Summary of CSO Receiving Water Quality Monitoring in Upper Mystic River/Alewife Brook and Charles River, 2012

Massachusetts Water Resources Authority

Environmental Quality Department Report 2013-11



#### Citation

Coughlin, Kelly. 2013. Summary of CSO Receiving Water Quality Monitoring in Upper Mystic River/Alewife Brook and Charles River, 2012. Boston: Massachusetts Water Resources Authority. Report 2013-11. 45 pp. Summary of CSO Receiving Water Quality Monitoring in Upper Mystic River/Alewife Brook and Charles River, 2012

Prepared by:

Kelly Coughlin Environmental Quality Department, Operations Division Massachusetts Water Resources Authority 100 First Avenue, Boston, MA 02129

July 2013

Environmental Quality Department Technical Report 2013-11

This page intentionally left blank.

# TABLE OF CONTENTS

| 1   | INTR           | ODUCTION                                   | 1  |
|-----|----------------|--------------------------------------------|----|
| 1.  | .1             | OVERVIEW OF THE MONITORING PROGRAM         | 4  |
| 1.  | .2             | ORGANIZATION AND PURPOSE OF THE REPORT     |    |
| 2   | MAT            | ERIALS AND METHODS                         | 5  |
| 2.  | 1              | FIELD AND LABORATORY METHODS               | 5  |
|     | 2.1.1          | Selection of sampling locations            |    |
|     | 2.1.2          | Sampling schedule                          |    |
|     | 2.1.3<br>2.1.4 | Sample collection<br>Field measurements    |    |
|     | 2.1.4          | Rainfall measurements                      |    |
|     | 2.1.6          | Laboratory analyses                        |    |
| 2.  | .2             | DATA ANALYSIS                              |    |
| 2.  | .3             | WATER QUALITY CRITERIA USED IN THIS REPORT | 7  |
| 3   | RESU           | JLTS: CHARLES RIVER                        | 9  |
| 3.  | .1             | SAMPLING AREA                              | 9  |
| 3.  | .2             | POLLUTION SOURCES                          |    |
| 3.  | 3              | SUMMARY OF WATER QUALITY, 2007-2012        |    |
| 3.  | .4             | TRENDS IN WATER QUALITY, 2012              | 15 |
|     | 3.4.1          | Physical measurements                      |    |
|     | 3.4.2          | Nutrients, TSS and chlorophyll             |    |
|     | 3.4.3          | Bacterial water quality                    |    |
| 3.  | -              | SUMMARY OF CHARLES RIVER WATER QUALITY     |    |
| 4   | RESU           | JLTS: MYSTIC RIVER AND ALEWIFE BROOK       |    |
| 4.  | .1             | SAMPLING AREA                              |    |
| 4.  | -              | POLLUTION SOURCES                          |    |
| 4.  | -              | SUMMARY OF WATER QUALITY, 2007-2012        |    |
| 4.  | .4             | TRENDS IN WATER QUALITY, 2012              |    |
|     | 4.4.1          | Physical measurements                      |    |
|     | 4.4.2          | Nutrients, TSS and chlorophyll             |    |
| 4.  | 4.4.3<br>5     | Bacterial water quality                    |    |
|     |                | SUMMARY OF MYSTIC RIVER WATER QUALITY      |    |
| REF | ERE            | NCES                                       |    |

# LIST OF TABLES

| Table 2-1. Field measurements.                                                                       | 5    |
|------------------------------------------------------------------------------------------------------|------|
| Table 2-2. Laboratory measurements                                                                   | 6    |
| Table 2-3. Water quality criteria for Class B and Class SB waters.                                   | 8    |
| Table 3-1. MWRA monitoring locations, lower Charles River.                                           | . 10 |
| Table 3-2. Charles River pollution sources                                                           | . 11 |
| Table 3-3. Charles River Basin CSO activations, results for 2012 system conditions and 2012 rainfall | . 13 |
| Table 3-4. Charles River sample collection by rainfall condition.                                    | . 11 |
| Table 3-5. Summary of water quality, lower Charles River Basin 5-year averages                       | . 13 |
| Table 3-6. Geometric mean indicator bacteria, Charles River, 2007 - 2012                             | . 22 |
| Table 4-1. MWRA monitoring locations, Mystic River and Alewife Brook                                 | . 27 |
| Table 4-2. Mystic River/Alewife Brook pollution sources.                                             | . 28 |
| Table 4-3. Mystic River/Alewife Brook, results for 2012 system conditions and 2012 rainfall.         | . 28 |
| Table 4-4. Mystic River/Alewife Brook sample collection by rainfall condition                        | . 28 |
| Table 4-5. Summary of water quality, Mystic River/Alewife Brook 5 year averages                      | . 30 |
| Table 4-6. Geometric mean indicator bacteria, Mystic River, 2007 - 2012.                             | . 40 |

# LIST OF FIGURES

| 3    |
|------|
| 3    |
| 3    |
| 9    |
| . 16 |
| . 18 |
| . 18 |
| . 21 |
| . 23 |
| . 23 |
| . 23 |
| . 26 |
| . 34 |
| . 36 |
| . 37 |
| . 38 |
| . 39 |
| .41  |
| . 43 |
| . 44 |
| . 44 |
|      |

# 1 Introduction

This report summarizes data collected as part of Massachusetts Water Resources Authority's (MWRA's) combined sewer overflow (CSO) receiving water monitoring program, and is produced in accordance with the variance for CSO discharges to Lower Charles River/Charles Basin and Variance for CSO discharges to the Alewife Brook/Upper Mystic River. The goal of this monitoring is to identify the water quality impacts of CSO flows on water bodies.

During the 2012 calendar year, MWRA continued to implement its Long Term CSO Control Plan, which was developed to address CSO discharges from all CSOs hydraulically connected to the MWRA sewer system and its member communities. This monitoring summary provides an assessment of water quality in the Charles and Mystic Rivers, which are affected by CSO projects implemented as part of this plan.

In 2010, the Massachusetts Department of Environmental Protection (MADEP) extended the Variance for CSO discharges to the Lower Charles River/Charles Basin issued to MWRA, Boston Water and Sewer Commission (BWSC) and the City of Cambridge respectively by three years, to October 1, 2013. MADEP also extended the Variance for CSO discharges to the Alewife Brook/Upper Mystic River issued to MWRA, the City of Cambridge and the City of Somerville respectively by three years, to September 1, 2013.

Under the agreement on the Long Term Control Plan (the "Plan") reached by EPA, MADEP and MWRA in March 2006, MADEP agreed to issue a series of three-year variance extensions until 2020, and MWRA agreed to implement the revised Plan by 2015 and verify the predicted performance at all CSO outfalls by 2020. At that time, DEP will consider issuing long-term water quality standards determinations, based on the verified performance of the Plan and other conditions affecting the water quality and uses of these water bodies.

Conditions in the recent variance extensions require MWRA to implement the Plan and require MWRA and the municipalities to continue to implement the Nine Minimum Controls of EPA's National CSO Control Policy, and all of the CSO permittees are required to report estimated CSO discharge frequency and volume from their respective outfalls to these receiving waters on an annual basis. MWRA is also required to continue receiving water quality monitoring to assess impacts of CSO discharges.

2012 CSO progress as it relates to the Charles River and Alewife Brook/Mystic River includes the following:

• The Town of Brookline continued progress with its \$16.8 million construction contract to complete the Brookline sewer separation project. Eventually completed by the Town of Brookline in April 2013 ahead of a July 2013 court milestone, this project involved sewer separation in several areas of Brookline totaling 72 acres with remaining combined sewers tributary to MWRA's Charles River Valley Sewer. The project is intended to reduce discharges to the Charles River at MWRA's Cottage Farm facility. The contract involved the installation of large sanitary sewers in Beacon, St. Mary's, and Monmouth Streets and the conversion of existing combined sewers to storm drains. The

Brookline Sewer Separation Project also included the removal of sediments from CSOI Outfall MWR010, which will convey Brookline's separated stormwater to the Charles River.

- Substantial completion of MWRA's \$1.1 million contract to remove sediments from CSO outfall MWR010. The work ensures adequate hydraulic capacity to convey stormwater and CSO flows to the outfall.
- Cambridge continued with its construction of the CAM004 stormwater outfall and wetland basin project, to mitigate the water quality and flooding impacts to the Little River and Alewife Brook of planned sewer separation in the areas along and surrounding Huron and Concord avenues. The stormwater outfall and wetland, eventually completed by the City of Cambridge in April 2013 in compliance with a federal court milestone, provide detention and wetlands treatment to the separated stormwater flows prior to discharge to the Little River.
- Cambridge also commenced the first of three construction contracts for the CAM004 Sewer Separation project. This project is intended to close Outfall CAM004 and lower discharges at other outfalls that discharge CSO to Alewife Brook and is the CSO abatement centerpiece of MWRA's Alewife Brook CSO control plan.
- In 2012, MWRA commenced a design contract for the last two CSO projects in the Long-Term Control Plan, both benefitting Alewife Brook: the Control Gate/Floatables Control at Outfall MWR003 and MWRA Rindge Avenue Siphon Relief project and the Interceptor Connection Relief and Floatables Control at Outfall SOM01A project. The projects are intended to lower CSO discharges to the brook, provide adequate sewer system relief in extreme storms, and control the discharge of floatable materials at outfalls MWR003 and SOM010A.

As of the end of 2012, 37 CSOs have been closed or effectively closed in Boston Harbor and its tributaries; 47 CSOs remained active.<sup>1</sup> In the Charles, nine CSOs remained active and ten have been closed. In the Alewife Brook, seven CSOs remained active, six have been closed. In the Mystic River, one treated CSO (Somerville Marginal) remains active, discharging at two locations depending on tide (MWR205A upstream of the Amelia Earhart dam and MWR205 in the marine river mouth). BOS17 also discharges at the river mouth.

System-wide, average annual CSO discharge has been reduced from 3.3 billion gallons in 1988 to 532 million gallons as of the end of 2012, an 84% reduction, with 83% of current discharge volume receiving treatment at MWRA's four CSO treatment facilities. Other MWRA system improvements since the 1990s have also reduced the frequency and volume of CSO flows over the period of the monitoring program and have resulted in increased treatment of remaining flows. Figure 1-1 shows the estimated CSO flow reduction

<sup>&</sup>lt;sup>1</sup> SOM002 and SOM006 were closed prior to the approval of the Long Term Control Plan and are included in this total. SOM009 discharges to the system upstream of other outfalls and is not included in the overall count. CAM009 and 011 are also included, which are temporarily closed, pending the results of a long-term hydraulic assessment by the City of Cambridge. CSO discharges at BOS-081, -082, -084, -085 and -086 are effectively eliminated, with a 25-year storm level of control.

system-wide since 1988, and Figure 1-2 shows the CSO flow reduction by receiving water. For purposes of this report, receiving water quality data from 2007 to the present is considered representative of current conditions.

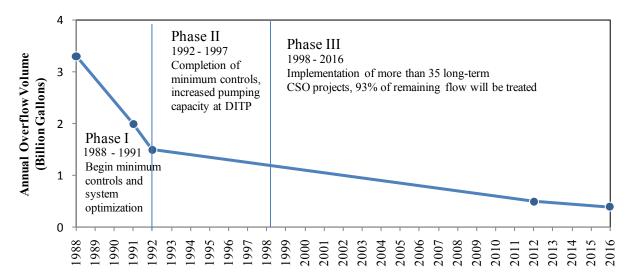
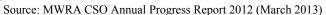
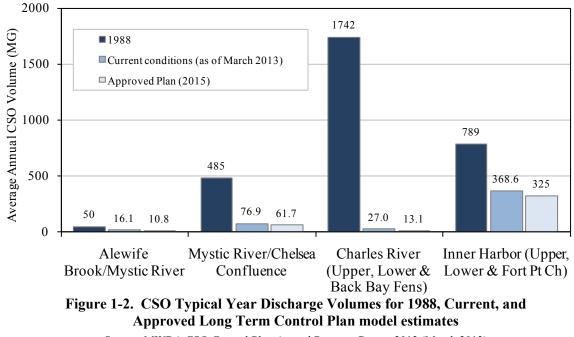





Figure 1-1. Estimated CSO flow reductions, 1988 – 2016.





Source: MWRA CSO Control Plan Annual Progress Report 2012 (March 2013)

Rainfall volumes at various locations in the MWRA service area appear in Table 1-1. The table summarizes the frequency of rain events within selected ranges of total rainfall for 2012. In 2012 there were fewer large storms (>2.0 rainfall depth) but more small storms with higher intensities relative to the Typical Year, with less total rainfall. In general, CSO discharge estimates overall are lower than the Typical Year predictions (refer to Tables 3-3 and Table 4-3- for CSO discharge estimates for the Charles and Mystic, respectively).

|                                 | Total             | Total               | Number of storms, by rainfall volume |                      |                     |                     |                |  |  |  |
|---------------------------------|-------------------|---------------------|--------------------------------------|----------------------|---------------------|---------------------|----------------|--|--|--|
|                                 | Rainfall<br>(in.) | Number<br>of Storms | <0.25<br>inches                      | 0.25 – 0.5<br>inches | 0.5 – 1.0<br>inches | 1.0 – 2.0<br>inches | ≥2.0<br>inches |  |  |  |
| Typical Year                    | 46.8              | 93                  | 49                                   | 14                   | 16                  | 8                   | 6              |  |  |  |
| 2012 Ward St.<br>Headworks      | 42.49             | 99                  | 59                                   | 10                   | 16                  | 10                  | 4              |  |  |  |
| 2012 Columbus<br>Park Headworks | 39.16             | 93                  | 52                                   | 10                   | 19                  | 10                  | 2              |  |  |  |
| 2012 BWSC<br>Charlestown        | 39.63             | 89                  | 51                                   | 10                   | 14                  | 12                  | 2              |  |  |  |
| 2012 Fresh Pond<br>(USGS)       | 39.41             | 116                 | 79                                   | 8                    | 16                  | 10                  | 3              |  |  |  |

Table 1-1. Comparison of rain event frequency by rainfall volume, 2012 rainfall vs. typical year.

Source: MWRA CSO Discharge Estimates and Rainfall Analyses for Calendar Year 2012, Table 1.

### 1.1 Overview of the monitoring program

MWRA's CSO receiving water quality monitoring program has been ongoing since 1989, with most sampling locations continuously monitored since 1991. All harbor and tributary areas impacted by CSOs in Boston, Chelsea, Cambridge, and Somerville are included in the monitoring program. For most sampling locations included in this report, at least 20 samples have been collected each year.

## 1.2 Organization and purpose of the report

Chapter 2 presents the materials and methods used in monitoring. Chapters 3 and 4 of this report discuss the results of the CSO receiving water quality monitoring program in the Charles River and Mystic River/Alewife Brook. Water quality parameters examined for each region include: bacterial indicators (*E. coli, Enterococcus* and fecal coliform), dissolved oxygen, water clarity (Secchi depth, total suspended solids), nutrients (phosphate, ammonium, nitrate/nitrite) and chlorophyll.

