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Executive Summary 

The Massachusetts Water Resources Authority (MWRA), as part of its National Pollutant Discharge 

Elimination System (NPDES) permit, is required to monitor water quality in Massachusetts and Cape Cod 

bays.  This report documents the results of water column monitoring for 2013.   The objectives of the 

monitoring are to (1) verify compliance with NPDES permit requirements, (2) evaluate whether the 

impact of the treated sewage effluent discharge on the environment is within the bounds projected by the 

EPA Supplemental Environmental Impact Statement (EPA 1988), and (3) determine whether change 

within the system exceeds Contingency Plan thresholds (MWRA 2001). 

 

During 2013 none of the Contingency Plan water column Warning or Caution level thresholds were 

exceeded.  The 2013 water column monitoring again demonstrated that the impacts of the wastewater 

discharges from the bay outfall were localized and as predicted earlier by calibrated eutrophication-

hydrodynamic models.  Noteworthy observations made in the bays during 2013 included: 

 The winter/spring period was characterized by water temperatures and salinities that were greater 

than average.  Both surface and bottom waters temperatures in the bays during summer were 

higher than average.  Salinity in the surface waters during summer was lower than during most 

years monitoring has been conducted, which resulted in stronger stratification during summer 

2013 than most years. 

 One of the defining features of 2013 was the absence of a winter/spring phytoplankton bloom.  

Typically, a winter/spring bloom is observed in the monitoring data.  Timing of the blooms 

usually start off with an increase in diatom abundance, followed subsequently by increased 

Phaeocystis pouchetii populations.   

 Warm conditions may have been conducive to continued production and elevated phytoplankton 

abundances over the winter (November 2012 to February 2013).  This was corroborated by 

elevated chlorophyll levels in satellite imagery during this period.  An extended period of 

phytoplankton production over the winter could have resulted in the lower nutrient concentrations 

observed in February 2013.  Subsequently, the lower levels of nutrients during the warm, dry 

winter/spring, may have been responsible for the absence of phytoplankton blooms. 

 2013 was first year since 1999 that Phaeocystis has not bloomed in Massachusetts and Cape Cod 

Bays.  Seasonal mean Phaeocystis pouchetii and Pseudo-nitzschia pungens counts in the nearfield 

during 2013 were very low and easily met the Contingency Plan thresholds for these nuisance 

species.  Pseudonitzschia counts have been low through the entire period the bay outfall has been 

on line. 

 Counts of the toxic dinoflagellate, Alexandrium fundyense, the red-tide phytoplankton known to 

cause PSP, were low in 2013.  When Alexandrium counts have been elevated in Massachusetts 

Bay in the past, transport of cells into the bay from the north was responsible for the initial 

bloom.  In 2013, Alexandrium counts in the western Gulf of Maine, as in the bay, were low. 

 Zooplankton counts during summer of 2013 were high, possibly because water temperatures were 

relatively high.   

 Bottom-water DO concentrations easily met the Contingency Plan threshold.  Given the low 

initial “setup” DO concentrations in May/June, strongly stratified summer conditions and 

prolonged duration into mid-November, it was surprising that bottom water DO levels were not 

lower.  The late fall DO concentrations fell within the range seen during previous years.
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1 INTRODUCTION 

The Massachusetts Water Resources Authority (MWRA) conducts a long-term ambient outfall monitoring 

program in Massachusetts and Cape Cod Bays.  The objectives of the program are to (1) verify compliance 

with National Pollutant Discharge Elimination System (NPDES) permit requirements, (2) evaluate whether 

the impact of the treated sewage effluent discharge on the environment is within the bounds projected by the 

EPA Supplemental Environmental Impact Statement (EPA 1988), and (3) determine whether change within 

the system exceeds Contingency Plan thresholds (MWRA 2001).   

 

A detailed description of the monitoring and its rationale are provided in the monitoring plans developed for 

the baseline (MWRA 1991, 1997) and outfall discharge periods (MWRA 2004, 2010).  The 2013 data 

complete thirteen years of monitoring since outfall start-up on September 6, 2000. Table 1-1 shows the 

timeline of major upgrades to the MWRA wastewater treatment system.   

Table 1-1. Major upgrades to the MWRA treatment system. 

Date Upgrade 

December 1991 Sludge discharges ended 

January 1995 New primary plant on-line 

December 1995 Disinfection facilities completed 

August 1997  Secondary treatment begins to be phased in 

July 9, 1998 Nut Island discharges ceased: south system flows transferred to Deer Island – 

almost all flows receive secondary treatment 

September 6, 2000 New outfall diffuser system on-line 

March 2001 Upgrade from primary to secondary treatment completed 

October 2004 Upgrades to secondary facilities (clarifiers, oxygen generation) 

April 2005 Biosolids line from Deer Island to Fore River completed and operational 

2005 Improved removal of TSS etc. due to more stable process 

2010 Major repairs and upgrades to primary and secondary clarifiers 

 

MWRA’s Effluent Outfall Ambient Monitoring Plan (AMP) was revised in 2010 (MWRA 2010); 2013 was 

the third year of monitoring according to the new design. The 2010 AMP revision builds on the scientific 

understanding gained over the past 20 years—the monitoring is now focused on the nearfield, stations 

potentially affected by the discharge, and reference stations in Massachusetts Bay. There are nine synoptic 

one-day surveys per year (Table 1-2). The Provincetown Center for Coastal Studies (PCCS) monitors Cape 

Cod Bay in the same timeframe. This annual report summarizes the 2013 results as seasonal patterns, in the 

context of the annual cycle of ecological events in Massachusetts and Cape Cod Bays, and with respect to 

Contingency Plan thresholds (MWRA 2001). Long-term inter-annual patterns are also analyzed. 

1.1 DATA SOURCES 

The details of field sampling procedures and equipment, sample handling and custody, sample processing 

and laboratory analysis, instrument performance specifications, and the program’s data quality objectives are 

given in the Quality Assurance Project Plan (Libby et al. 2011a).  The survey objectives, station locations 

and tracklines, instrumentation and vessel information, sampling methodologies, and staffing were 

documented in the survey plan prepared for each survey.  A survey report prepared after each survey 

summarizes the activities accomplished, details on any deviations from the methods described in the QAPP, 

the actual sequence of events and tracklines, the number and types of samples collected, and a preliminary 

summary of in situ water quality data.  This includes the results of a rapid analysis of >20 m phytoplankton 

species abundance in one sample, whale watch information, and any deviations from the survey plan.  

Electronically gathered and laboratory-based analytical results are tabulated in data reports. 
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1.2 WATER COLUMN MONITORING PROGRAM OVERVIEW 

Under the AMP (MWRA 2010) all sampling locations (Figure 1-1) are visited during nine surveys annually; 

2013 sampling dates are in Table 1-2. There are five stations sampled in the nearfield and nine stations in the 

farfield. All stations in Massachusetts Bay are sampled for a comprehensive suite of water quality 

parameters, and plankton is sampled at all stations except N21.  The 11 stations in Massachusetts Bay were 

sampled synoptically during one-day surveys; the three Cape Cod Bay stations were sampled by PCCS 

within a day of the Massachusetts Bay stations. 

Table 1-2. Water column surveys for 2013. 

