have been identified and should be useful in 

the event it is revisited in the future.   
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