The purpose of the report is to summarize 2012 water quality in the Charles and Alewife Brook/Mystic River. The report compares sampling results to water quality standards, and shows spatial and temporal variations in water quality, and differences between wet and dry weather. Data from the previous five monitoring years are analyzed together for representativeness, and data for 2012 for bacterial and physical parameters are also shown separately.

# 2 Materials and Methods

# 2.1 Field and laboratory methods

# 2.1.1 Selection of sampling locations

Some sampling locations were chosen for their proximity to CSO discharges and others were chosen to provide representative water quality measurements for a given area. Complete lists of stations including descriptions for the Charles and Mystic River/Alewife Brook appear in Section 3.1 and 4.1, respectively.

# 2.1.2 Sampling schedules

Approximately 20 station visits or more were made to each location each year, within two separate monitoring projects. Eutrophication monitoring is conducted once monthly year-round at a subset of river locations, and includes nutrient, chlorophyll, TSS, bacteria, and physical measurements. CSO receiving monitoring includes bacteria sampling and physical measurements that are collected between April and December of each year, in weekly rotations for each region. Sampling is random with respect to weather; however efforts were made to collect additional samples during wet weather, if an inadequate number of station visits occurred following rainfall events by mid-year.

# 2.1.3 Sample collection

At all locations, water samples and water quality measurements were collected near-surface (approximately 0.1 meters below surface). Surface samples were collected by grab into rinsed sample containers. Bottom samples were collected at locations with a water depth greater than 3 meters, using a Kemmerer sampler or alpha bottle at 0.5 meters above the sediment surface. Bottom water quality measurements (physical measurements such as dissolved oxygen, temperature, and salinity) were made at most locations regardless of depth, but some upstream locations are too shallow for separate bottom readings. Separate sampling containers were used for bacteria, nutrient, and TSS analyses.

## 2.1.4 Field measurements

Field measurements were made with different instruments over the course of the monitoring program. Table 2-1 lists the instruments used and the variables measured.

| Variable                                                               | Instruments used                                                                                                                                                                      |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Temperature, conductivity/salinity,<br>dissolved oxygen, turbidity, pH | Hydrolab Datasonde 4 (1997 - 2008)<br>Hydrolab Datasonde 5 (2006 - 2009)<br>YSI6600, YSI6820 (2009 - 2012)<br>YSI 600XL for temperature, conductivity, dissolved oxygen (1999 – 2012) |
| Secchi Depth                                                           | Wildco 8-inch limnological Secchi disk (upstream of dams)<br>Wildco 8-inch oceanographic Secchi disk (marine waters)                                                                  |

### Table 2-1. Field measurements.

### 2.1.5 Rainfall measurements

Rainfall measurements were taken from the National Weather Service (NWS) rain gauge located at Logan Airport in East Boston, as this was considered the most representative location for the entire monitoring area. Results from the gauge are reported in one-day intervals. Data are downloaded from the NWS website and stored in MWRA's Environmental Monitoring & Measurement System (EM&MS) database.

### 2.1.6 Laboratory analyses

Samples were analyzed at the MWRA Central Laboratory. For enumeration of bacteria, nutrients, and TSS, MWRA Department of Laboratory Services Standard Operating Procedures is followed.

Detailed laboratory methods with quality assurance and quality control procedures are described in the Central Laboratory Standard Operating Procedure (MWRA 2009).

Table 2-2 lists the analytes measured and methods used in the monitoring program. MWRA discontinued *E. coli* monitoring at marine locations due to methodological concerns with the use of the Colilert method for marine samples, replacing *E. coli* with fecal coliform.

| Analyte                | Method                                                                                                                                                                                                 |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Enterococcus           | Standard Methods 9230C 2c, membrane filtration (for samples collected 1996 – 2003)<br>EPA Method 1600 (for samples collected 1999 – 2006, some 2008)<br>Enterolert (for samples collected 2008 – 2012) |
| E. coli                | Modified EPA 1103.1, membrane filtration (for samples collected 2000 – 2006)<br>Colilert (for samples collected 2009 - 2012)                                                                           |
| Fecal coliform         | Standard Methods 9222D, membrane filtration                                                                                                                                                            |
| Total suspended solids | Clesceri et al. (1998, Method 2540D), using nucleopore filters                                                                                                                                         |
| Total phosphorus       | TP and/or TDP: Solarzano and Sharp (1980a); PP: Solarzano and Sharp (1980a), Whatman GF/F                                                                                                              |
| Phosphate              | Murphy and Riley (1962), modified as in Clesceri et al (1998, Method 4500-P F) Skalar SAN <sup>plus</sup> autoanalyzer, Whatman GF/F filters                                                           |
| Total Nitrogen         | TN and/or TDN: Solarzano and Sharp (1980b), Whatman G/F filters; PN: Perkin Elmer CHN analyzer, Whatman GF/F                                                                                           |
| Ammonium               | Fiore and O'Brien (1962), modified as in Clesceri et al (1998, Method 4500-NH3 H), Skalar SAN <sup>plus</sup> autoanalyzer, Whatman GF/F filters                                                       |
| Nitrate+nitrite        | Bendshneider and Robinson (1952), modified as in Clesceri et al (1998, Method 4500-NO3 F), Skalar SAN <sup>plus</sup> autoanalyzer, Whatman GF/F filters                                               |
| Chlorophyll a          | Acid-corrected (Holm Hansen 1965) as described in EPA (1992). Sequoia Turner Model 450 fluorometer, GF/F filters                                                                                       |

### Table 2-2. Laboratory measurements.

### 2.2 Data analysis

**Descriptive Analyses.** Indicator bacteria counts are typically log-normally distributed, and therefore a proper measure of central tendency for these data is the geometric mean. Geometric means and their associated 95% confidence intervals were calculated for the measurements made at each station over the sampling period.

Many results are plotted as percentile plots, as shown in Figure 2-1. These plots present a frequency distribution of a group of measurements. Each box comprises measurements from a single beach or sampling location. Values are shown in Figure 2-1 for the 10<sup>th</sup>, 25<sup>th</sup>, 50<sup>th</sup>, 75<sup>th</sup>, and 90<sup>th</sup> percentiles. Single measurements beyond these ranges (outliers) are displayed as dots.

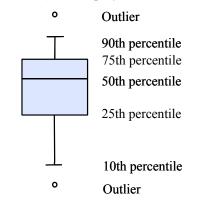



Figure 2-1. Percentile distributions indicated on percentile plots

Box plots display the range and central tendencies of the data allow for easy comparison of the results among stations. The 50<sup>th</sup> percentile (median) is equivalent to the geometric mean, assuming the data are log-normally distributed.

## 2.3 Water Quality Standards used in this report

Standards are shown in Table 2-6, and include standards and guidelines from the Massachusetts Department of Environmental Protection (MADEP), Environmental Protection Agency (EPA), Massachusetts Department of Public Health (MADPH), and the Massachusetts Division of Marine Fisheries (MADMF). The MADEP standard for Class SB waters (fishable swimmable) are based on *E. coli* and/or *Enterococcus* counts for freshwater, and *Enterococcus* counts for marine waters, following a USEPA recommendation for *Enterococcus* in marine waters (USEPA 1986). The Massachusetts Department of Public Health issued regulations for beach management based on the USEPA criteria. MADMF uses fecal coliform to monitor shellfish growing waters.

| Designated Use/Standard                                                                      | Parameter         | Support                                                                                                                                                                |  |  |  |
|----------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Inland waters, Class B,<br>warm water fishery                                                | Dissolved Oxygen  | $\geq$ 5.0 mg/l<br>$\geq$ 60% saturation unless background conditions<br>lower                                                                                         |  |  |  |
| Massachusetts waters, MADEP                                                                  | Temperature       | ≤ 28.3°C (83°F)                                                                                                                                                        |  |  |  |
|                                                                                              | рН                | 6.5 to 8.3 S.U.                                                                                                                                                        |  |  |  |
|                                                                                              | Dissolved Oxygen  | $\geq$ 5.0 mg/L<br>$\geq$ 60% saturation unless background conditions<br>lower                                                                                         |  |  |  |
| Coastal/marine waters, Class SB<br>Massachusetts waters, MADEP                               | Temperature       | < 26.7°C (80°F)                                                                                                                                                        |  |  |  |
|                                                                                              | рН                | 6.5 to 8.5 S.U.                                                                                                                                                        |  |  |  |
| Primary contact recreation<br>(designated swimming area), EPA<br>MADPH, MADEP                | Enterococcus      | Single sample limit 61colonies/100 ml<br>(freshwater), 104 colonies/100 ml (marine);<br>geometric mean 33 colonies/100 ml (freshwater),<br>35 colonies/100 ml (marine) |  |  |  |
| Freshwater primary contact<br>recreation (designated swimming<br>area), EPA and MADPH, MADEP | E. coli           | Single sample limit 235 colonies/100 ml<br>(freshwater only); geometric mean 126<br>colonies/100 ml (freshwater only)                                                  |  |  |  |
| Former standard, primary contact recreation, MADEP (pre-2007)                                | Fecal coliform    | Geometric mean $\leq 200$ colonies/100 ml, no more than 10% of samples above 400 colonies/100 ml                                                                       |  |  |  |
| Restricted shellfishing, MADMF                                                               | Fecal coliform    | Geometric mean $\leq 88$ colonies/100 ml                                                                                                                               |  |  |  |
| Primary contact recreation,<br>MADEP, aesthetics transparency                                | Secchi disk depth | $\geq$ 1.2 meters (4 feet) at public bathing beaches and lakes                                                                                                         |  |  |  |

Table 2-3. Water quality standards for Class B and Class SB waters<sup>1</sup>.

<sup>1</sup> All receiving water areas discussed in this report are either Class B or SB according to MADEP standards current as of January 2007 (except for Mystic River mouth, which is SB<sub>CSO</sub>. SB<sub>CSO</sub> has the same water quality standards as SB except CSOs are present).

#### From MADEP 2007:

**Inland Water Class B:** These waters are designated as a habitat for fish, other aquatic life, and wildlife, and for primary and secondary contact recreation. Where designated they shall be suitable as a source of water supply with appropriate treatment. They shall be suitable for irrigation and other agricultural uses and for compatible industrial cooling and process uses. These waters shall have consistently good aesthetic value.

**Coastal and Marine Class SB:** These waters are designated as a habitat for fish, other aquatic life, and wildlife, and for primary and secondary contact recreation. In approved areas they shall be suitable for shellfish harvesting with depuration (Restricted Shellfishing Areas). These waters shall have consistently good aesthetic value.

# 3 Results: Charles River

# 3.1 Sampling area

MWRA's sampling area in the Charles River includes the river segment from the Watertown Dam in Watertown downstream to the New Charles River Dam in Boston, near the river mouth. This area, for purposes of this report called the Charles Basin, is freshwater and designated Class B with a variance for Combined Sewer Overflows by MADEP (the variance was extended in 2010). The river segment is approximately 10.3 km (8.6 mi) long. The New Charles River Dam and locks limit river flow and tidal exchange at the river mouth.

MWRA monitoring locations are primarily located midstream, bracketing CSO outfalls. Locations were also selected near to or downstream of outfalls where accessible by boat: at the Stony Brook outlet and CSO (MWR023), Faneuil Brook outlet and CSO that has since been closed (BOS032, closed in 1997), and downstream of the Cottage Farm CSO outfall diffusers (MWR201).

For purposes of this report, MWRA's monitoring area in the lower Charles is divided into three smaller reaches. Table 3-1 describes the reaches, sampling locations and CSOs within each reach. Sampling locations and CSOs appear in Figure 3-1.

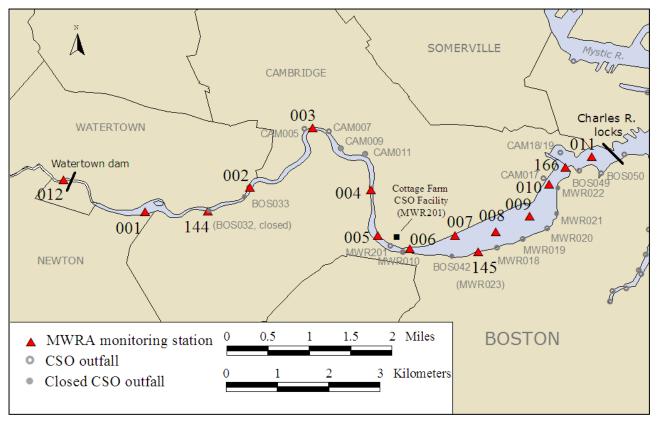



Figure 3-1. Map of MWRA Charles River sampling locations

| Reach                                     | Description of<br>Reach                            | Sampling location      | Location Description                                                                    |
|-------------------------------------------|----------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------|
|                                           |                                                    | 012, Watertown         | Watertown Dam at footbridge<br>(upstream of all CSOs)                                   |
| Upper Basin                               | Watertown Dam in                                   | 001, Newton            | Downstream of Newton Yacht Club<br>(upstream of all CSOs)                               |
| (Class B/Variance,                        | Watertown,<br>downstream to                        | 144, Allston           | Faneuil Brook outlet<br>(at BOS032, closed 11/97)                                       |
| warm water fishery)                       | Magazine Beach<br>(near BU Bridge) in<br>Cambridge | 002, Allston           | Downstream of Beacon St. Bridge<br>(downstream of BOS033, closed 10/96)                 |
|                                           | C C                                                | 003, Cambridge         | Downstream of Eliot Bridge, Cambridge side (at CAM005)                                  |
|                                           |                                                    | 004, Cambridge/Allston | Between River St. and Western Ave.<br>bridges                                           |
|                                           |                                                    | 005, Cambridge         | 10 m off of Magazine Beach                                                              |
|                                           |                                                    | 006, Cambridge/Boston  | BU Bridge, downstream side<br>(downstream of MWR201)                                    |
|                                           |                                                    | 007, Cambridge         | MIT Boathouse, Cambridge side                                                           |
| Mid-Basin                                 | BU Bridge on<br>Boston/Cambridge                   | 145, Boston            | Stony Brook outlet, Boston side<br>(at MWR203)                                          |
| (Class B/Variance,<br>warm water fishery) | line to downstream<br>of Longfellow<br>Bridge      | 008, Cambridge/Boston  | Mass. Ave Bridge, downstream side<br>(downstream of MWR203, MWR018)                     |
|                                           | Druge                                              | 009, Cambridge/Boston  | Longfellow Bridge, upstream side<br>(downstream of MWR021, closed 3/00)                 |
|                                           |                                                    | 010, Boston            | Longfellow Bridge, downstream side<br>(downstream of MWR022, closed 3/00)               |
| Lower Basin                               | Science Museum to<br>North Station                 | 166, Boston            | Science Museum, upstream of old dam<br>(downstream of all lower basin CSOs)             |
| (Class B/Variance,<br>warm water fishery) | railroad bridge,<br>near Charlestown.              | 011, Boston            | Between Science Museum and New<br>Charles Dam/locks (downstream of all<br>Charles CSOs) |

#### Table 3-1. MWRA monitoring locations, Charles River Basin.

Sampling locations are midstream unless otherwise noted.