Survey 
Massachusetts Bay 

Survey Dates 

Cape Cod Bay 

Survey Dates 

Closest Harbor 

Monitoring survey 

dates 

WN131 February 6 February 5 -- 

WN132 March 21 March 21 March 25 

WN133 April 10 April 10 April 4 

WN134 May 17 May 17 -- 

WN135 June 18 June 20 June 13 

WN136 July 24 July 22 July 25 

WN137 August 20 August 20 August 15 

WN138 September 4 September 4 September 4 

WN139 October 22 October 23 October 17 

 

PCCS collected samples at the three MWRA Cape Cod Bay stations (Figure 1-1) and has an ongoing water 

quality monitoring program at eight other stations in Cape Cod Bay.1  Nutrient data from all the Cape Cod 

Bay stations are included in this report. MWRA collected samples at 10 stations in Boston Harbor [Boston 

Harbor Water Quality Monitoring (BHWQM)].2  The BHWQM data (nutrient, dissolved oxygen, and 

Alexandrium) collected within 6 days of an AMP survey are included in this report.  The survey dates are in 

Table 1-2. 

 

In addition to sampling surveys, this report includes MODIS-Aqua satellite imagery provided by NASA, and 

continuous monitoring data from the NOAA National Data Buoy Center (NDBC) Buoy 44013 and the 

Northeastern Regional Association of Coastal and Ocean Observing Systems (NERACOOS) Buoy A.  

NDBC Buoy 44013 is located ~10 km southeast of the outfall, near station N07; NERACOOS Buoy A is 

located in the northwestern corner of Stellwagen Bank National Marine Sanctuary and ~5km northeast of 

MWRA station F22 (Figure 1-1).  The satellite imagery provides information on regional-scale patterns, 

while the buoys collect data at high temporal frequency.  

 

The data are grouped by season for calculation of chlorophyll, Phaeocystis, and Pseudo-nitzschia 

Contingency Plan thresholds.  Seasons are defined as the following 4-month periods: winter/spring is from 

January through April, summer is from May through August, and fall is from September through December.  

Comparison of baseline and outfall discharge period data are made for a variety of parameters.  The baseline 

period is February 1992 to September 6, 2000 and the outfall discharge period is September 7, 2000 through 

December 2013.3   

 

                                                      
1 PCCS station map available at http://www.coastalstudies.org/what-we-do/cc-bay-watch/stations.htm 
2 BHWQM station map available at http://www.mwra.state.ma.us/harbor/graphic/bostonharbor_850.gif 
3 Year 2000 data are not used for calculating annual means as the year spans both periods, but are included in plots and 

analyses broken out by survey and season. Specific details on how the 2000 data are treated are included in the captions 

and text. 

http://www.coastalstudies.org/what-we-do/cc-bay-watch/stations.htm
http://www.mwra.state.ma.us/harbor/graphic/bostonharbor_850.gif
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Figure 1-1. Water column monitoring locations. 
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2 MONITORING RESULTS 

The 2013 monitoring data deviated in the winter/spring from what we have typically observed over the 

seasonal sequence of water quality events in Massachusetts Bay.  A winter/spring phytoplankton bloom 

typically is observed as light becomes more available, temperatures increase, and nutrients are readily 

available.  In recent years, the winter/spring diatom bloom has been followed by a bloom of Phaeocystis 

pouchetii in April.  The 2013 data are characterized by the apparent lack of a winter/spring bloom and there 

was no observed diatom or Phaeocystis bloom in February-April 2013.   However, elevated phytoplankton 

abundances may have occurred prior to that survey based on nutrient data and satellite imagery.  This was 

the first year since 1999 that Phaeocystis did not bloom in Massachusetts and Cape Cod Bays. 

By late spring, the 2013 data were more in line with typical seasonal trends for May through October.  

Typically by late spring, the water column transitions from well-mixed to stratified conditions, and this was 

observed.  The summer is generally a period of strong stratification, depleted surface water nutrients, and a 

relatively stable mixed-assemblage phytoplankton community – seen again in the 2013 data.  In the fall, as 

temperatures cool, stratification deteriorates and nutrients are again supplied to surface waters.  This 

transition often contributes to the development of a fall phytoplankton bloom, which was seen in 2013.   

Typically the lowest observed dissolved oxygen (DO) concentrations for the year can be found in bottom 

waters just prior to the complete fall overturn of the water column.  In 2013, the return of the system to well-

mixed winter conditions occurred after the final survey in October, but DO levels were moderate throughout 

the bay in comparison to previous years. By late fall or early winter, the water column became well mixed 

and reset to winter conditions.  

The details of the major features observed and differences noted in 2013 relative to the previous 21 years of 

monitoring are considered below. 

2.1 2013 RESULTS 

The most notable characteristic of the physical environment was that 2013 was a relatively warm 

winter/spring and dry year, which was similar to conditions in 2012 (Figure 2-1; Libby et al. 2013).  Warm 

winter/spring air temperatures resulted in warmer than usual water temperatures at the onset of spring 

stratification (Figure 2-2).  There were a few strong storms in February and March 2013, the strongest of 

which was named winter storm “Nemo”, with wave heights reaching 10 meters in the bay.  The water 

column was well mixed at the time so there were no major changes to water column properties, but the 

storm’s waves did result in high suspended sediment loads in the bay that were evident in MODIS satellite 

images the day after the storm (February 10, 2013). There was also a precipitation event in early June that 

resulted in an annual maximum in Charles River discharge, but this was not a regional event as the peak in 

Merrimack River flow at that time was not substantial (Figure 2-1).  The June storm event did lead to a 

decrease in surface salinity in Boston Harbor and the nearfield area.   

 

Overall for 2013, the annual average flows in the Merrimack and Charles Rivers were below average.  This 

is the second year in a row with lower than average flow following seven years (2005-2011) of relatively wet 

conditions.  These physical forcing events, or lack thereof, contributed to the trends and events observed in 

other water quality and biological data.  

 

A chronological synopsis of the 2013 results is provided below. 
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Figure 2-1. Comparison of the 2013 discharge of the Charles and Merrimack Rivers (solid red 

curve) with 1992-2012 (light blue lines).  Percentile of flow in 2013 relative to other years 

is presented for each river/season. 

 

Figure 2-2. Comparison of 2013 surface and bottom water temperature (°C) at nearfield station 

N18 (solid red line) with 1992-2012 (light blue lines). 

30th25th

percentile
84th 7th

43rd 39th

percentile
70th 11th
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Nutrient concentrations in Massachusetts and Cape Cod Bays in February 2013 were low compared to 

previous winter levels.  Nitrate+nitrite (NO3+NO2) levels in Cape Cod Bay were a third of those in 

Massachusetts Bay, which were lower than previous years, and silicate (SiO4) was nearly depleted in both 

bays in February (Figure 2-3).  Prolonged presence of elevated diatoms abundances over the warm winter 

might have been responsible for the low February nutrient levels. There was a large increase in NO3 and 

SiO4 from February to March in Cape Cod Bay.  Comparable increases in SiO4 were observed in 

Massachusetts Bay, while NO3 levels remained comparable to February levels. Nitrate levels decreased 

sharply from March to April and were depleted by May across the bays in all but the deepest bottom waters 

(i.e. station F22).   

A comparison of nutrient levels at station N18 for 2013 against previous years’ data highlights how much 

lower NO3, SiO4, and phosphate (PO4) levels were in February 2013 as well as how high NO3 and PO4 were 

in April (Figure 2-4).  These trends are likely linked to the presence of a elevated phytoplankton population 

thru the winter and the lack of a diatom or Phaeocystis bloom in February through April.  Satellite imagery 

from November 2012 to early February 2013 is consistent with this speculation as elevated chlorophyll 

levels were observed throughout the bays (Libby et al. 2013; Figure 2-5).  NERACOOS buoy A temperature 

readings were relatively high from November 2012 to February 2013 (see: http://neracoos.org) suggesting 

that conditions may have been conducive to the phytoplankton to remain productive over the winter.  Surface 

water chlorophyll concentrations measured at the buoy were not substantially higher than past winters 

though, ranging from about 2 to 5 µg L-1. 

One of the defining features of the 2013 phytoplankton annual cycle was very low winter-spring 

phytoplankton abundance (Figure 2-6).  Abundance of both major components of the Massachusetts Bay 

winter-spring flora, centric diatoms and Phaeocystis was severely reduced in winter-spring 2013.  Both 

nitrate and silicate concentrations were low in February 2013, suggesting that nutrient limitation may have 

reduced the abundances of phytoplankton typically observed during this winter/spring period.  Model and 

field evidence suggest that reduced nitrate concentration (<6 µM) early in the winter-spring bloom season 

(February) are sufficient to prevent development of large Phaeocystis blooms in Massachusetts Bay (Jiang et 

al. 2014).  The simultaneous reduction in early season silicate concentration observed in February 2013 may 

have also limited development of the winter-spring diatom bloom. In many coastal systems, the serial 

reduction in different nutrients, first SiO4 by centric diatoms followed by NO3 has been proposed as a 

potential Phaeocystis bloom mechanism (Reid et al. 1990; Peperzak et al. 1998). Therefore, in 2013, the 

simultaneous reduction in both NO3 and SiO4 in Massachusetts Bay may have thwarted development of large 

winter-spring blooms of both centric diatoms and Phaeocystis.   

 

http://neracoos.org/
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Figure 2-3. Time-series of surface and bottom mean nutrient concentrations (µM) at 

representative stations in Massachusetts and Cape Cod Bays. 

 

Figure 2-4. Station average nutrient concentrations (µM) near the outfall site (nearfield station 

N18) for 2013 (black line) compared to the previous 21 years of baseline (1992-August 

2000; red) and post-diversion (September 2000-2012; light blue) observations.  Note 

change in scale for PO4 plot. 
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Figure 2-5. Satellite (MODIS) imagery of surface chlorophyll concentrations (mg m-3) in 2013.   

Highlights and specific blooms:  

1st row – early elevated chlorophyll levels January – February 2013;  

2nd & 3rd rows – relatively low from late February into July – no winter/spring diatom or Phaeocystis blooms;  

4th row – late summer chlorophyll increase - bloom of Dactyliosolen fragilisima (and other centric diatoms); 

4th row – September diatom bloom (Skeletonema dominated); 

5th row – elevated chlorophyll levels into early November. 

(Note that these images are heavily weather dependent and do not represent consistent intervals of time. The stars on the image 

correspond to relative timing of the nine MWRA surveys.) 
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Figure 2-6. Average phytoplankton abundance (million cells L-1) by station in Massachusetts and 

Cape Cod Bays. 
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Surface water nitrate levels remained relatively low from May through October (Figure 2-3).  Surface water 

SiO4 levels peaked in March/April time period and generally declined over the remainder of the year.  The 

low surface nutrient levels during the summer were likely due to a combination of strong stratification and 

consistent biological utilization.  The relative strength of stratification in June and July 2013, as estimated by 

the difference in surface and bottom water densities, was amongst the highest levels observed for these 

months during the monitoring program (Figure 2-7) and served to restrict the flux of nutrients from the 

bottom waters.  Elevated chlorophyll concentrations in July suggest that whatever nutrients were making it 

into the surface layer were rapidly taken up.  Annual peak chlorophyll concentrations observed then at the 

Boston Harbor station F23 and nearby shallow water stations is shown in Figure 2-8.  Total phytoplankton 

abundance peaked in July and August at these Boston Harbor and nearfield stations (Figure 2-6).  Both the 

harbor and nearfield featured summer diatom blooms that reached cell abundance levels 1.8 (Boston Harbor) 

and 3.7 (nearfield) times the long-term means for those areas.  This summer bloom was two-phased, with 

dominance by Dactyliosolen fragilissimus reaching abundances >2 million cells L-1 in July followed by 

dominance by Skeletonema spp. at levels of 2-3 million cells L-1 during August.  

 

Figure 2-7. Stratification at nearfield station N18 in Massachusetts Bays in 2013 (red line) and 

previous 21 years (1992-2012, light blue lines). 

The Skeletonema bloom in August was concomitant with an increase in subsurface nutrient levels that was 

most notably observed at stations N18 and N21 in the nearfield.  This increase in nutrient concentrations in 

August was probably associated with upwelling that brought nutrient-rich bottom water up into the surface 

layer as suggested for NO3 and SiO4 in Figure 2-9.  This additional supply of nutrients into the surface layer 

likely supported the diatom blooms in the late summer and into the fall.  Centric diatoms, Skeletonema spp. 

and Leptocylindrus danicus, continued to bloom in September and were present at elevated abundances 

throughout the remainder of the fall.  Satellite imagery shows elevated concentrations in the bays from late 

July to mid-November (Figure 2-5).  An offshore increase in chlorophyll concentrations was also observed 

at NERACOOS buoy A with concentrations of 5-15 µg/L from late September to mid-November 

(Figure 2-10).  The combination of prolonged utilization and lack of early fall storms led to the depletion 

nitrate and silicate in surface waters of Massachusetts Bay in September and October 2013 (Figure 2-3). 
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Figure 2-8. Average in situ chlorophyll fluorescence (µg L-1) by station in Massachusetts and Cape 

Cod Bays. 
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Figure 2-9. North to South transect vertical contours of NO3 (top) and SiO4 (bottom; µM) from 

Broad Sound, across the nearfield, and to the south to station F06 in August 2013.  

Same transect as shown in Figure 2-12. 

 
Figure 2-10. Surface water chlorophyll concentrations (µg L-1) at NERACOOS Buoy A01, NDBC 

Buoy 44013, and nearby MWRA stations. 
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As has been typically observed, the bay outfall effluent plume was detected as elevated ammonium (NH4) 

concentrations in the nearfield during all but one (September) of the surveys in 2013 (Figure 2-11). The 

spatial (horizontal and vertical) distribution of the effluent plume in 2013 continued to compare well with 

model predictions (R. Signell et al. 1996). The plume signature of elevated NH4 concentrations was 

generally seen within 10-20 km of the bay outfall during both well-mixed and stratified conditions.  The 

furthest south the plume was observed was in mid-depth samples from station F15 in July (Figure 2-12).   