### 3.2 Pollution sources

Known pollution sources to the Charles River are shown in Table 3-2, which include nine active CSOs. MWRA's Cottage Farm CSO treatment facility, located upstream of the BU Bridge, screens, chlorinates and dechlorinates CSO flow before discharge and is the only source of treated CSO discharge to the river. (MWRA's Prison Point CSO facility, located near the Charles River mouth, has its discharge point on the Boston Harbor side of the New Charles Dam.) With increases in sewer system capacity, the number of activations at Cottage Farm has decreased over the last two decades – from more than 20 activations in the late 1990s to 6 activations in 2012. The Stony Brook/Muddy River outlet near Kenmore Square is a source of contaminated brook flow and stormwater flows to the basin area, however CSO discharge volumes to the Stony Brook have been reduced in recent years due to sewer separation by Boston Water and Sewer Commission (BWSC) in the mid-2000s.

Table 3-3 shows the MWRA model simulation results for CSOs affecting the Charles River Basin in calendar year 2012. Actual CSO volumes and activation frequency are available for the Cottage Farm CSO facility, while the remaining results are estimated using model data.

The receiving water program is designed to capture water quality in all weather conditions. Table 3-4 summarizes the proportion of samples collected in dry, damp, and wet weather, which indicate a slightly higher proportion of samples collected in rainy conditions than prior years.

| Source                                                                                                          | Upper Basin                                                                              | Mid-Basin                                                      | Lower Basin                                          |  |  |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|--|--|
|                                                                                                                 | 2 active, 4 closed                                                                       | 6 active, 3 closed                                             | 3 closed                                             |  |  |
| CSOs (untreated)                                                                                                | CAM005, CAM007                                                                           | MWR010, MWR023,<br>MWR018, MWR019,<br>MWR20, CAM017            |                                                      |  |  |
|                                                                                                                 | CAM009 closed 11/07<br>CAM011 closed 11/07<br>BOS032 closed 11/97<br>BOS033 closed 10/96 | BOS042 closed 5/96<br>MWR021 closed 3/00<br>MWR022 closed 3/00 | BOS049 closed 7/10<br>BOS028 closed<br>SOM010 closed |  |  |
| CSO treatment facility<br>(settling and detention; screened,<br>chlorinated and dechlorinated CSO<br>discharge) | No                                                                                       | Yes<br>Cottage Farm (MWR201)<br>activated 5 times in 2012      | No                                                   |  |  |
| Storm drains                                                                                                    | Yes                                                                                      | Yes                                                            | Yes                                                  |  |  |
| Upstream inputs<br>(elevated bacteria counts upstream)                                                          | Yes                                                                                      | Yes                                                            | Yes                                                  |  |  |
| Dry weather inputs<br>(elevated bacteria counts in dry weather)                                                 | Yes                                                                                      | Yes                                                            | Yes                                                  |  |  |
| Tributary brook or stream flow                                                                                  | Yes                                                                                      | Yes                                                            | Yes                                                  |  |  |

Table 3-2. Charles River Basin pollution sources.

| CSO Outfall                                   | Activation<br>Frequency | Total Discharge<br>Duration (hr) | Total Discharge Volume<br>(million gallons) |
|-----------------------------------------------|-------------------------|----------------------------------|---------------------------------------------|
| Upper Charles                                 |                         |                                  |                                             |
| CAM005                                        | 5                       | 5.92                             | 2.86                                        |
| CAM007                                        | 3                       | 3.48                             | 2.06                                        |
| TOTAL                                         |                         | 9.4                              | 4.93                                        |
| Back Bay Fens (Muddy River)                   |                         |                                  |                                             |
| BOS046                                        | 1                       | 14.09                            | 2.16                                        |
| TOTAL                                         |                         | 14.09                            | 2.16                                        |
| Lower Charles                                 |                         |                                  |                                             |
| CAM017                                        | 1                       | 0.75                             | 0.72                                        |
| MWR010                                        | 0                       | 0                                | 0.00                                        |
| MWR018                                        | 1                       | 0.97                             | 0.18                                        |
| MWR019                                        | 0                       | 0                                | 0.00                                        |
| MWR020                                        | 0                       | 0                                | 0.00                                        |
| MWR201 (Cottage Farm Facility) <sup>2,3</sup> | 6                       | 16.23                            | 61.50                                       |
| MWR023 (Stony Brook)                          | 1                       | 0.67                             | 0.02                                        |
| TOTAL                                         |                         | 18.62                            | 62.41                                       |

Table 3-3. Charles River Basin CSO activations, results of MWRA model simulations and facility records for 2012 system conditions and 2012 rainfall.<sup>1</sup>

<sup>1</sup>Activation frequency and volume are from MWRA model results, except where noted. <sup>2</sup>Activation frequency and volume are from MWRA facility records (measurements).

<sup>3</sup>47.3 million gallons of 49.3 million gallons – or 96% – of total annual CSO discharge to the Lower Charles is treated.

Table 3-4. Charles River sample collection by rainfall condition.

| Sampling period | Dry <sup>1</sup> | Damp <sup>1</sup> | Wet <sup>1</sup> | Total        |
|-----------------|------------------|-------------------|------------------|--------------|
| 2007 - 2011     | 31%              | 34%               | <b>35%</b>       | 100%         |
|                 | 790 samples      | 878 samples       | 893 samples      | 2561 samples |
| 2012            | 44%              | <b>29%</b>        | 27%              | 100%         |
|                 | 337 samples      | 220 samples       | 206 samples      | 763 samples  |

<sup>1</sup> Dry: no rainfall for previous 3 days; Wet: at least 0.5 inches in previous 2 days; damp is everything in between. Sampling is random with respect to weather, though if needed wet weather sampling is added late in the year to maintain a representative annual sample.

#### Summary of water quality, 2008-2012 3.3

A detailed summary of water quality results collected during the last five years is shown in Table 3-5.

|                                                   |                                     | MA DEP<br>Water                     | Upper Basin   |                        |             | Mid-Basin |                |                           | Lower Basin |      |               |                           |            |     |
|---------------------------------------------------|-------------------------------------|-------------------------------------|---------------|------------------------|-------------|-----------|----------------|---------------------------|-------------|------|---------------|---------------------------|------------|-----|
|                                                   |                                     | Quality<br>Guideline<br>or Standard | Mean ± SD     | % meeting<br>guideline | Range       | n         | Mean ± SD      | %<br>meeting<br>guideline | Range       | n    | Mean ± SD     | %<br>meeting<br>guideline | Range      | n   |
| ace<br>ire (°C) <sup>1</sup>                      | Summer                              |                                     | $20.8 \pm 5$  | 98.3                   | 6.3 - 30.3  | 1027      | $20.2 \pm 4.8$ | 97.3                      | 6.8 - 29.6  | 924  | 21.9 ± 4.7    | 87.3                      | 8.4 - 29.9 | 268 |
| Surface<br>Temperature (°C) <sup>1</sup>          | Winter                              | <28.3                               | 5.7 ± 5.2     | 100.0                  | -0.1 - 17.5 | 82        | ND             | ND                        | ND          | 23   | 4.5 ± 3.4     | 100.0                     | 0.7 - 15.8 | 63  |
| Bottom water dissolved oxygen (mg/L) <sup>1</sup> | Summer                              | 5.0                                 | 8 ± 1.7       | 96.7                   | 1 - 14.5    | 1015      | 6 ± 3.3        | 69.1                      | 0 - 12.6    | 913  | 7 ± 2.3       | 81.6                      | 0.3 - 13.8 | 266 |
|                                                   | Winter                              | 5.0                                 | 13.2 ± 1.9    | 100.0                  | 9.1 - 15.8  | 77        | ND             | ND                        | ND          | 23   | 13.1 ± 1.3    | 100.0                     | 9.1 - 15.8 | 61  |
|                                                   | pH <sup>6</sup><br>(S.U.)           | 6.5-8.3                             | $7.3 \pm 0.3$ | 99.5                   | 6.7 - 8.6   | 1529      | $7.3 \pm 0.5$  | 96.1                      | 6.2 - 9.3   | 1272 | $7.4 \pm 0.5$ | 96.1                      | 6.4 - 9    | 467 |
| Water clarity                                     | Total<br>Suspended<br>Solids (mg/L) | NS                                  | 4.7 ± 5.6     | -                      | 0.5 - 37.5  | 129       | ND             | _                         | ND          | 0    | 4.7 ± 6.2     | -                         | 0.3 - 51.7 | 122 |
|                                                   | Secchi depth<br>(m)                 | NS                                  | 1.1 ± 0.3     | -                      | 0.5 - 2.2   | 481       | 1.1 ± 0.2      | -                         | 0.5 - 2.3   | 636  | $1.3 \pm 0.2$ | -                         | 0.7 - 2    | 140 |
|                                                   | Turbidity<br>(NTU)                  | NS                                  | 6.6 ± 3.4     | -                      | 0.2 - 20.9  | 1276      | 7.1 ± 3.8      | -                         | 0 - 52.5    | 1186 | 5.2 ± 3       | -                         | 0.6 - 16.9 | 333 |

# Table 3-5. Summary of water quality, Charles River Basin 2008 - 2012.

|                                      |                 | MA DEP<br>Water                                   |                  | Upper Ba            | isin        |     |               | Mid- B                    | asin        |      |                 | Lower                     | Basin       |     |
|--------------------------------------|-----------------|---------------------------------------------------|------------------|---------------------|-------------|-----|---------------|---------------------------|-------------|------|-----------------|---------------------------|-------------|-----|
| Parameter                            |                 | Quality<br>Guideline<br>or Standard               | Mean ± SD        | % meeting guideline | Range       | n   | Mean ± SD     | %<br>meeting<br>guideline | Range       | n    | Mean ± SD       | %<br>meeting<br>guideline | Range       | n   |
| Bacteria<br>(col/100mL) <sup>2</sup> | E. coli         | 200 / 400 <sup>3</sup>                            | 161<br>(147-177) | 78.7                | 0 - 13000   | 856 | 82<br>(73-92) | 63.3                      | 0 - 17300   | 1060 | 58<br>(49-69)   | 60.5                      | 0 - 8660    | 344 |
| Bac<br>(col/10                       | Enterococcus    | 126 / 235 <sup>3,4</sup>                          | 14<br>(12-16)    | 86.1                | 0 - 5480    | 858 | 6<br>(5-7)    | 77.5                      | 0 - 15500   | 1061 | 5<br>(4-6)      | 67.7                      | 0 - 1290    | 344 |
|                                      | Phosphate       | NS                                                | $0.74 \pm 0.38$  | -                   | 0.01 - 2.46 | 130 | ND            | -                         | ND          | 0    | $0.65 \pm 0.44$ | -                         | 0.02 - 2.14 | 122 |
| Nutrients<br>(µmol/L)                | Ammonium        | NS $0.74 \pm 0.38$                                |                  | -                   | 0.01 - 2.46 | 130 | ND            | -                         | ND          | 0    | $0.65 \pm 0.44$ | -                         | 0.02 - 2.14 | 122 |
|                                      | Nitrate+nitrite | NS                                                | 4.3 ± 3.2        | -                   | 0.5 - 25.5  | 130 | ND            | -                         | ND          | 0    | 5.7 ± 5.1       | -                         | 0 - 30.2    | 122 |
| Algae<br>(µg/L)                      | Chlorophyll     | rophyll         NS $41.5 \pm 17$ - $7.9 - 91.4$ 1 |                  | 130                 | ND          | -   | ND            | 0                         | 40.2 ± 25.2 | -    | 0 - 202         | 122                       |             |     |

Table 3-5. Summary of water quality, Charles River Basin 2008 - 2012, continued.

NS: no standard or guideline. ND: No data.

<sup>1</sup>Summer (June-September), Winter (December-March).

 $^{2}$ For bacterial data, 95% confidence intervals are provided in lieu of standard deviations. "Mean" = geometric mean for bacteria data.

<sup>3</sup>First number is the all samples geometric mean limit - compare to the "Mean±SD" column; the second number is the single sample limit - compare to the "% meeting guideline" column. <sup>4</sup>*E. coli* or *Enterococcus* is an acceptable indicator for Massachusetts Department of Public Health, EPA, and MADEP to assess suitability for swimming in freshwater. <sup>5</sup>NOAA guideline.

<sup>6</sup> Median and standard error of the median are shown for pH, not arithmetic mean and standard deviation.

### *3.4 Trends in water quality, 2012*

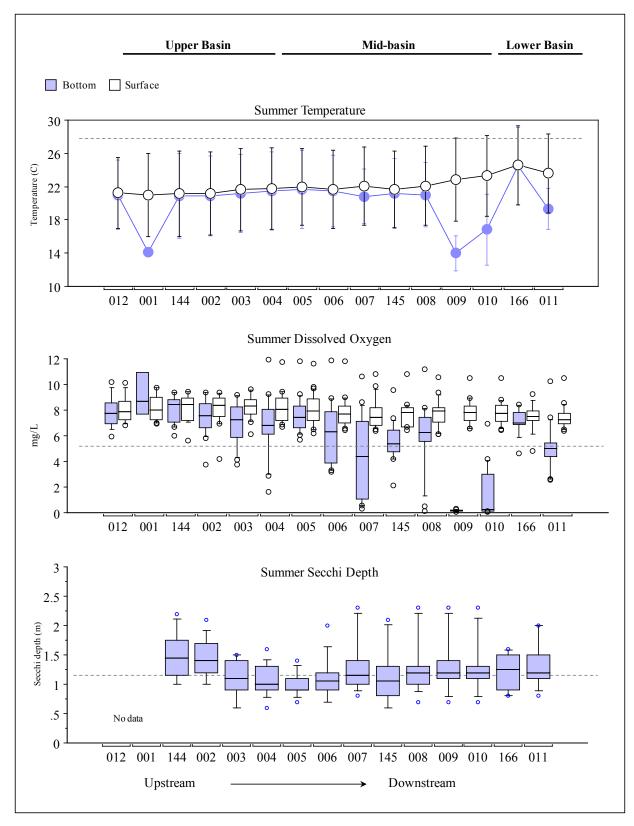
This section provides an analysis of trends for water quality parameters measured in the lower Charles in the 2012 monitoring year.