Bottom water dissolved oxygen (DO) concentrations declined at a relatively constant rate in Massachusetts 

Bay from April annual maxima to October annual minima (Figure 2-13).  DO levels in the nearfield in 

February-April 2013 were relatively low in comparison to past years.  However, they did not reach 

abnormally low levels in the fall and were actually moderate in comparison to some past years like 2012 (6.2 

mg L-1 at station N18 in 2012; Libby et al. 2013).  Given the low initial “setup” DO concentrations in 

May/June, the strong stratified conditions in October and prolonged duration into mid-November, it is 

surprising that bottom water DO levels were not lower.  The survey observations ended prior to the overturn 

of the water column in the fall of 2013, but DO data from NERACOOS buoy A indicate that levels did not 

get below 6.5 mg L-1 in the deeper bottom waters of Massachusetts Bay before the water column became 

mixed on November 15 during a northeaster storm (Figure 2-13).  The lowest DO concentrations of 2013 

were measured in the bottom water at station F02 in October (4.07 mg L-1; Figure 2-14).  Low DO levels in 

Cape Cod Bay are not uncommon (Becker 1992; Jiang et al. 2007).  Interestingly, bottom water DO at 

station F01 in Western Cape Cod Bay had increased by October to 8 mg L-1 indicating that Western Cape 

Cod Bay had remixed prior to Eastern Cape Cod Bay.   

The 2013 observations of DO were consistent with a regression model developed in previous years (Geyer et 

al. 2002), where low DO is related to warm and/or salty bottom waters.  In 2013, high salinity “explained” 

most of the low DO anomaly (DO level below long-term mean).  The time series data from the NERACOOS 

Buoy A01 continue to demonstrate that variations in near-bottom DO at the outfall site closely track those 

observed at both the Stellwagen station F22 and the buoy.  This indicates that horizontal advective processes 

are very important in determining the interannual variations of DO, and also that interannual variations of 

DO at the outfall site are more regional than local.   

 

In 2013, the zooplankton community composition, abundance, seasonality, and distributional patterns 

generally followed typical patterns except for several atypically high levels of abundance of certain taxa. 

This is interesting since 2013 marks the second year in a row that was warmer than average and no 

winter/spring blooms of diatoms or Phaeocystis were observed.  Total zooplankton abundance increased 

from the winter through the spring, peaking in July, and declining in the fall as usual (Figure 2-15).  The 

zooplankton was usually dominated by copepod nauplii, and copepod adults and copepodites, most of which 

were Oithona similis. Acartia spp. were abundant only in Boston Harbor, particularly in August. Calanus 

finmarchicus was most abundant in April, particularly at the most-offshore stations. Pseudocalanus spp. 

were most abundant during May-July, also mainly at nearfield and offshore stations. Abundances of most 

other taxa were generally similar at most locations during a given sampling period. Seasonal patterns of 

abundance were similar to previous years. Sampling captured several meroplankton peaks, including 

barnacle nauplii in March and April, and bivalve veligers in July and particularly August. Total zooplankton, 

copepod adults and copepodites, Calanus finmarchicus, Pseudocalanus spp., barnacle nauplii, and other 

zooplankton (meroplankton) were generally higher than in most previous years, but generally within 

previously-recorded ranges. Thus, abundances of most taxa were near the high end of normal abundances. In 

terms of long-term trends (1998-2012), 2013 total zooplankton abundance increased (see Figure 2-24). 
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Figure 2-11. Average NH4 concentrations (µM) by station in Massachusetts and Cape Cod Bays. 
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Figure 2-12. Surface and bottom water NH4 (µM) by station and along two vertical transects in 

Massachusetts and Cape Cod Bays on July 24, 2013. 
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Figure 2-13. Time-series of bottom water DO concentration (mg L-1) at nearfield station N18 (top) 

and Stellwagen Basin station F22 (bottom) for 2013 (black) compared to the previous 

21 years of observations (1992-2012; light blue).  NERACOOS buoy A near-bottom 

water (50 m) DO levels are shown in red. 
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Figure 2-14. Bottom water DO concentration (mg L-1) at stations in Massachusetts and Cape Cod 

Bays in 2013.  The lowest DO measured in 2013 was 4.07 mg L-1 at station F02 during the October 

survey.  Only three times during the monitoring program has bottom DO fallen below 5 mg L-1, in 

October 1994, 2000, and 2012. 
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Figure 2-15. Total zooplankton abundance (individuals m-3) at each station in Massachusetts Bay. 
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2.1 CONTINGENCY PLAN THRESHOLDS FOR 2013 

Contingency Plan Threshold water quality parameters include 1) DO concentrations and percent saturation in 

bottom waters of the nearfield and Stellwagen Basin, 2) rate of decline of DO from June to October in the 

nearfield, 3) annual and seasonal chlorophyll levels in the nearfield, 4) seasonal means of the nuisance algae 

Phaeocystis pouchetii and Pseudo-nitzschia pungens in the nearfield, and 5) individual sample counts of 

Alexandrium fundyense in the nearfield (Table 2-1).  

 

Table 2-1. Contingency plan threshold values for water column monitoring in 2013.  

Parametera Time 

Period 

Caution 

Level 

Warning 

Level 

Baseline/ 

Background 

2013 

Bottom Water DO 

concentration (mg L-1) 

Survey Mean 

June-October 

<6.5 (unless  

background 

lower) 

<6.0 (unless 

background 

lower) 

Nearfield: 6.05 

SW Basin: 6.23 

Nearfield min: 6.71 

SW Basin min: 6.97 

Bottom Water DO 

percent saturation (%) 

Survey Mean 

June-October 

<80% 

(unless 

background 

lower) 

<75% 

(unless 

background 

lower) 

Nearfield: 65.3% 

SW Basin: 

67.2% 

Nearfield min: 73.6% 

SW Basin min: 

75.3% 

Bottom Water DO 

rate of decline (mgL-1 d-1) 

Seasonal      

June-October 

0.037 0.049  0.024 0.021 

Chlorophyll 

(nearfield mean, mg m-2) 

Annual 108 144 72 61 

Winter/spring 199 -- 50 53 

Summer 89 -- 51 65 

Autumn 239 -- 90 64 

Phaeocystis pouchetii 

(nearfield mean, cells L-1) 

Winter/spring 2,860,000  -- 622,000 5,160 

Summer 357  -- 79 Absent 

Autumn 2,960  -- 370 Absent 

Pseudo-nitzschia pungens 

(nearfield mean, cells L-1) 

Winter/spring 17,900 -- 6,735 Absent 

Summer 43,100 -- 14,635 667  

Autumn 27,500  -- 10,500 490 

Alexandrium fundyense 

(nearfield, cells L-1) 

Any nearfield 

sample 100  -- 

Baseline Max  

163   23 
a The DO values compared against thresholds are calculated based on the survey means of bottom water values for surveys conducted 

June through October. The nearfield bottom water mean is an average of the five nearfield stations:  N01, N04, N07, N18, and N21.  

The Stellwagen Basin DO value is from station F22. The seasonal rate of nearfield bottom water DO decline is calculated from June 

to October.  The chlorophyll values are calculated as nearfield survey means of areal chlorophyll (mg m-2) and then averaged over 

seasonal or annual time periods.  The Phaeocystis and Pseudo-nitzschia seasonal values are calculated as the mean of the nearfield 

station means (each station is sampled surface and mid-depth).  The Pseudo-nitzschia “pungens” threshold designation includes non-

toxic P. pungens, as well as the domoic-acid-producing P. multiseries and six other Pseudo-nitzschia species recently shown to occur 

in the region and to be toxic (Fernandes et al. 2014).  Distinguishing among P. pungens, P. multiseries, and the other Pseudo-

nitzschia species requires scanning electron microscopy, molecular probes, or high-magnification light microscopy, none of which 

are possible in this program.  Therefore, all Pseudo-nitzschia species identified within the genus are included in the threshold.  For A. 

fundyense, each individual nearfield sample value is compared against the threshold of 100 cells L-1.  Although there are several 

Alexandrium species that might occur in the study area, the counts for A. fundyense are definitive because species-specific molecular 

probes are used.   
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There were no water column threshold exceedances in 2013.  Bottom water DO minima in the nearfield and 

Stellwagen Basin were higher than the thresholds and the low levels observed in 2012.  Seasonal and annual 

chlorophyll levels were low – especially in winter/spring with the lack of a major bloom.  There was no 

Phaeocystis bloom and thus no winter/spring or summer issues with that nuisance species.  Abundances were 

low (well below thresholds) for both of the toxic, A. fundyense and Pseudonitzschia spp. in 2013. 

 

Bottom water DO concentrations in 2013 were consistent with the normal annual pattern: highest in winter, 

decreasing over the summer stratified period, and reaching the annual minima in late fall.  The values of the 

bottom water minima in 2013 were a bit higher (close to 7 mg L-1) than might have been expected given the 

low initial set up concentrations in the nearfield and the prolonged, strong stratification in the fall (see 

Figure 2-13 and Figure 2-7, respectively).  The DO minima levels (and their respective percent saturation 

values) in the nearfield and Stellwagen Basin were above the Contingency Plan threshold values (Table 2-1).  

Comparisons of the bottom water DO concentrations at nearfield station N18 and Stellwagen Basin station 

F22 in 2013 vs. previous years illustrates relatively low DO at station N18 for much of 2013, while levels at 

station F22 were close to the long-term mean (Figure 2-13).  The lowest DO concentrations of 2013 were 

measured in the bottom water at station F02 in October (4.07 mg/L; Figure 2-14).  Interestingly, bottom 

water DO at station F01 in Western Cape Cod Bay had increased by October to nearly 8 mg/L suggesting 

that Western Cape Cod Bay had remixed prior to Eastern Cape Cod Bay. 

The seasonal and annual nearfield mean areal chlorophyll levels for 2013 were low and well below 

Contingency Plan threshold values (Table 2-1).  The lack of a winter/spring diatom or Phaeocystis bloom 

resulted in very low winter/spring chlorophyll levels compared to those observed in the past at nearfield 

station N18 (Figure 2-16).  The summer blooms of Dactyliosolen fragilissimus (July) and Skeletonema spp. 

(August) led to an annual maxima in chlorophyll levels in the nearfield and the shallow coastal and Boston 

Harbor stations.  Fall chlorophyll levels remained low in the nearfield and at offshore stations, but did show 

a peak in October in Boston Harbor and at coastal stations (Figure 2-16).  This was due to a late fall bloom 

(reaching a 1-2 million cells L-1) dominated by Skeletonema spp. and Leptocylindrus danicus. 

As mentioned previously, there was no Phaeocystis bloom in the Massachusetts and Cape Cod Bays in 2013.  

This marks the first year since 1999 without a bloom of this nuisance species in the bays (Figure 2-17)4. The 

potentially toxic, threshold Pseudo-nitzschia species were also present in very low abundances during each 

season (Table 2-1).  This has been the case for this group during the entire post-diversion period, continuing 

the trend since 2000 of very low abundances that are well below the Contingency Plan threshold and below 

levels that would cause amnesic shellfish poisoning. 

 

                                                      
4 Phaeocystis abundance was low in the nearfield in 2010 as shown in Figure 2-17, but achieved bloom abundances of 

>1 million cells L-1 in Cape Cod Bay. 
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Figure 2-16. Average chlorophyll (µg L-1) at representative stations in Massachusetts Bay for 2013 

(black line) compared to the previous 21 years of baseline (1992-August 2000; red) and 

post-diversion (September 2000-2012; light blue) observations. 
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Figure 2-17. Winter/spring (million cells L-1) and summer (cells L-1) seasonal mean nearfield 

Phaeocystis abundance for 1992 to 2013 (note log axis for summer; zeros not plotted).  

Contingency Plan threshold value shown as dashed line. 

 

The 2013 Alexandrium abundances were very low in Massachusetts Bay – peaking at 36 cells L-1 in the 

surface waters at station F10 on April 10, 2013.  One nearfield sample had 23 cells L-1 during the April 

survey and in May Alexandrium abundances of 2-12 cells L-1 were seen in half of the 20 samples collected 

all well below caution threshold levels (Figure 2-18).  There were no shellfishing closures for PSP toxicity 

in Massachusetts Bay (nor NH coastal waters) in 2013, and levels in western Maine were low as well.   

The low 2013 abundances observed differed from a WHOI forecast for a moderate Alexandrium bloom in 

the Gulf of Maine for spring 2013.5  The model forecast is based on cyst abundances in coastal sediments 

during the previous fall (He et al. 2008, Li et al. 2009, McGillicuddy et al. 2011). In fall 2012, cysts 

abundances observed were comparable to those seen in fall 2010 and 2011, but lower than those measured 

prior to the major red tides events of 2005 and 2008.  A similar forecast had been made for the 2012 bloom 

and a moderate bloom was observed in both the western Gulf of Maine and Massachusetts Bay (Libby et al. 

2013).   

                                                      
5 See http://www.whoi.edu/main/news-releases?tid=3622&cid=162529 for article. 
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Figure 2-18. Nearfield Alexandrium abundance for individual samples (cells L-1; note log axis).  

Contingency Plan threshold value shown as dashed line. 

 

The lack of a moderate bloom in Massachusetts Bay in 2013 is not surprising.  According to WHOI 

researchers, during years that a moderate bloom has occurred in the Gulf of Maine (17 out of 34 for which 

records are available) PSP shellfishing closures have only occurred 47% of the time in Massachusetts Bay 

(D. Anderson pers. comm.).  Note also that the definition of “moderate” has recently been quantified, along 

with two other categories used to describe the extent of PSP toxicity in the Gulf of Maine region (Kleindinst 

et al. 2014).  In that study, three levels of PSP outbreak impact were defined:  limited (0-200 km of coastline 

closed); moderate (200-400 km closed); and extensive (400-600 km closed). Thus, even though a moderate 

bloom may occur in the Gulf of Maine, it does not always extend into Massachusetts Bay.  What made 2013 

interesting is that there was essentially no Alexandrium bloom in the Gulf of Maine that year – based on very 

low toxicity scores in shellfish tested along the coast, low cell counts detected by an automated 

Environmental Sample Processor (ESP) on a mooring located near the NERACOOS B buoy, and low counts 

in all samples collected during ground-truth surveys for the ESP (D. Anderson pers. comm.).  Initial 

investigations indicate that overall water mass conditions were different in the Gulf during 2013 compared to 

the conditions in 2004-2012 that are used to run the forecast model.  Part of the difference may have been a 

change in the nutrient regime to lower nutrient levels in the Gulf of Maine.   