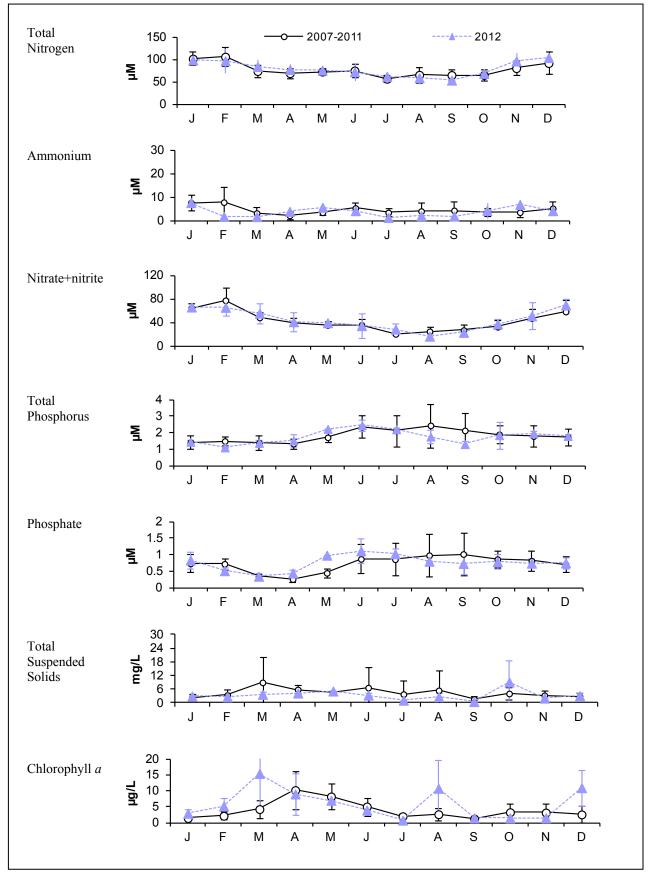
#### 3.4.1 Physical measurements

**Temperature.** Summer water temperatures for 2012 are shown for each sampling location in the top graph in Figure 3-2. Surface temperatures are relatively consistent upstream to downstream. Bottom-water temperatures are consistently lower in the deeper waters downstream, particularly Station 009 (upstream of the Longfellow Bridge), where depths average 6 to 7 meters (20 to 23 feet). Station 166 is collected in a shallow location in the basin near the Science Museum where differences in surface and bottom temperatures are small. Locations upstream of Station 004 (upstream of the Eliot Bridge in Cambridge) are relatively shallow, with depths ranging from 1 to 3 meters.

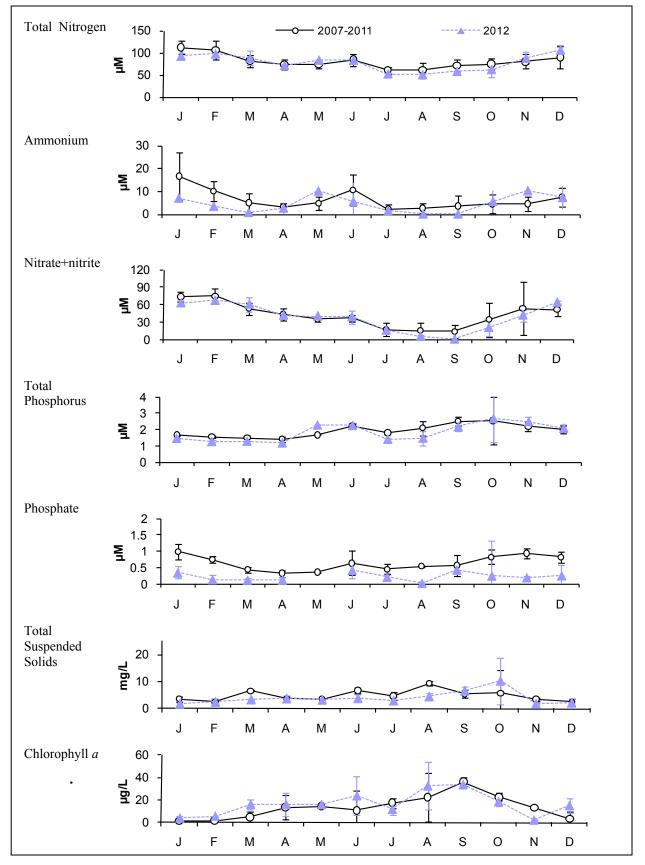
**Dissolved Oxygen.** The spatial trend in dissolved oxygen (DO) is shown in the center graph of Figure 3-2. Average surface and bottom DO does meet the State standard of 5.0 mg/L at most locations, but mean bottom water DO failed to meet meets the standard at deeper water locations, including stations 007, 009, 010 and 011. Station 011 has met the standard in bottom waters in past years, DO at this location is unusually low, suggesting greater stratification in the lower basin in 2012. Stratification (due to salt water intrusion through the river locks during the summer months, as well as cooler bottom temperatures) results in extremely low bottom-water dissolved oxygen in the lower basin area upstream of the Longfellow Bridge. Station 166, downstream of the lower basin, is collected at a relatively shallow near-shore location and does not reflect the low DO levels of deeper water in the lower basin.

**Water clarity.** Water clarity is indicated by Secchi disk depth. Summer Secchi results (collected June through September) are shown for individual sampling locations in the bottom graph in Figure 3-2. In general, there is a pattern of increasing water clarity from upstream to downstream, though all locations are relatively consistent with Secchi depths at or near the standard of 1.2 meters.





Figure 3-2. Summer temperature, dissolved oxygen and Secchi depth, Charles River Basin, 2012. Dashed lines are State standards or guideline (maximum for temperature, minima for DO and Secchi). No Secchi data are available for Station 012 because of shallow depth; the site is typically visible to bottom.

#### 3.4.2 Nutrients, TSS and chlorophyll


Monthly means for total nitrogen, ammonium, nitrate/nitrite, total phosphorus, phosphate, total suspended solids, and chlorophyll *a* at the upstream (012) and downstream (166) locations in the lower Charles are shown in Figure 3-3 and Figure 3-4, respectively. 2012 averages are plotted with the average of the previous five years (2007 - 2011) for comparison.

Seasonal signals are most evident with nitrate+nitrite, total phosphorus/phosphate, and chlorophyll *a*. While the two locations show similar concentrations for most parameters, there are marked differences between the two stations for chlorophyll *a*. Historically, Station 012 has the highest chlorophyll concentrations in spring, where as the Lower Basin has highest concentrations in late summer. For 2012, as in the Mystic River, the upstream reach had elevated chlorophyll concentrations in spring (March/April), midsummer and in December but the downstream reach had little deviation from long term averages.

Trends for the 2012 monitoring year are similar to the 2007 – 2011 averages for most parameters, though phosphate, TSS, and chlorophyll showed some differences for 2012. TSS concentrations were generally lower than the 5-year averages except in October, following wet weather. As in 2011, phosphate concentrations were below the 5-year average at the Lower Basin location near the Science Museum—nearly half the historical concentrations, but about average upstream at the Watertown dam.



**Figure 3-3. Monthly average nutrients, TSS and Chlorophyll 2007 – 2012, Station 012, Watertown Dam.** Error bars are ± 1 SD.



**Figure 3-4. Monthly average nutrients, TSS and Chlorophyll 2007 – 2012, Station 166, Science Museum.** Error bars are ± 1 SD.

### 3.4.3 Bacterial water quality

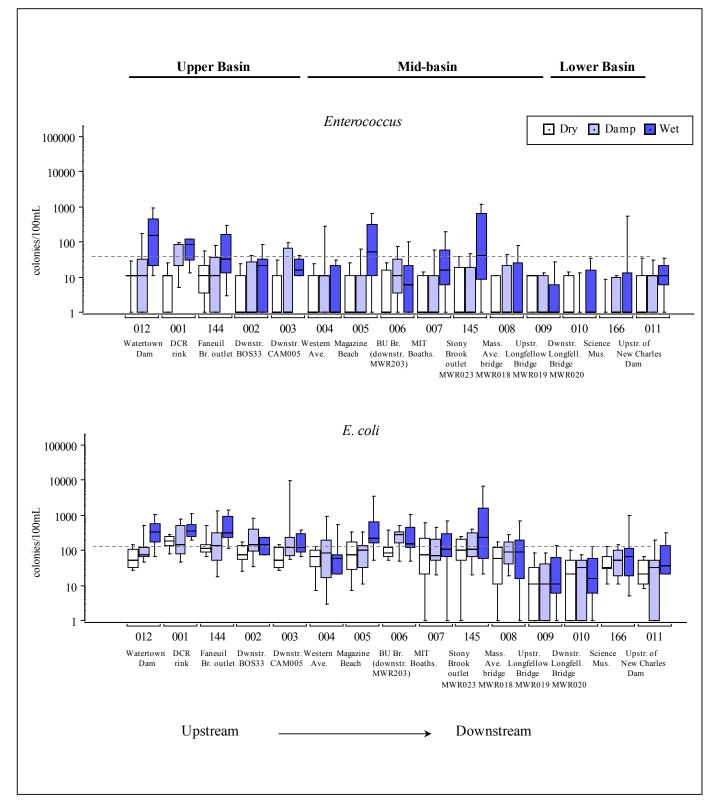
Figure 3-5 shows the current bacterial water quality at each location sampled in the Charles for 2012, for dry, damp, and wet weather. Upstream reaches generally have more elevated bacteria counts than downstream locations, though this trend is less pronounced in 2012 than in past years, with a slight but continuing improvement in conditions at Watertown Dam.

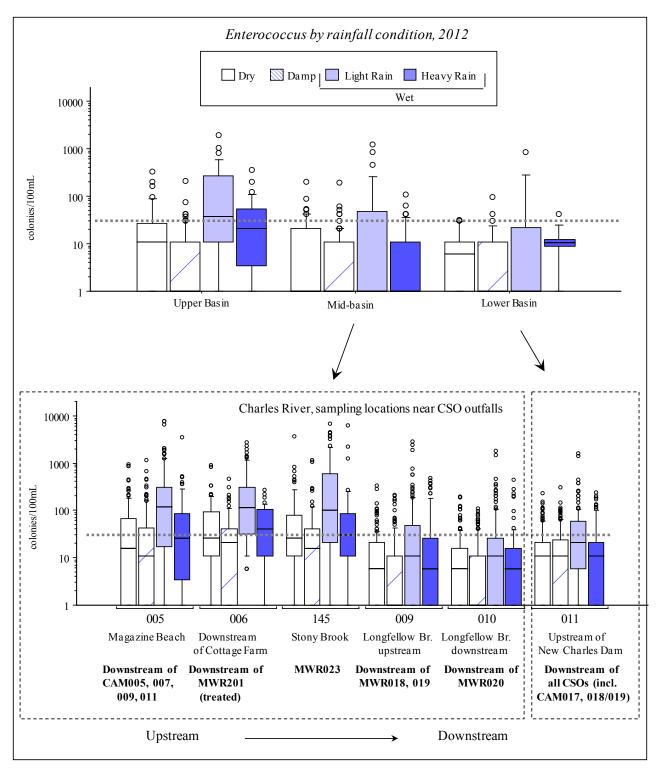
Annual geometric means for each location for 2007 - 2012 appear in Table 3-6. Geometric means for 2012 are shown in a separate column from the five-year means. If confidence intervals for the two periods overlap, this indicates no statistically significant difference between the two means ( $\alpha = 0.95$ ). Bacterial concentrations at all locations are either lower than or similar to the 5-year mean.

The top graph in Figure 3-5 shows percentile plots of *Enterococcus* counts arranged from upstream to downstream locations for 2012 (note log scale). The bottom graph in Figure 3-5 shows percentile plots of *E. coli* counts arranged from upstream to downstream locations for 2012. Generally, *E. coli* shows the same spatial trend as *Enterococcus*, with more elevated bacteria counts upstream relative to downstream locations. Locations downstream of the BU Bridge in Cambridge met geometric mean standards for both bacterial indicators in dry weather. Upstream locations met geometric mean standards in both weather conditions, with the exception of stations 012, 001 and 005 in wet weather. Annual geometric means shown in Table 3-6 met the *Enterococcus* geometric mean standard, and all but station 001, 144, and 006 met the *E. coli* standard.

Figure 3-6 shows the impact of rainfall on the three river reaches on *Enterococcus* densities, along with results for individual locations near CSO outfalls. During heavy rainfall conditions, *Enterococcus* concentrations decreased compared to prior years, with the Mid-basin and Lower Basin meeting standards. For light rain, when CSO events are not likely to occur, results were slightly higher in 2012 but met standards in the Mid-and Lower Basin (differences were not statistically significant compared to recent years). Damp and dry conditions met standards in all three reaches.

The change in *Enterococcus* concentrations since 1989 in the Upper Charles Basin (upstream of CSO influences) and the lower Charles (including the Mid- and Lower-Basin locations) appear in Figure 3-7 and Figure 3-8. Results are grouped by phases of the Long Term CSO Plan improvements and include the geometric mean counts in each rainfall condition. These figures show change over time in both regions, with statistically significant improvement in water quality in the latest phase. Upper Basin shows improvement in both dry and wet conditions but does not meet the geometric mean swimming standard in wet weather. The most pronounced change is in the lower Charles, which meets the geometric mean swimming standard in all conditions. The greatest improvement in bacterial water quality since the early 1990s has been in dry weather, followed by heavy rain conditions.





Figure 3-5. Indicator bacteria concentrations, Charles River Basin, 2012.

Dotted lines show MADEP *Enterococcus* and *E. coli* standard. Dry: no rainfall for previous 3 days; Wet: at least 0.5 inches in previous 2 days; damp is everything in between.

| Station | Location                                                                                        | Surface<br>or | Number<br>sample |      | Enterococcus<br>cfu/10 | 5 (95% CI) <sup>1</sup><br>0 mL | <i>E. coli</i> (95% CI) <sup>1</sup><br>cfu/100 mL |               |  |
|---------|-------------------------------------------------------------------------------------------------|---------------|------------------|------|------------------------|---------------------------------|----------------------------------------------------|---------------|--|
|         |                                                                                                 | Bottom        | 2007–'11         | 2012 | 2007 - 2011            | 2012                            | 2007 - 2011                                        | 2012          |  |
| 012     | Newtown/Watertown, footbridge<br>upstream of Watertown Dam                                      | S             | 130              | 27   | 20 (14-28)             | 19 (8-43)                       | 168 (138-205)                                      | 116 (77-176)  |  |
| 001     | Newton, near Nonantum Rd., rear of DCR skating rink                                             | S             | 102              | 24   | 19 (12-29)             | 12 (6-25)                       | 222 (175-283)                                      | 204 (145-287) |  |
| 144     | Brighton, downstream of N.<br>Beacon St. bridge, Faneuil Brook<br>outlet, BOS-032 (closed 1999) | S             | 82               | 25   | 32 (20-50)             | 10 (5-22)                       | 330 (241-452)                                      | 168 (106-267) |  |
| 002     | Allston, downstream of Arsenal<br>Street bridge, BOS-033                                        | S             | 103              | 24   | 15 (9-23)              | 3 (1-7)                         | 207 (168-<br>254)                                  | 94 (57-156)   |  |
| 003     | Allston/Cambridge, midstream,<br>near Mt. Auburn Street, between<br>CAM-005 and CAM-006         | S             | 103              | 24   | 12 (8-19)              | 4 (2-9)                         | 177 (139-<br>226)                                  | 103 (62-171)  |  |
| 004     | Allston/Cambridge, midstream,<br>between River Street and Western<br>Avenue bridges             | S             | 105              | 24   | 6 (4-9)                | 2 (1-6)                         | 74 (51-107)                                        | 45 (23-87)    |  |
| 005     | Cambridge, near Magazine<br>Beach, upstream of Cottage Farm                                     | S             | 181              | 49   | 7 (5-10)               | 5 (2-10)                        | 97 (77-122)                                        | 98 (61-157)   |  |
| 006     | Cambridge/Boston, midstream,<br>downstream of Cottage Farm, BU<br>bridge                        | S             | 103              | 24   | 14 (9-21)              | 3 (1-8)                         | 164 (122-220)                                      | 141 (96-208)  |  |
| 007     | Cambridge, near Memorial Dr.,                                                                   | S             | 103              | 24   | 7 (4-10)               | 2 (1-6)                         | 103 (73-145)                                       | 49 (23-106)   |  |
|         | MIT Boathouse                                                                                   | В             | 103              | 24   | 15 (10-23)             | 4 (1-10)                        | 186 (141-245)                                      | 71 (32-159)   |  |
| 145     | Boston (Charlesgate), Muddy<br>River/Stony Brook outlet                                         | S             | 103              | 25   | 18 (12-26)             | 6 (2-16)                        | 224 (157-320)                                      | 100 (46-218)  |  |
|         | Cambridge/Boston, midstream,                                                                    | S             | 103              | 24   | 7 (4-10)               | 2 (0-4)                         | 105 (73-150)                                       | 41 (19-86)    |  |
| 008     | downstream of Harvard Bridge                                                                    | В             | 103              | 24   | 10 (6-15)              | 2 (1-5)                         | 150 (106-212)                                      | 45 (21-93)    |  |
|         | Cambridge/Boston, midstream,                                                                    | S             | 103              | 24   | 3 (2-5)                | 1 (0-3)                         | 65 (46-90)                                         | 20 (10-40)    |  |
| 009     | upstream of Longfellow Bridge<br>near Community Sailing                                         | В             | 103              | 24   | 0 (0-1)                | 2 (1-4)                         | 17 (12-24)                                         | 3 (1-5)       |  |
| 010     | Boston, downstream of                                                                           | S             | 103              | 24   | 3 (2-4)                | 1 (0-2)                         | 44 (30-63)                                         | 15 (6-34)     |  |
| 010     | Longfellow Bridge, MWR-022                                                                      | В             | 103              | 24   | 3 (2-4)                | 1 (0-3)                         | 29 (20-43)                                         | 10 (5-20)     |  |
| 166     | Boston, old Charles River dam,<br>rear of Science Museum                                        | S             | 138              | 26   | 4 (3-6)                | 1 (0-3)                         | 98 (73-131)                                        | 39 (23-67)    |  |
| 011     | Boston, upstream of river locks                                                                 | S             | 103              | 24   | 3 (2-4)                | 2 (1-3)                         | 40 (29-55)                                         | 24 (14-40)    |  |
| 011     | (New Charles River Dam) and I-<br>93, near Nashua St.                                           | В             | 103              | 24   | 8 (5-11)               | 9 (4-16)                        | 45 (34-61)                                         | 21 (10-44)    |  |

Table 3-6. Geometric mean indicator bacteria, Charles River Basin, 2007 – 2012.

<sup>1</sup>Geometric mean limit for *Enterococcus* is 35 cfu/100 mL in marine water, 33 cfu/100 mL in freshwater. The *E. coli* limit is 126 cfu/100 mL.



#### Figure 3-6. Enterococcus by rainfall condition, Charles Basin, 2012.

Dotted line shows MADEP standard of 33 colonies/100 mL. Rainfall is NOAA rainfall from Logan airport. "Dry": no rainfall for previous 3 days; "Heavy": more than 0.5 inches in previous 3 days; "Damp" and/or rain distant in time: any rain < 0.15 inches at least two or three days previous to sampling and/or 0.1 inches in previous day; "Light rain": between 0.1 and 0.5 inches in previous day and/or between 0.15 and 0.5 in two previous days.

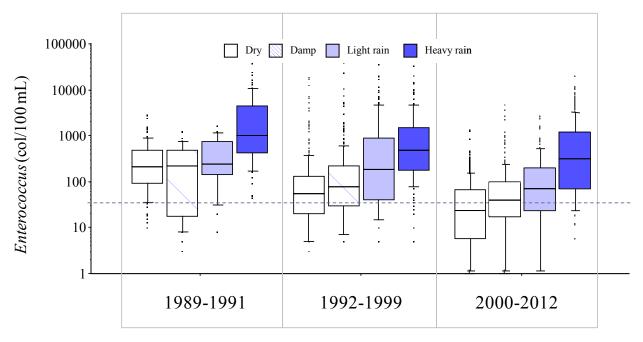



Figure 3-7. *Enterococcus* over time, Upper Charles Basin (upstream of CSOs) by phase of Long Term CSO Plan and rainfall condition.

Dotted line shows State standard. Data includes results for stations 012, 001, 002, 003. Rainfall is NOAA rainfall from Logan airport. "Dry": no rainfall for previous 3 days; "Heavy": more than 0.5 inches in previous 3 days; "Damp" and/or rain distant in time: any rain < 0.15 inches at least two or three days previous to sampling and/or 0.1 inches in previous day; "Light rain": between 0.1 and 0.5 inches in previous day and/or between 0.15 and 0.5 in two previous days.

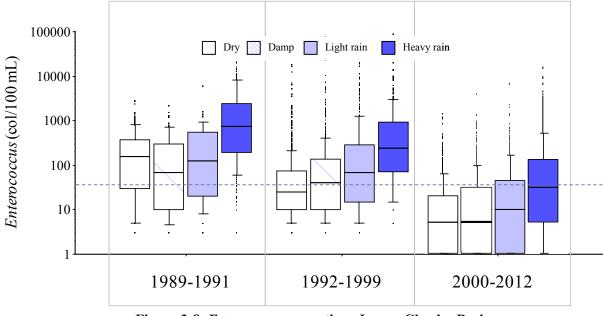



Figure 3-8. *Enterococcus* over time, Lower Charles Basin by phase of Long Term CSO Plan and rainfall condition.

Dotted line shows State standard. Data includes results for all stations downstream of Western Ave (Station 004). Rainfall is NOAA rainfall from Logan airport. "Dry": no rainfall for previous 3 days; "Heavy": more than 0.5 inches in previous 3 days; "Damp" and/or rain distant in time: any rain < 0.15 inches at least two or three days previous to sampling and/or 0.1 inches in previous day; "Light rain": between 0.1 and 0.5 inches in previous day and/or between 0.15 and 0.5 in two previous days.

# 3.5 Summary of Charles River Water Quality

2012 bacterial water quality in the Charles was generally consistent with five-year averages, with most individual locations meeting geometric mean standards for *E. coli* and *Enterococcus*, and locations in the Lower Basin having lower mean bacteria counts than in past years. In heavy rain—conditions where CSOs may occur—2012 showed a slight improvement, with the Mid-basin and Lower Basin meeting geometric mean standards. Damp and light rain conditions (those conditions where CSOs typically do not discharge) showed slightly higher *Enterococcus* concentrations relative to other conditions, though the difference was not statistically significant compared to past years. This may be due to the pattern of 2012 rainfall: higher frequency of small but intense storms and lower total rainfall volume than Typical Year conditions, which possibly indicate stormwater impacts.

Spatially, water quality was for the most part consistent with prior years, with more elevated concentrations at upstream locations (upstream of most CSOs), improving as the river widens and slows in the Lower Basin and approaches the New Charles Dam. Watertown Dam continues to show improvement over prior years, though the location does not consistently meet limits.

Bottom-water dissolved oxygen met standards in the Upper Charles Basin, but failed to meet standards in the lower Charles Basin. Seawater entering through the Charles locks in summer contributes to stratification of the basin, limiting exchange with surface waters and at least partially explains the lower bottom DO.

Nutrients and chlorophyll exhibited seasonal signals but matched long term averages overall. The exceptions were below-average phosphate concentrations in the Lower Charles but average at the Watertown Dam. Monthly Chlorophyll *a* concentrations were elevated in early spring and late summer.

# 4 Results: Mystic River and Alewife Brook

# 4.1 Sampling area

Monitoring results of the Mystic River are divided into four reaches. Table 4-1 describes the reaches and the sampling locations within each reach. Locations are shown on the map in Figure 4-1.

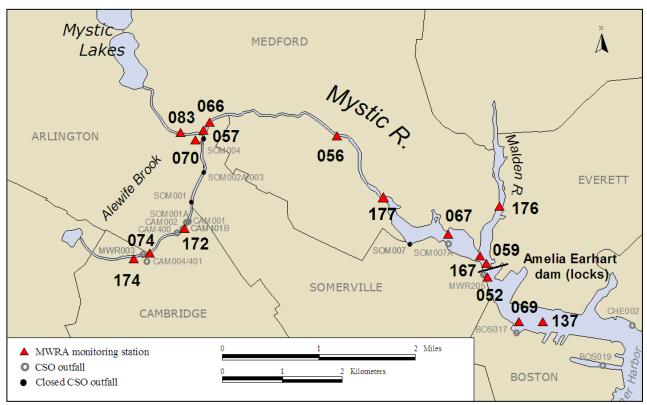



Figure 4-1. Map of Mystic River sampling locations.

# 4.2 Pollution sources

Known pollution sources to the Mystic River/Alewife Brook are shown in Table 4-2 and consist of stormwater, upstream inputs and CSOs. Nine CSOs are located in Cambridge and Somerville, including seven active CSOs in Alewife Brook, and one treated CSO in the Lower Mystic basin (Somerville Marginal CSO, MWR205A/SOM007A), which discharges screened and dechlorinated flow only during an activation occurring at high tide. At low tide, the Somerville Marginal CSO (MWR205) discharges downstream of the Amelia Earhart dam, screening and chlorinating CSO flow before discharge. It is the only source of treated CSO discharge to the Mystic River. For calendar year 2012, Somerville Marginal 205A/SOM007A had seven discharge events, and Somerville Marginal 205 had 26 activations resulting in discharge below the dam.

Table 4-3 shows the MWRA model simulation results for CSOs affecting the Mystic River and Alewife Brook in calendar year 2012. Metered CSO volumes and activation frequency are available for the Somerville Marginal CSO facility, while the remaining results are estimated using model results.

Table 4-4 summarizes the proportion of samples collected in dry, damp, and wet weather between 2007 and 2012.

| Reach                                     | Description of Reach                                                                                                   | Sampling location         | Location Description                                                                            |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------|
|                                           |                                                                                                                        | 174, Cambridge/Arlington  | Little River, upstream of Rt. 2 and<br>off ramp to Alewife T station.<br>Upstream of all CSOs.  |
| Alewife Brook                             | Tributary to Mystic River. From confluence at Little River in                                                          | 074, Cambridge/Arlington  | Downstream of CAM001A,<br>CAM004, MWR003                                                        |
| (Class B/Variance,<br>warm water fishery) | Cambridge/Arlington to<br>confluence with Mystic River in<br>Arlington/Somerville                                      | 172, Cambridge/Arlington  | Downstream of CAM001,<br>CAM002, CAM400, CAM401B,<br>SOM001A                                    |
|                                           |                                                                                                                        | 070, Arlington/Somerville | Mystic Valley Parkway bridge.<br>Downstream of all Alewife CSOs                                 |
|                                           |                                                                                                                        | 083, Arlington/Medford    | Upstream of confluence of Mystic<br>River and Alewife Brook                                     |
| Upper Mystic<br>River                     | Downstream of Lower Mystic                                                                                             | 057, Medford              | Confluence of Mystic River and Alewife Brook                                                    |
| (Class B/Variance,<br>warm water fishery) | Lake in Arlington/Medford to<br>Route 28 bridge in Medford                                                             | 066, Medford              | Boston Ave bridge, downstream side                                                              |
|                                           |                                                                                                                        | 056, Medford              | Upstream of I-93 bridge, near<br>Medford Square off ramp                                        |
|                                           |                                                                                                                        | 177, Medford              | Downstream of Rt. 16 bridge                                                                     |
| Lower Mystic                              | Route 28 bridge in Medford to                                                                                          | 067, Medford              | Rt. 28 bridge, downstream side,<br>near Somerville Marginal<br>MWR205A outfall                  |
| River basin<br>(Class B/Variance,         | Amelia Earhart Dam in<br>Somerville/Everett                                                                            | 176, Medford/Everett      | Malden River, upstream of Rt. 16<br>bridge                                                      |
| warm water fishery)                       | Somer ( me, 2 ) eren                                                                                                   | 059, Somerville/Everett   | Confluence of Mystic and Malden<br>Rivers                                                       |
|                                           |                                                                                                                        | 167, Somerville/Everett   | Amelia Earhart Dam, upstream side                                                               |
|                                           |                                                                                                                        | 052, Somerville           | Downstream of Amelia Earhart<br>dam, near Somerville Marginal                                   |
| Mystic River<br>mouth<br>(Class SB/CSO,   | Downstream of Amelia Earhart<br>Dam in Somerville/Everett to<br>Tobin Bridge, Chelsea R.<br>confluence in Chelsea/East | 069, Charlestown          | CSO facility outfall (MWR205)<br>Rear of Schrafft's Center at<br>BOS-017 outfall                |
| marine)                                   | Boston                                                                                                                 | 137, Charlestown/Everett  | Upstream of Tobin Bridge near<br>confluence of Mystic, Chelsea<br>Rivers and upper inner harbor |

| Table 4-1. MWRA | A monitoring locations | s, Mystic River a | nd Alewife Brook. |
|-----------------|------------------------|-------------------|-------------------|
|-----------------|------------------------|-------------------|-------------------|

Sampling locations are midstream unless otherwise noted.