As might be expected given the model based forecast and lack of a bloom, comparisons of near real-time 

model predictions (Ruoying He, North Carolina State University) and MWRA field observations were not 

very good. For April, the model did a good job in capturing the low abundances that were seen during the 

MWRA survey on April 10, 2013, but by May the model projected abundances of >100 cells L-1 that were 

not observed (Figure 2-19).  In general, the model has been good at capturing the general features of the 

regional bloom (e.g., timing, alongshore and cross-shore extent, etc.) given the model’s temporal and spatial 

resolution, but it is unrealistic to expect the model to provide accurate cell counts at specific locations and 

times.  As noted above, different water masses and nutrient regimes have been enlisted as possible reasons 

for the discrepancies between the model and observations.  Model sensitivity tests using reduced nutrient 

levels suggest that this may be part of the reason.  When run using nutrient levels 70% lower than the 

climatology used to typically run the model (Rebuck and Townsend 2014), the predicted Alexandrium 

abundances in Massachusetts Bay for 2013 were more comparable to those observed during the May 2013 

survey (Figure 2-19; Model RN graphic).  This suggests nutrient levels in the Gulf of Maine may have 

played a role in the lack of a bloom in 2013, which continues to be a focus of investigation by WHOI 

researchers and others.   
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Figure 2-19. Comparison of MWRA survey observations (left) and modeling results (right) for 

surface Alexandrium abundance in April and May 2013.  The bottom right panel shows 

the modeling results for May 2013 with a 70% reduction in the climatological nutrient 

concentrations. Plots provided by He, Anderson and McGillicuddy. 
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2.2 HISTORICAL COMPARISONS 

The 2013 data were consistent with the general trends and patterns observed during both the baseline (1992-

2000) and outfall discharge (2001-present) time periods.  Previous monitoring (Libby et al. 2007) 

demonstrated that the annual cycle for nitrate and silicate was unaffected by the effluent discharge, which 

began in late 2000.  This can be seen in Figure 2-4 in which the NO3 data from 1992-2012 show a very 

consistent seasonal pattern, while the SiO4 data have been highly variable seasonally from the start of the 

monitoring.  As noted previously, both NO3 and SiO4 concentrations were low in February 2013 - SiO4 

levels were lower than any previous February survey and all four nutrients show a clear spike in 

concentrations in August 2013 associated with upwelling favorable conditions.  In contrast, ammonium and 

phosphate concentrations in the nearfield have clearly shown increases since the offshore outfall began 

discharging.  This can be seen in Figure 2-4 for NH4 by the spiky lines that show multiple peaks throughout 

the year (including 2013).  Baseline years showed much less month-month variability, and are clustered near 

the bottom of the plot.  For PO4, the change from baseline to discharge is less pronounced, but has resulted in 

an upward shift of about 0.5 µM over the course of the year and increased variability with intermittent peaks 

from survey-to-survey within each year. 

By segregating the data into surface layer and bottom layer sampling depths, the change in ammonium 

concentrations from baseline to post-diversion can be seen spatially (harbor, coastal and nearfield stations) 

and seasonally (nearfield).  The surface water NH4 has decreased in Boston Harbor and in nearby coastal 

waters while increasing in the nearfield (Figure 2-20).  The increases in surface water NH4 in the nearfield 

are predominantly in the winter/spring and fall – when the water column is well mixed.   There were also a 

few spikes in concentrations during the summer coincident with upwelling or other mixing events.   

The changes in bottom water ammonium concentrations have been equally dramatic at the well-mixed 

Boston Harbor station while there has been little change along the South Shore coastal stations.  In the 

nearfield, NH4 concentrations are generally higher in the bottom waters year round, but the increase is most 

pronounced during the summer and early fall months when the water column is stratified and the effluent 

plume is confined below the pycnocline (Figure 2-21).  There has been little change in surface or bottom 

water NH4 concentrations at the representative northern and southern offshore stations (Figure 2-20 and 

Figure 2-21). 

The change in ammonium concentrations observed is consistent with model simulations which predicted that 

the transfer of effluent from Boston Harbor to Massachusetts Bay would greatly reduce nutrients in the 

harbor and increase them locally in the nearfield (Signell et al. 1996).  The model also predicted that there 

would be seasonal differences in how the increased NH4 load to the nearfield would be distributed – reaching 

the surface during well mixed winter conditions and confined below the pycnocline under seasonally 

stratified conditions.  This change was predicted to have little impact on concentrations in the rest of 

Massachusetts and Cape Cod Bays.  The spatial patterns in NH4 concentrations in the harbor, nearfield and 

bays since the diversion in September 2000 have consistently confirmed this (Taylor 2006; Libby et al. 

2007).   
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Figure 2-20. Average NH4 concentration (µM) in the surface layer (A and B sampling depths) at 

representative stations in Massachusetts Bay for 2013 (black line) compared to the 

previous 21 years of baseline (1992-August 2000; red) and post-diversion (September 

2000-2012; light blue) observations. 
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Figure 2-21. Average NH4 concentration (µM) in the bottom layer (D and E sampling depths) at 

representative stations in Massachusetts Bay for 2013 (black line) compared to the 

previous 21 years of baseline (1992-August 2000; red) and post-diversion (September 

2000-2012; light blue) observations. 

 

Although increases in ammonium associated with the effluent plume have been observed in the nearfield, no 

related changes or increases in phytoplankton biomass in this region have been observed.  Biomass (as 

measured by chlorophyll and POC) and total nitrogen in 2013 vs. historic values shows the levels were 

within the ranges observed during prior years at nearfield station N18 (Figure 2-22), but tended to be on the 

lower end of the range especially for the first half of the year.  The lack of winter/spring and fall blooms in 

the 2013 monitoring data is clearly shown in the plot of total phytoplankton, which was at or near the 

minimum for each month except for the summer peak in July 2013 (Figure 2-22).  Total nitrogen includes 

NH4, which as mentioned above is enriched in the nearfield by effluent discharge.  Despite this, total 

nitrogen at station N18 was very low (at minima of range) in 2013 compared to historic values 

(Figure 2-22).  Overall, biomass and total phytoplankton were low in 2013 often at historic minima 

compared to baseline and post-diversion levels. 

The 2013 abundance of main phytoplankton groups in the nearfield was compared to long-term (1992-2012) 

levels using a Mann-Whitney test (Table 2-2).  The annual average of the total phytoplankton abundance in 
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2013 (0.97 million cells L-1) was very low in comparison to the long-term mean total phytoplankton 

abundance level of 1.50 million cells L-1.  By rank order, mean total phytoplankton abundance in 2013 was 

the 21st of 22 ranked order years (1 = greatest, 22 = least mean abundance).  The 2013 phytoplankton annual 

cycle was marked by reduced winter-spring phytoplankton abundance.  Abundance of both major 

components of the MA Bay winter-spring flora, centric diatoms and Phaeocystis pouchetii was severely 

reduced in winter-spring 2013. 

The 2013 mean annual average Phaeocystis abundance was only 2,020 cells L-1 compared to a long-term 

mean annual average of 272,258 cells L-1 (Table 2-2).  These are severely reduced levels when compared to 

those observed over the 2000-2012 period of ‘Phaeocystis years’.  In fact, 2013 was the 17th of 22 years 

when ranked by Phaeocystis abundance (1 = greatest, 22 = least mean abundance) all of the lower ranked 

(reduced Phaeocystis abundance) years occurred before 2000, suggesting that 2013 may mark an end of the 

string of ‘Phaeocystis years’ observed during 2000-2012.  Along with the reduction in Phaeocystis, there 

was also a decrease in the small, ubiquitous and often numerous microflagellates and cryptophytes in 2013. 