| Source                                                                                  | Alewife Brook                                                                                                                       | Upper Mystic River                         | Lower Mystic Basin                                                                              | Mystic River mouth                                                   |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
|                                                                                         | 4 active, 5 closed                                                                                                                  | 2 closed                                   | None                                                                                            | 1 active                                                             |
| CSOs                                                                                    | CAM401A, MWR003,<br>CAM001, CAM002,<br>CAM401B, SOM001A                                                                             |                                            |                                                                                                 | BOS017                                                               |
| (untreated)                                                                             | CAM004 to be closed                                                                                                                 |                                            |                                                                                                 |                                                                      |
|                                                                                         | CAM400 closed 3/11<br>SOM001 closed 12/96<br>SOM002 closed 1994<br>SOM002A closed 8/95<br>SOM003 closed 8/95<br>SOM004 closed 12/95 | SOM006 closed 12/96<br>SOM007 closed 12/96 |                                                                                                 |                                                                      |
| CSO treatment facility<br>(screened, chlorinated<br>and dechlorinated CSO<br>discharge) | No                                                                                                                                  | No                                         | Yes<br>Somerville Marginal<br>(MWR205A/SOM007A,<br>high tide only)<br>Activated 7 times in 2012 | Yes<br>Somerville Marginal<br>(MWR205)<br>Activated 26 times in 2012 |
| Storm drains                                                                            | Yes                                                                                                                                 | Yes                                        | Yes                                                                                             | Yes                                                                  |
| Upstream inputs<br>(elevated bacteria counts<br>upstream)                               | Yes                                                                                                                                 | Yes                                        | Yes                                                                                             | Yes                                                                  |
| Dry weather inputs<br>(elevated bacteria counts in<br>dry weather)                      | Yes                                                                                                                                 | Yes                                        | Yes                                                                                             | Yes                                                                  |
| Tributary brook or stream flow                                                          | Yes                                                                                                                                 | Yes                                        | Yes                                                                                             | Yes                                                                  |

# Table 4-2. Mystic River/Alewife Brook pollution sources.

| Table 4-3. Mystic River/Alewife Brook CSO activations, results of MWRA model simulations and |
|----------------------------------------------------------------------------------------------|
| facility records for 2012 system conditions and 2012 rainfall. <sup>1</sup>                  |

| CSO Outfall                                                                     | Activation<br>Frequency | Total Discharge<br>Duration (hr) | Total Discharge<br>Volume (Million<br>Gallons) |
|---------------------------------------------------------------------------------|-------------------------|----------------------------------|------------------------------------------------|
| Alewife Brook                                                                   |                         |                                  |                                                |
| CAM001                                                                          | 3                       | 2.84                             | 0.20                                           |
| CAM002                                                                          | 3                       | 3.41                             | 1.02                                           |
| MWR003                                                                          | 4                       | 4.98                             | 1.48                                           |
| CAM004                                                                          | 9                       | 19.86                            | 6.08                                           |
| CAM401A                                                                         | 4                       | 5.45                             | 2.79                                           |
| CAM401B                                                                         | 11                      | 22.12                            | 2.67                                           |
| SOM001A                                                                         | 7                       | 7.88                             | 7.59                                           |
| TOTAL                                                                           |                         | 66.55                            | 21.83                                          |
| Mystic River (upstream of dam)                                                  |                         |                                  |                                                |
| SOM007A/MWR205A (Somerville<br>Marginal, high tide discharge only) <sup>2</sup> | 7                       | 10.83                            | 11.76 <sup>4</sup>                             |
| TOTAL                                                                           |                         | 10.83                            | 11.76 <sup>4</sup>                             |
| Mystic River mouth (downstream of dam, mar                                      | ine outfalls)           |                                  |                                                |
| MWR205 (Somerville Marginal Facility) <sup>3</sup>                              | 26                      | 77.72                            | 67.34 <sup>4</sup>                             |
| BOS017                                                                          | 0                       | 0.0                              | 0.0                                            |
| TOTAL                                                                           |                         | 77.72                            | 67.34 <sup>4</sup>                             |

<sup>1</sup>Activation frequency and volume are from MWRA model results, except where noted. <sup>2</sup>Activation frequency and volume are from MWRA depth sensor measurement and MWRA model results, respectively. <sup>3</sup>Activation frequency and volume are from MWRA facility records (measurements).

<sup>4</sup>Treated discharge.

Table 4-4. Mystic River/Alewife Brook sample collection by rainfall condition.

| Sampling period | $\mathrm{Dry}^{1}$ | Damp <sup>1</sup> | Wet <sup>1</sup> | Total        |
|-----------------|--------------------|-------------------|------------------|--------------|
| 2007-2011       | 31%                | 32%               | <b>36%</b>       | 100%         |
|                 | 928 samples        | 958 samples       | 1077 samples     | 2963 samples |
| 2012            | 24%                | 25%               | 51%              | 100%         |
|                 | 369 samples        | 245 samples       | 313 samples      | 927 samples  |

<sup>1</sup> Dry: no rainfall for previous 3 days; Wet: at least 0.5 inches in previous 2 days; Damp is everything in between. Sampling is random with respect to weather, though if needed wet weather sampling is added late in the year to maintain a representative annual sample of wet weather.

#### Summary of water quality, 2008-2012 4.3

A detailed summary of water quality results collected from the last five years is shown in Table 4-5.

|                                                   |                                        | Water                               | А             | lewife l                  | Brook          |     |               | Upper N                   | <b>Iystic</b> |      | Low           | er Mys                    | tic Basin     |          | Malden River Mystic M |                           |               |     |                |                           | Mouth         |     |
|---------------------------------------------------|----------------------------------------|-------------------------------------|---------------|---------------------------|----------------|-----|---------------|---------------------------|---------------|------|---------------|---------------------------|---------------|----------|-----------------------|---------------------------|---------------|-----|----------------|---------------------------|---------------|-----|
| Par                                               | ameter                                 | Quality<br>Guideline or<br>Standard | Mean ±        | %<br>meeting<br>guideline | Range          | n   | Mean ±<br>SD  | %<br>meeting<br>guideline | Range         | n    | Mean ±<br>SD  | %<br>meeting<br>guideline | Range         | n        | Mean ±<br>SD          | %<br>meeting<br>guideline | Range         | n   | Mean ±<br>SD   | %<br>meeting<br>guideline | Range         | n   |
| Surface Temperature<br>(°C) <sup>1</sup>          | Summer                                 | <28.3                               | 18.3 ± 3.9    | 100.0                     | 7.3 - 27       | 413 | 20.6 ± 4      | 100.0                     | 9.3 -<br>27.3 | 669  | 20.3 ± 4.1    | 99.8                      | 8.8 -<br>28.4 | 631      | 19.7 ± 4              | 100.0                     | 9.2 -<br>27.3 | 161 | 17±<br>2.7     | 100.0                     | 9.3 -<br>23.3 | 409 |
|                                                   | Winter                                 |                                     | 3.4 ± 1.4     | 100.0                     | 0.8 - 5.2      | 23  | 3.5 ± 2.8     | 100.0                     | 0.4 -<br>15.7 | 78   | 3.7 ± 2.5     | 100.0                     | 0.3 -<br>15.7 | 99       | ND                    | ND                        | ND            | 0   | 2.8 ± 1.5      | 100.0                     | 0.5 -<br>7.2  | 65  |
| Bottom water dissolved oxygen (mg/L) <sup>1</sup> | Summer                                 | 5.0                                 | 4.7 ± 2.3     | 46.3                      | 0 - 15.1       | 408 | 6.9 ± 2       | 86.8                      | 0.4 -<br>11.3 | 666  | 7 ± 2.4       | 81.7                      | 0.5 -<br>12.2 | 630      | 6.1 ± 3.2             | 67.3                      | 0.3 -<br>11.1 | 159 | 7.3 ± 1.6      | 94.4                      | 3.5 -<br>15.4 | 409 |
| Bottom wate<br>oxygen                             | Winter                                 | 5.0                                 | 12 ± 0.9      | 100.0                     | 10.7 -<br>13.9 | 23  | 11.8 ±<br>1.7 | 100.0                     | 6.6 -<br>14.6 | 76   | 11.8±<br>1.7  | 100.0                     | 6.6 - 15      | 95       | ND                    | ND                        | ND            | 0   | $10.5 \pm 0.8$ | 100.0                     | 9.1 - 13      | 65  |
|                                                   | pH°<br>(S.U.)                          | 6.5-8.3<br>(8.5 marine)             | 7.3 ± 0.3     | 99.7                      | 6.7 - 9        | 598 | 7.5 ± 0.5     | 95.3                      | 6.3 - 9.2     | 1003 | $7.5 \pm 0.6$ | 93.7                      | 6.2 - 9.2     | 100<br>0 | 7.4 ±<br>0.6          | 91.0                      | 6.7 - 9.1     | 199 | 7.7 ± 0.3      | 98.9                      | 6.3 -<br>8.5  | 659 |
|                                                   | Total<br>Suspended<br>Solids<br>(mg/L) | NS                                  | ND            | -                         | ND             | 0   | 5.3 ± 5.3     | -                         | 0.2 -<br>44.3 | 226  | 6.4 ± 4.3     | -                         | 0.6 -<br>30.1 | 121      | ND                    | -                         | ND            | 0   | 3.3 ± 1.8      | -                         | 0.6 -<br>15.9 | 237 |
| Water clarity                                     | Secchi<br>depth (m)                    | NS                                  | $0.5 \pm 0.2$ | -                         | 0.2 - 1        | 38  | 1.2 ± 0.4     | -                         | 0.2 - 3.2     | 190  | 1 ± 0.2       | -                         | 0.5 - 1.9     | 283      | 1 ± 0.3               | -                         | 0.6 - 1.6     | 97  | 2.2 ± 0.8      | -                         | 0.2 -<br>5.8  | 259 |
|                                                   | Turbidity<br>(NTU)                     | NS                                  | 13.1±<br>6.1  | -                         | 3.5 - 34       | 103 | 6.8 ± 4       | -                         | 0.7 -<br>23.9 | 689  | 8.4 ± 4.4     | -                         | 0.8 -<br>39.3 | 722      | 9.3 ± 4.1             | -                         | 0.4 -<br>25.9 | 174 | 6±<br>3.3      | -                         | 0.6 -<br>29.7 | 585 |

# Table 4-5. Summary of water quality, Mystic River/Alewife Brook 2008 - 2012.

| Parameter                            |                   | Water<br>Quality<br>Guideline or<br>Standard | Alewife Brook        |                           |               |     | Upper Mystic         |                           |                |     | Lower Mystic Basin   |                           |                |     | Malden River       |                           |              |     | Mystic Mouth        |                           |               |     |
|--------------------------------------|-------------------|----------------------------------------------|----------------------|---------------------------|---------------|-----|----------------------|---------------------------|----------------|-----|----------------------|---------------------------|----------------|-----|--------------------|---------------------------|--------------|-----|---------------------|---------------------------|---------------|-----|
|                                      |                   |                                              | Mean ± SD            | %<br>meeting<br>guideline | Range         | n   | Mean ±<br>SD         | %<br>meeting<br>guideline | Range          | n   | Mean ± SD            | %<br>meeting<br>guideline | Range          | n   | Mean ±<br>SD       | %<br>meeting<br>guideline | Range        | n   | Mean ± SD           | %<br>meeting<br>guideline | Range         | n   |
| Bacteria<br>(col/100mL) <sup>2</sup> | Fecal<br>coliform | 200 / 400 <sup>3</sup>                       | 671<br>(481-<br>936) | 2.6                       | 82 -<br>63000 | 196 | ND                   | -                         | ND             | 0   | 126<br>(15-<br>1020) | 42.9                      | 10 -<br>2400   | 7   | ND                 | -                         | ND           | 0   | 46<br>(34-<br>62)   | 31.5                      | 0 -<br>29100  | 552 |
|                                      | E. coli           | 126 /<br>235 <sup>3,4</sup>                  | 554<br>(491-<br>625) | 69.0                      | 0 -<br>50400  | 532 | 121<br>(106-<br>138) | 80.2                      | 0 - 15500      | 586 | 80<br>(68-94)        | 85.5                      | 0 -<br>8160    | 517 | 93<br>(61-<br>140) | 86.8                      | 0 -<br>11200 | 106 | 210<br>(46-<br>938) | 75.0                      | 0 -<br>19900  | 12  |
|                                      | Enterococcus      | 33 / 61 <sup>3</sup>                         | 176<br>(150-<br>207) | 66.4                      | 0 -<br>45700  | 532 | 20<br>(17-24)        | 80.7                      | 0 - 6870       | 586 | 8<br>(6-9)           | 91.9                      | 0 -<br>5480    | 520 | 9<br>(5-15)        | 90.7                      | 0 - 5480     | 107 | 5<br>(4-6)          | 93.9                      | 0 -<br>5170   | 570 |
| Nutrients<br>(µmol/L)                | Phosphate         | NS                                           | ND                   | -                         | ND            | 0   | 0.47 ± 0.57          | -                         | 0.01 -<br>6.01 | 227 | 0.36±<br>0.23        | -                         | 0.01 -<br>0.98 | 121 | ND                 | -                         | ND           | 0   | 0.79 ± 0.34         | -                         | 0.01 -<br>1.7 | 235 |
|                                      | Ammonium          | NS                                           | ND                   | -                         | ND            | 0   | 13.9 ± 12            | -                         | 0 - 44.8       | 227 | 10 ± 9.3             | -                         | 0 -<br>34.6    | 127 | ND                 | -                         | ND           | 0   | 5 ± 6.7             | -                         | 0 - 63.5      | 240 |
|                                      | Nitrate+nitrite   | NS                                           | ND                   | -                         | ND            | 0   | $54.9 \pm 24.8$      | -                         | 0.1 - 224      | 227 | 37.6±22.3            | -                         | 0.1 -<br>85.5  | 121 | ND                 | -                         | ND           | 0   | 8 ± 8.4             | -                         | 0 - 59.9      | 235 |
| Algae<br>(µg/L)                      | Chlorophyll<br>a  | 25 <sup>5</sup>                              | ND                   | ND                        | ND            | 0   | 9.7±<br>6.4          | 97.4                      | 1.3 - 36.7     | 227 | 16.8±<br>12.1        | 81.0                      | 0.4 -<br>72.4  | 121 | ND                 | ND                        | ND           | 0   | $3 \pm 4$           | 99.6                      | 0.2 -<br>30.8 | 237 |

Table 4-5. Summary of water quality, Mystic River/Alewife Brook 2008 - 2012, continued.

NS: no standard or guideline. ND: No data.

<sup>1</sup>Summer (June-September), Winter (December-March).

<sup>2</sup>For bacterial data, 95% confidence intervals are provided in lieu of standard deviations.

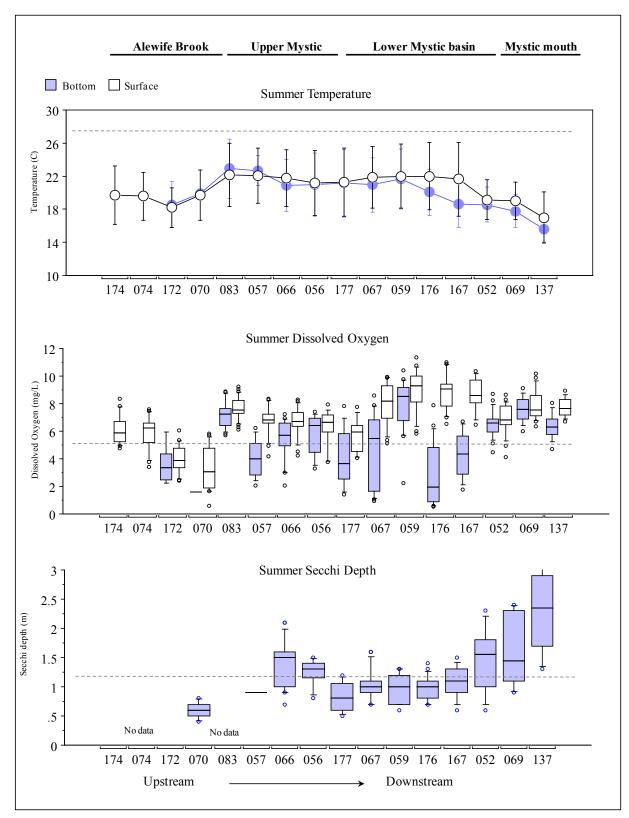
<sup>3</sup>First number is the all samples geometric mean limit - compare to the "Mean±SD" column; the second number is the single sample limit - compare to the "% meeting guideline" column. For marine locations, fecal coliform replaced *E. coli* in marine waters in 2009 for methodological reasons.

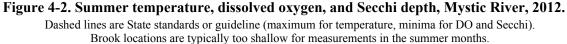
<sup>4</sup>E. coli or Enterococcus are acceptable indicators for Massachusetts Department of Public Health and MADEP to assess suitability for swimming in fresh water.

<sup>5</sup>NOAA guideline.

<sup>6</sup> Median and standard error of the median are shown for pH, not arithmetic mean and standard deviation.

# 4.4 Trends in water quality, 2012


This section reports spatial trends for water quality parameters measured in the Mystic River/Alewife Brook in 2012.

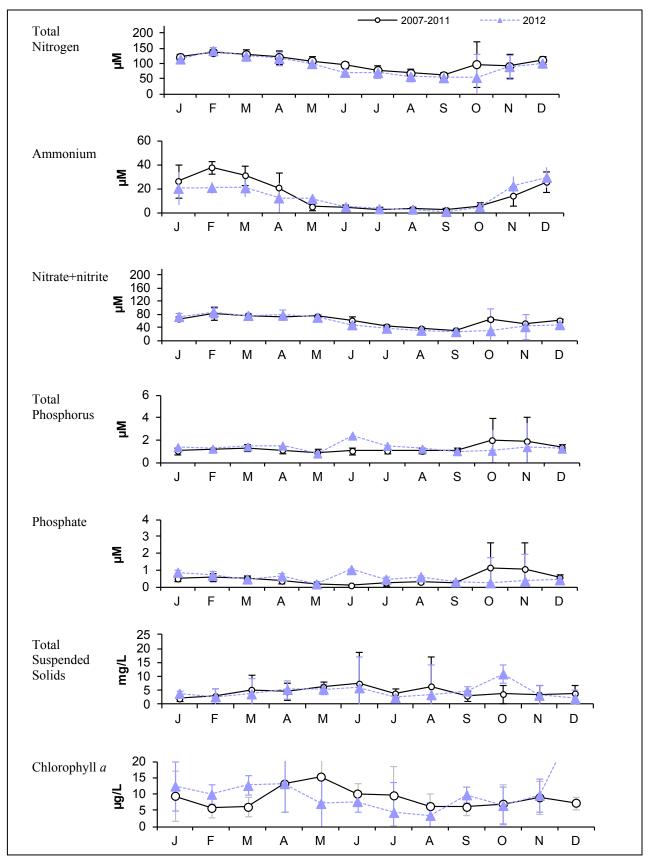

### 4.4.1 Physical measurements

**Temperature.** Summer mean temperatures for 2012 are shown for each sampling location in the uppermost graph of Figure 4-2. Temperatures are lowest in the Alewife Brook and at the river mouth, where the river meets Boston Harbor. Surface and bottom temperatures are similar, except in the downstream reach on the marine side of the dam where harbor temperatures are lower.

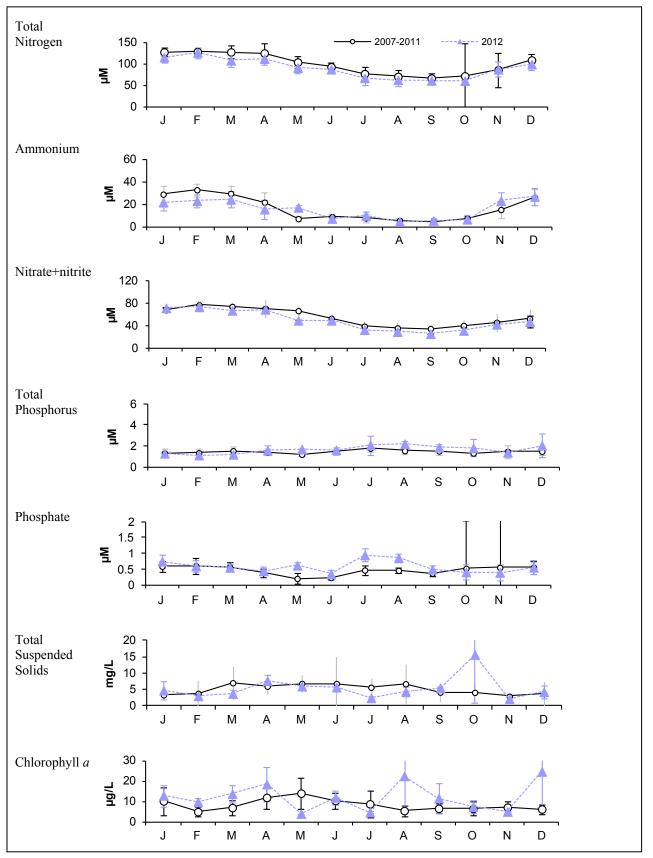
**Dissolved Oxygen.** Dissolved oxygen is shown in the center graph of Figure 4-2. After an unusual improvement in 2011, bottom-water dissolved oxygen concentrations had reverted to lower values in 2012, with mean surface and bottom dissolved oxygen concentrations failing to meet the State standard of 5.0 mg/L in portions of Alewife Brook, mid-basin at the Route 16 bridge (Station 177), Malden River (Station 176) and upstream of the Amelia Earhart dam (Station 167). Typically bottom-water dissolved oxygen is lowest at the Malden River location (Station 176). Unlike the Charles River, there is little evidence of stratification in the lower portion of the Mystic.

**Water clarity.** Water clarity is indicated by Secchi disk depth, which appears for each sampling location in the bottom graph of Figure 4-2. Water clarity for all but the Mystic River mouth is poor, with nearly all stations upstream of the Dam failing to meet the guideline of 1.2 meters except for Station 056 and Station 166 in Medford (Alewife Brook and several upper Mystic locations were too shallow to measure Secchi depth.) Clarity on the marine side of the Amelia Earhart dam improves substantially as the river meets Boston Harbor.






#### 4.4.2 Nutrients, TSS and chlorophyll


Figures 4-3 through 4-6 show monthly average total nitrogen, ammonium, nitrate+nitrite, total phosphorus, orthophosphate, total suspended solids, and chlorophyll *a* at the upstream Mystic locations (083 upstream of Alewife Brook and 066 at Boston Ave.), downstream (167 at Amelia Earhart Dam) and river mouth (137).

Ammonium and phosphate show strong seasonal effects as biological uptake increases during the summer months. Station 167, immediately upstream of the dam, is more eutrophic than either upstream or at the mouth of the river. Chlorophyll concentrations at Station 167 are typically more than double the concentrations of upstream locations, though summer chlorophyll was below average in 2012. Monthly average chlorophyll upstream of the Mystic basin is most elevated in the spring as compared to later in the season, while concentrations are highest in late summer downstream of the basin. Like the Charles, chlorophyll concentrations in the upstream reach were above average in March/April, August, and December; however the area downstream of the basin had little deviation from 5-year averages.

In the cold weather months, when biological nutrient uptake is low, ammonium concentrations in the in the Upper Mystic are twice the concentration as in the Charles Basin. Nutrient concentrations on the marine side of the dam are generally much lower than upstream, particularly for nitrogen, chlorophyll, and total suspended solids. In general, 2012 results were similar to the 5-year average for nutrient parameters, with the exception of chlorophyll concentrations, which were slightly lower than average during the summer months.



**Figure 4-3. Monthly average nutrients, TSS and Chlorophyll 2007 – 2012, Station 083 (Mystic upstream of Alewife Br.)** Error bars are ± 1 SD. Note different scale for nitrate+nitrite, phosphate, chlorophyll and TSS than for Figures 4-5 and 4-6.



**Figure 4-4. Monthly average nutrients, TSS and Chlorophyll 2007 – 2012, Station 066 (Boston Ave.)** Error bars are ± 1 SD. Note different scales than Figures 4-3, 4-5 and 4-6 for most parameters.

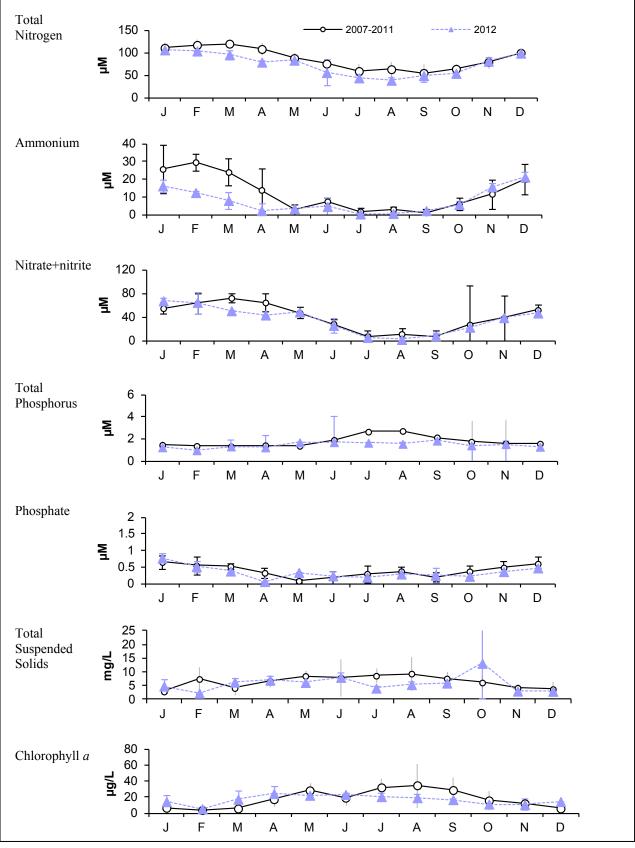
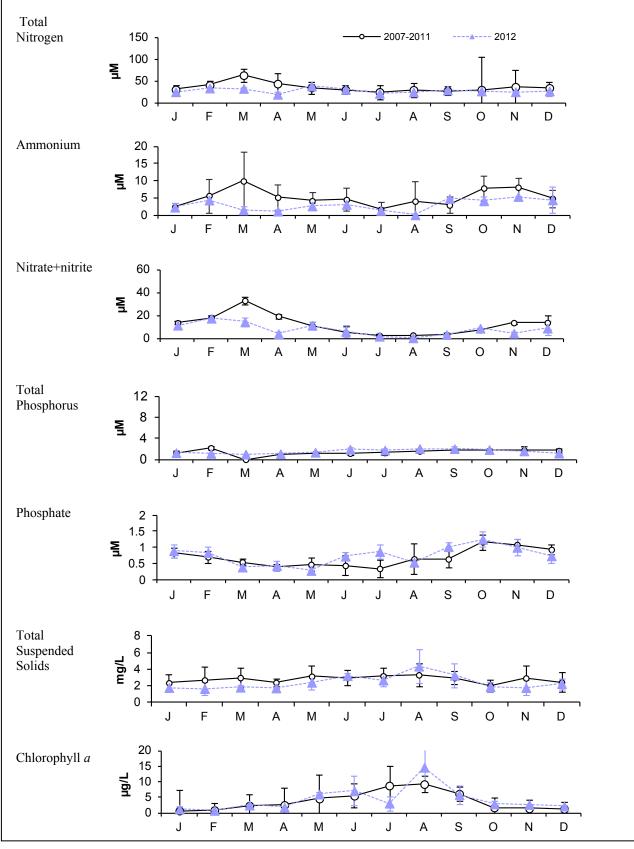
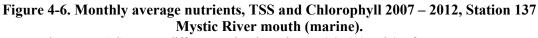
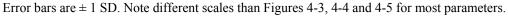






Figure 4-5. Monthly average nutrients, TSS and Chlorophyll 2007 – 2012, Station 167 (Amelia Earhart Dam (upstream/freshwater)).

Error bars are  $\pm 1$  SD. Note different scales than Figures 4-3, 4-4 and 4-6 for most parameters.

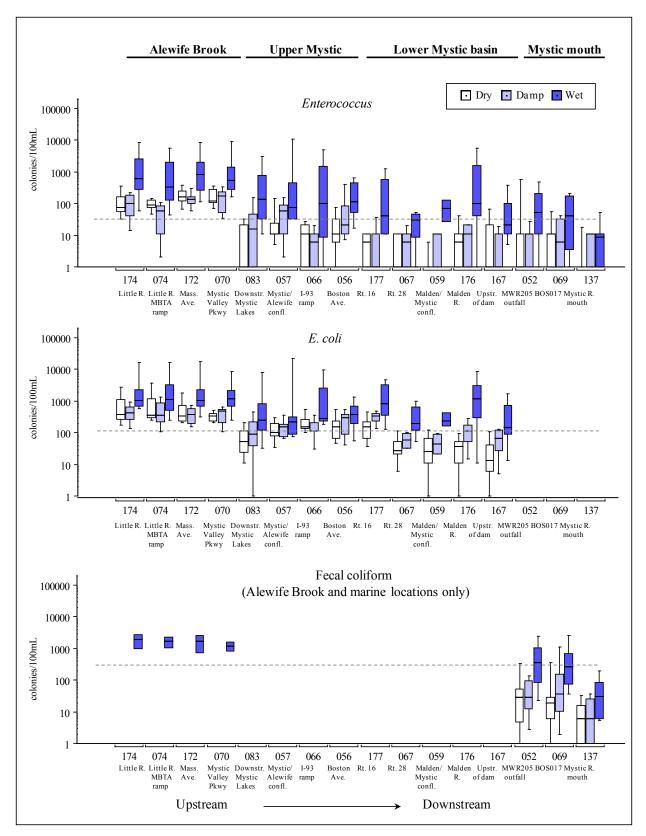






# 4.4.3 Bacterial water quality

Figure 4-7 shows the current bacterial water quality at each location sampled in the Mystic River and Alewife Brook for 2012 for dry, damp, and wet weather. Water quality is relatively consistent downstream of the Mystic/Alewife confluence, with the majority of stations meeting bacterial standards in dry weather.