 

 

Figure 2-22. Station average chlorophyll (µg L-1), POC (µM), total nitrogen (µM), and total 

phytoplankton (million cells L-1) near the outfall site (nearfield station N18) for 2013 

(black line) compared to the previous baseline (1992-August 2000; red) and post-

diversion (September 2000-2012; light blue) observations.  
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Table 2-2. Comparison of 2013 annual mean phytoplankton abundance in the nearfield (cells L-1) 

to long-term observations for major groups and species.   Note that these are exploratory 

analyses involving multiple comparisons.  The determination of significant changes is complicated by 

multiple comparison issues and corrections for the associated errors are beyond the intent of the 

analyses.  Differences between values were assessed using the Mann-Whitney non-parametric 

statistical hypothesis test – p values of ≤0.05 are highlighted as noteworthy. 

Group 1992-2012 2013 
Rank 

(out of 22) 
p value 

Significant 
Change 

CENTRIC DIATOM 311,055 296,377 10th  0.7519  

Dactyliosolen fragilissimus 45,552 110,524 4th  0.0016 Increase 

Chaetoceros 44,817 3,303 20th 0.0001 Decline 

Skeletonema costatum complex 68,398 45,428 10th  0.3466  

Thalassiosira 34,424 6,834 19th  0.0532  

PENNATE DIATOM 45,733 14,565 18th   0.0787  

Pseudonitzschia 10,958 4,590 14th  0.1088  

CRYPTOPHYTES 120,400 82,518 18th  0.0001 Decline 

DINOFLAGELLATES 53,268 54,384 9th  0.8229  

Ceratium 1,539 4,811 2nd  0.0001 Increase 

Phaeocystis pouchetii 272,258 2,020 17th 

  

0.0024 Decline 

MICROFLAGELLATES 697,955 510,196 18th  0.0001 Decline 

TOTAL PHYTOPLANKTON 1,511,679 970,219 21st  0.0001 Decline 

 

 

In addition to the lack of Phaeocystis in the winter/spring, there was also a significant decline in 

Chaetoceros, one of the usually dominant winter/spring diatoms.  There was no change in annual centric 

diatoms as the decreases in the typical winter/spring centric diatom species (Chaetoceros, Skeletonema, and 

Thalassiosira) was offset by an increase in Dactyliosolen fragilissimus, which was relatively abundant in 

2013 due to a large summer bloom in the harbor and nearfield regions. The 2013 D. fragilissimus abundance 

was approximately 2.5 times that of its long-term mean (Table 2-2).  Ceratium spp. were also significantly 

elevated during 2013; consistent with an upswing in the apparent cyclical abundance of this genus of large 

dinoflagellates. 

The summer increase in total phytoplankton abundance was region wide, but the greatest relative summer 

increase was observed in the Harbor and Nearfield regions (Figure 2-23).  Following the summer pulse, 

phytoplankton declined and remained at near long-term mean levels until October 2013.  The October 2013 

observations indicated an increase in total phytoplankton to relative to long-term mean levels in the harbor, 

northern offshore and southern offshore regions (Figure 2-23).  The relative increase in late season 

phytoplankton abundance, as observed in October 2013, has been observed the past several years and may be 

indicative of a trend towards persistent, elevated phytoplankton abundances over the winter (November – 

January) in the MWRA monitoring area, which in turn, could reduce nutrient concentration during the 

months of February-April that have historically featured winter/spring bloom initiation and peak abundance.  

This may have been the mechanism leading to the low nutrient and phytoplankton levels observed in 

February 2013. 
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Figure 2-23. Total phytoplankton abundance (million cells L-1) at representative stations in 

Massachusetts Bay for 2013 (black line) compared to the previous 21 years of baseline 

(1992-August 2000; red) and post-diversion (September 2000-2012; light blue) 

observations. 

 

The 2013 zooplankton abundance and community structure were generally within the envelope of historical 

ranges and patterns except for several atypically-high levels of abundance of certain taxa. Sampling captured 

several meroplankton peaks, including barnacle nauplii in March and April, and bivalve veligers in July and 

particularly August.  Overall, total zooplankton, copepod adults and copepodites, Oithona, Calanus 

finmarchicus, Pseudocalanus spp., and other zooplankton (meroplankton) were generally higher than in most 

previous years and except for C. finmarchicus were the highest levels observed since outfall diversion, but 

generally within baseline ranges (Figure 2-24).   

 

The relatively high zooplankton abundances in summer of 2013 compared to most previous years may have 

been due to the somewhat warmer and more saline conditions in 2013 compared to previous years.  This 

trend in higher zooplankton abundance in 2013 is seemingly at odds with the observations of low chlorophyll 

and phytoplankton abundance levels in the winter/spring.  However, summer levels of phytoplankton were 

relatively high and may have supported additional zooplankton grazing.  Speculation as to the bottom-up or 

top -down ecosystem relationships is complicated by the fact that the dominant copepod in our samples, O. 
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similis, has been shown to feed primarily as a predator on protistan microzooplankton rather than as a grazer 

on phytoplankton (Nakamura and Turner 1997).  There is an emerging consensus within the oceanographic 

community that most grazing of phytoplankton is done by protistan microzooplankton, rather than 

mesozooplankton such as copepods (Miller 2004). We cannot relate phytoplankton fluctuations within the 

MWRA data to protistan microzooplankton grazing due to the lack of any appreciable data on that class of 

grazers. In conclusion, 2013 was a generally “typical” year in terms of zooplankton abundance, composition 

and temporal patterns, with several “atypical” aspects, such as the comparatively large abundances of 

meroplanktonic barnacle nauplii and bivalve veligers, and generally higher abundances of total zooplankton 

than in most previous post-diversion years. 

The last few years have been characterized by an apparent increase in zooplankton abundance from lower 

numbers observed during the early 2000s.  Time series analysis indicated that there had been a substantial 

long-term decline in the total zooplankton abundance in the nearfield from 2001-2006 due to a long-term 

decline in total copepods (Libby et al. 2009).  Given the recent rebound in total zooplankton and copepod 

abundances, the time series analyses were revisited using nearfield total zooplankton data through 2012 

(Libby et al. 2013), which confirmed that current levels of zooplankton have been above the long-term mean 

for the last couple of years.  The data from 2013 suggest that this trend is continuing.  The reasons for these 

long-term changes in zooplankton are not well known and are an active area of study by many researchers.  

At this point, however, the influences appear to be on a regional scale and unrelated to localized effects 

associated with the effluent plume discharging into the nearfield. 
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Figure 2-24. Abundance (10,000 individuals m-3) of total zooplankton, copepods, Oithona, 

Pseudocalanus, Other Zoo (meroplankton), and Calanus finmarchicus near the outfall 

site (station N18) for 2013 (black line) compared to the previous 21 years of baseline 

(1992-August 2000; red) and post-diversion (September 2000-2012; light blue) 

observations. Note change in scale of plots. 
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3 SUMMARY 

The most notable characteristic of the physical environment was that 2013 was another relatively warm 

winter/spring and dry year, which was similar to warm, dry conditions in 2012.  Warm winter/spring air 

temperatures resulted in warmer than usual water temperatures at the onset of spring stratification.  There 

were a few strong storms in February and March 2013; the strongest of which named winter storm “Nemo” 

had wave heights reaching 10 meters in the bay.  The water column was well mixed at the time so there were 

no major changes to water column properties, but the storm’s waves did produce substantial resuspension of 

sediments in the bay that were evident in MODIS satellite images the day after the storm. There was also a 

precipitation event in early June that resulted in an annual maximum in Charles River discharge, but 

regionally it did not appear to be significant, as the peak in Merrimack River flow at that time was not 

substantial.  Overall for 2013, the annual average flows in the Merrimack and Charles Rivers were below 

average.  This is the second year in a row with lower than average flow following a 7-year period of 

relatively wet conditions.  These physical forcing events, or lack thereof, contributed to the trends and events 

observed in other water quality and biological data.  

 

The continued warm temperatures from November 2012 through February 2013 may have contributed to 

elevated chlorophyll concentrations over the winter.  The winter satellite imagery and February 2013 nutrient 

data suggest that elevated diatom levels may have occurred prior to the February 2013 survey.  The lack of a 

major chlorophyll peak in buoy data suggests that the system may have just remained biologically productive 

through the winter, and therefore there was no winter/spring “bloom” above those elevated levels.  Thus, the 

2013 monitoring data are characterized by the lack of a winter/spring bloom – i.e., no observed diatom or 

Phaeocystis bloom in February-April 2013.  This is the first year since 1999 that Phaeocystis were not 

present in elevated numbers in Massachusetts and Cape Cod Bays.  Unlike 2012, the warm conditions did 

not seem to have an impact on the secondary producers.  In 2012, zooplankton were near or above the 

monthly maxima in February and March compared to historical levels.  The diminished availability of food 

(no winter/spring diatom or Phaeocystis bloom in February-April 2013) may have offset the effect of the 

warm winter/spring water temperatures in 2013. 

DO levels in the nearfield in February-April 2013 were relatively low in comparison to past years.  However, 

they did not reach abnormally low levels in the fall and were actually moderate in comparison to past years.  

Given the low initial “setup” DO concentrations in May/June, strong stratified conditions through the 

summer, and prolonged duration into mid-November, it is surprising that bottom water DO levels were not 

lower.  The survey observations ended prior to the overturn of the water column in the fall of 2013, but DO 

data from NERACOOS buoy A indicate that levels remained above 6.5 mg L-1 in the deeper bottom waters 

of Massachusetts Bay until increasing when the water column became mixed in mid-November.  The DO 

regression model was consistent with the observations for the fall 2013 near-bottom DO level.   The 

relatively low DO over the course of the year is explained by warmer temperatures and higher salinity, and 

according to the model, the above-average salinity explains most of the DO anomaly (DO level below long-

term mean).  The time series data from the NERACOOS Buoy A01 continue to demonstrate that the cycle of  

near-bottom DO at the outfall site closely track those observed at both the Stellwagen station F22 and the 

NERACOOS buoy.  This indicates that horizontal advective processes are very important in determining the 

interannual variations of DO, and also that interannual variations of DO at the outfall site are more regional 

than local. 

The phytoplankton community assemblage in the nearfield and most of Massachusetts Bay has varied over 

more than twenty years of monitoring, reflecting large-scale regional trends in phytoplankton bloom 

dynamics.  For example, diatom and Phaeocystis abundance has fluctuated in an inverse pattern over 

multiple years.  However in 2013, as mentioned previously, there was no winter/spring diatom or 

Phaeocystis bloom in the bay. Dinoflagellate abundance has also varied: in some years (like 2012 and 2013) 
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fewer, larger species (e.g. Ceratium spp.) dominate, and during other years there are more plentiful, smaller 

species (e.g. Heterocapsa rotundatum, H. triquetra, Gymnodinium spp., Prorocentrum micans).     

 

In 2013, the WHOI forecast was for a moderate Alexandrium bloom in the Gulf of Maine.  A similar forecast 

had been made for the 2012 bloom, which was moderate in both the western Gulf of Maine and 

Massachusetts Bay.  However, 2013 Alexandrium abundances were very low in Massachusetts Bay and there 

were no shellfishing closures for PSP toxicity in Massachusetts Bay (nor NH coastal waters) in 2013. This 

was the only the second year (2007 and 2013) since the major Alexandrium bloom in 2005 that there were no 

PSP closures in Massachusetts Bay. 

The lack of an Alexandrium bloom in Massachusetts Bay in 2013 is not surprising since during years with a 

“moderate” bloom in the Gulf of Maine PSP shellfishing closures have only occurred about half the time in 

Massachusetts Bay.  Thus, even though a moderate bloom may occur in the Gulf of Maine, it does not 

always make its way into Massachusetts Bay.  What made 2013 interesting is that there was no bloom in the 

Gulf of Maine either.  Initial investigations indicate that overall water mass conditions were different in the 

Gulf during 2013 compared to the conditions in 2004-2012 that have been used to run the forecast model and 

part of that difference may have been due to a change in the nutrient regime.   

The zooplankton community assemblage in the bays is consistently dominated throughout the year by 

copepod nauplii, and copepod adults and copepodites, most of which are Oithona similis. Subdominant are 

other copepods such as Pseudocalanus spp., Calanus finmarchicus, Paracalanus parvus, Centropages 

typicus and C. hamatus (Libby et al. 2011b).  There are also irregular pulses of various meroplankters such 

as bivalve and gastropod veligers, and barnacle nauplii that were abundant in the bay in 2013.  Seasonal 

patterns in zooplankton abundance from 1992-2013 generally correlate with temperature, low in winter, 

rising through spring to maximum in summer, declining in the fall.  The most apparent change over the 

twenty-plus-year monitoring period have been the oscillations in total zooplankton abundances from 

decreased numbers in 2001-2006 to subsequent increases since 2007.  During the last few years, total 

zooplankton abundance has been higher than the long-term mean value.   There is no plausible outfall-related 

link or causality associated with these shifts in phytoplankton or zooplankton as they occur over large spatial 

scales; such broad patterns appear instead to be related to regional ecosystem dynamics in the Gulf of Maine.   

 

Nitrogen levels in Massachusetts Bay (including the nearfield) vary considerably over space and time and 

are governed by regional factors including different loadings to the system, changes in seasonal biological 

patterns, and circulation shifts related to larger-scale processes such as meteorological events.  Observed 

changes in the nutrient regimes since the new outfall went on-line remain consistent with model predictions 

(Signell et al. 1996).  Ammonium dramatically decreased in Boston Harbor and nearby coastal waters and 

has remained low through 2013.  The NH4 signature of the effluent plume continues to be detected within 

10-20 km of the outfall (see Figure 2-12 for example). The observed increase in NH4 concentrations in the 

nearfield has not caused any detectable adverse effects either near or distant from the relocated MWRA 

outfall.  In contrast, the corresponding decrease in nutrient loading to Boston Harbor has resulted in 

significant improvements in water quality (Taylor 2006).  Finally, 2013 marks the third year of monitoring 

under the revised monitoring plan design and we continue to be able to describe the seasonal and spatial 

trends observed for a wide variety of water quality parameters during years with very different 

meteorological forcing and biological responses, thus retaining our capability to understand potential outfall- 

driven impacts to the Massachusetts Bay ecosystem. 
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