Geometric means for each indicator for 2007 - 2012 appear in Table 4-6. Annual geometric means meet standards for all locations in 2012 except for Alewife Brook, and are generally lower than the five-year averages for both *Enterococcus* and *E. coli*.

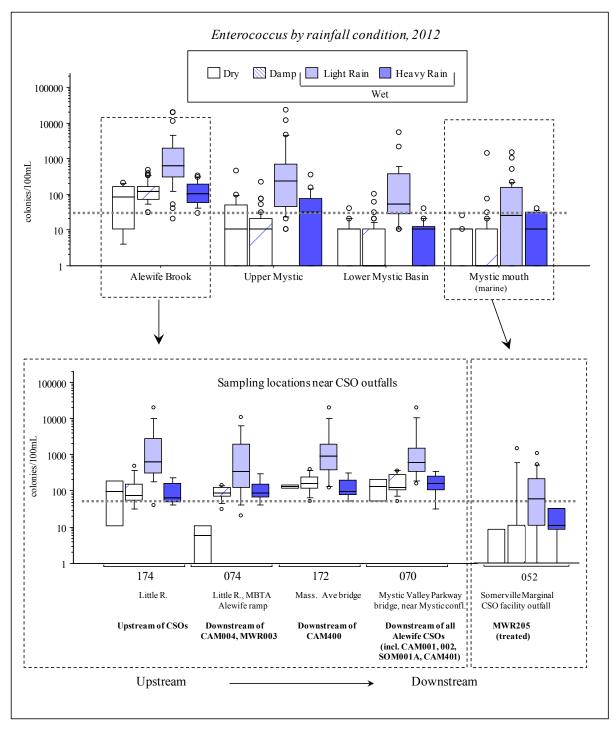
The uppermost graph in Figure 4-7 shows percentile plots of *Enterococcus* counts for each location, arranged from upstream to downstream for 2012. The center graph shows percentile plots of *E. coli* and the bottom graph fecal coliform, which is monitored in the marine portion of the Mystic River in place of *E. coli*.

*E. coli* shows a similar trend to *Enterococcus*, with Mystic basin locations generally meeting the geometric mean limit of 126 colonies/100 mL. As shown in Table 4-6, *E. coli* has significantly improved at most Mystic mainstem locations compared to the 5-year averages, with geometric means well within the standard. The geometric mean for Station 052 (Somerville Marginal outfall MWR205) now meets the former fecal coliform standard of 200 colonies/100 mL. Geometric means at Station 052 are elevated in heavy rain but meet standards in damp and wet weather—in past years, the dry weather mean did not meet standards. However, further upstream in the Alewife, all locations consistently fail to meet standards in both dry and wet weather, though conditions improve in the river mainstem, moving downstream to the river mouth.

The spatial and temporal change in *Enterococcus* concentrations in Alewife Brook and the Mystic River appear in Figure 4-8 through Figure 4-10. Figure 4-8 shows the impact of rainfall on the three river reaches on *Enterococcus* densities, along with the change at locations near CSO outfalls. In 2012 there were lower *Enterococcus* densities in heavy rain (when CSO/SSO discharges may occur) than in light rain, though these differences were not statistically significant compared to past years. This may be a result of the low frequency of heavy rainstorms and high frequency of storms under 0.5 inches of rain in 2012, which suggest increased influence of stormwater. Similar conditions appeared in the Charles this year, which was sampled on a separate monitoring schedule, suggesting region-wide, seasonal rainfall impacts.

Results in Figures 4-9 and 4-10 are grouped by phases of the Long Term CSO Plan improvements and include the geometric mean counts in each rainfall condition. *Enterococcus* results show little change over time in the Mystic River in dry and wet weather since the early 1990's, with slight improvements in dry and damp weather.






Dotted lines show MADEP *Enterococcus* and *E. coli* standard and former fecal coliform standard. *E. coli* testing was discontinued in 2008 in marine waters for methodological reasons. Dry: no rainfall for previous 3 days; Wet: at least 0.5 inches in previous 2 days; damp is everything in between.

| Station          | Location                                                                           | Surface<br>or | Numl<br>sam | per of ples |                  | us (95% CI)<br>/100 mL | <i>E. coli</i> <sup>1</sup> (95% CI)<br>colonies/100 mL |                   |  |
|------------------|------------------------------------------------------------------------------------|---------------|-------------|-------------|------------------|------------------------|---------------------------------------------------------|-------------------|--|
|                  |                                                                                    | Bottom        | 2007-'11    | 2012        | 2007 - 2011      | 2012                   | 2007 - 2011                                             | 2012              |  |
| 174              | Cambridge, Little River, upstream<br>of Rt. 2 and off ramp to Alewife T<br>station | S             | 126         | 27          | 139<br>(98-197)  | 212<br>(110-405)       | 495<br>(382-641)                                        | 493<br>(252-963)  |  |
| 074              | Cambridge, Little River, at off ramp to Alewife T station                          | S             | 126         | 27          | 92 (64-132)      | 133 (66-268)           | 496<br>(382-643)                                        | 309<br>(142-673)  |  |
| 172              | Arlington, Alewife Brook, upstream<br>of Massachusetts Ave bridge,<br>midchannel   | S             | 127         | 27          | 176<br>(130-237) | 302<br>(179-511)       | 461<br>(362-588)                                        | 649<br>(378-1116) |  |
| 070              | Arlington, Alewife Brook, off<br>Mystic Valley Parkway bridge                      | S             | 127         | 27          | 211<br>(158-282) | 297<br>(177-498)       | 546<br>(440-677)                                        | 859<br>(544-1357) |  |
| 083              | Medford, upstream of confluence of<br>Mystic River and Alewife Brook               | S             | 223         | 47          | 16 (12-22)       | 15 (7-32)              | 74 (61-89)                                              | 22<br>(12-42)     |  |
| 057              | Medford, confluence of Mystic<br>River and Alewife Brook                           | S             | 104         | 21          | 26 (18-38)       | 33 (13-80)             | 137<br>(107-174)                                        | 26<br>(9-71)      |  |
| 066              | Medford, Mystic River, Boston Ave<br>bridge                                        | S             | 138         | 27          | 41 (28-58)       | 30 (14-64)             | 277<br>(229-335)                                        | 48<br>(21-109)    |  |
| 056              | Medford, Mystic River, upstream of I-93 bridge                                     | S             | 104         | 21          | 22 (15-33)       | 8 (2-21)               | 38 (27-54)                                              | 81<br>(37-175)    |  |
| 177              | Medford, Downstream of Rt. 16<br>bridge, mid-channel                               | S             | 133         | 28          | 31 (21-44)       | 11 (4-26)              | 33 (23-48)                                              | 92<br>(48-177)    |  |
| 067              | Medford, Mystic River, Rt. 28<br>bridge                                            | S             | 106         | 21          | 3 (2-5)          | 3 (1-6)                | 86<br>(57-131)                                          | 4 (1-12)          |  |
| 059              | Everett, confluence of Mystic and Malden Rivers                                    | S             | 104         | 20          | 3 (2-5)          | 3 (1-7)                | 49 (36-67)                                              | 5 (2-12)          |  |
| 176              | Malden River, upstream of Rt. 16<br>bridge                                         | S             | 105         | 21          | 8 (5-14)         | 9 (3-25)               | 382<br>(161-909)                                        | 12<br>(3-41)      |  |
| 167              | Medford, Mystic River, upstream side of Amelia Earhart Dam                         | S             | 120         | 26          | 5 (3-7)          | 6 (2-13)               | 43 (31-60)                                              | 12 (6-24)         |  |
| 052 <sup>2</sup> | Somerville, Mystic River, near<br>Somerville Marginal CSO facility                 | S             | 126         | 31          | 16 (10-25)       | 11 (4-28)              | 112<br>(69-184)                                         | 90<br>(39-203)    |  |
| 052              | (MWR205) – marine                                                                  | В             | 94          | 4           | 3 (2-4)          | 9 (1-52)               | 19 (13-27)                                              | 10 (1-57)         |  |
| 069 <sup>2</sup> | Charlestown, near Schrafft's Center<br>at BOS-017 outfall - marine                 | S             | 73          | 31          | 6 (3-10)         | 11 (4-24)              | 43 (26-71)                                              | 65<br>(29-144)    |  |
| 137 <sup>2</sup> | Mystic River, upstream of Tobin                                                    | S             | 118         | 24          | 5 (3-8)          | 9 (3-23)               | 45 (32-64)                                              | 32 (17-60)        |  |
| 157              | Bridge – marine/Inner Harbor                                                       | В             | 140         | 24          | 1 (1-2)          | 1 (0-3)                | 4 (3-5)                                                 | 3 (2-5)           |  |

Table 4-6. Geometric mean indicator bacteria, Mystic River/Alewife Brook, 2007 - 2012.

<sup>1</sup>Results in italics are fecal coliform, not *E. coli*. *E. coli* testing was discontinued in 2008 in marine waters for methodological reasons. Geometric mean limit for *Enterococcus* is 35 cfu/100 mL in marine water, 33 cfu/100 mL in freshwater. The *E. coli* limit is 126 cfu/100 mL.



#### Figure 4-8. *Enterococcus* by rainfall condition, Mystic River/Alewife Brook, 2012.

Dotted line shows State standard of 33 colonies/100 mL for freshwater. Rainfall is NOAA rainfall from Logan airport. "Dry": no rainfall for previous 3 days; "Heavy": more than 0.5 inches in previous 3 days; "Damp" and/or rain distant in time: any rain < 0.15 inches at least two or three days previous to sampling and/or 0.1 inches in previous day; "Light rain": between 0.1 and 0.5 inches in previous day and/or between 0.15 and 0.5 in two previous days.

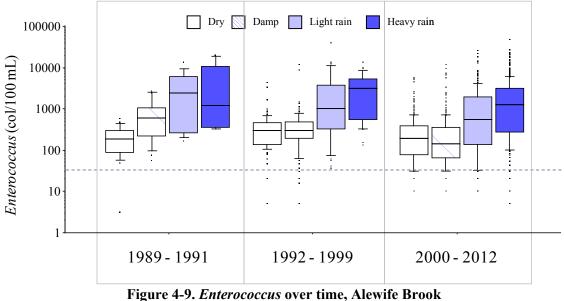



Figure 4-9. *Enterococcus* over time, Alewite Brook by phase of Long Term CSO Plan and rainfall condition.

Dotted line shows State standard. Data includes results for stations 174, 172, 074 and 070. Rainfall is NOAA rainfall from Logan airport. "Dry": no rainfall for previous 3 days; "Heavy": more than 0.5 inches in previous 3 days; "Damp" and/or rain distant in time: any rain < 0.15 inches at least two or three days previous to sampling and/or 0.1 inches in previous day; "Light rain": between 0.1 and 0.5 inches in previous day and/or between 0.15 and 0.5 in two previous days.

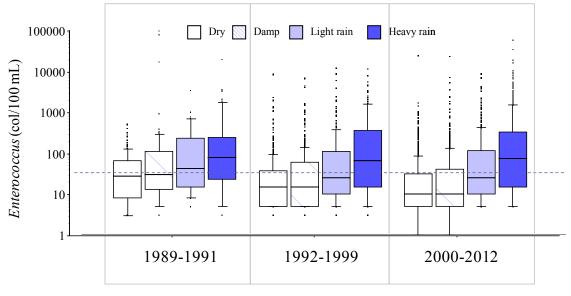



Figure 4-10. *Enterococcus* over time, Mystic River by phase of Long Term CSO Plan and rainfall condition.

Dotted line shows State standard. Data includes results for all Mystic River stations excepting Alewife Brook. Rainfall is NOAA rainfall from Logan airport. "Dry": no rainfall for previous 3 days; "Heavy": more than 0.5 inches in previous 3 days; "Damp" and/or rain distant in time: any rain < 0.15 inches at least two or three days previous to sampling and/or 0.1 inches in previous day; "Light rain": between 0.1 and 0.5 inches in previous day and/or between 0.15 and 0.5 in two previous days.

## 4.5 Summary of Mystic River/Alewife Brook water quality

In 2012 water quality conditions generally met clarity and dissolved oxygen standards downstream of the Alewife, in the river mainstem and at the river mouth, though bottom-water dissolved oxygen concentrations were lower than normal at some lower Mystic locations. The Alewife Brook did not meet standards for bottom-water dissolved oxygen or water clarity.

Bacteria concentrations in the Mystic River met standards for much of the Lower Mystic Basin and Mystic River mouth in dry and damp weather, but failed to meet limits in wet weather and in all conditions in the Alewife Brook. With the exception of the Alewife, most locations in the Mystic River did meet *Enterococcus* geometric mean limits overall, and most locations showed a continued improvement in geometric mean *E. coli*. While conditions in the Alewife were adversely affected by wet weather discharges, conditions in the mainstem downstream of the Alewife/Mystic confluence suggest a limited influence of Alewife Brook on bacterial water quality downstream.

The pattern of *Enterococcus* concentrations in heavy rain conditions—when CSOs and SSOs may occur— improved from past years, with all Mystic reaches having lower geometric mean concentrations. In light rain, when CSO discharges do not typically occur, bacteria concentrations increased though the change was not statistically significant compared to recent years. These deviations may be the result of 2012 rainfall conditions, where total storm volume overall was lower but small storms were more frequent and had higher intensities than the Typical Year. Dry and damp conditions were about the same in 2012 as in prior years. The increase in bacteria concentrations exclusively in light rain conditions suggest stormwater influences, as CSOs and SSOs typically occur only in heavy rain events.

With the exception of occasionally elevated upstream chlorophyll concentrations, 2012 nutrient parameters were largely similar to previous years, with monthly concentrations near long term averages. As in past years, the area upstream of the Amelia Earhart dam near Malden River confluence was the most eutrophic, with consistently elevated chlorophyll *a* and low dissolved oxygen relative to upstream locations, and the most pronounced changes in seasonal nitrogen concentrations.

#### REFERENCES

Bendschneider, K. and Robinson, R. J. 1952. A new spectrophotometric determination of nitrate in seawater. Journal of Marine Research 11: 87-96.

Clesceri, L. S., A. E. Greenberg, and A. D. Eaton. 1998. Standard Methods for the Examination of Water and Wastewater. 20th Edition. American Public Health Association, American Water Works Association, Water Environment Federation.

Ellis B., Rosen J. 2001. Statistical Analysis of Combined Sewer Overflow Receiving Water Data, 1989 – 1999. Massachusetts Water Resources Authority. Report ENQUAD 2001-06.

Fiore, J. and O'Brien, J. E. 1962. Ammonia determination by automatic analysis. Wastes Engineering. 33: 352.

Gong G., Lieberman J., D. McLaughlin. 2003. Statistcal analysis of combined sewer overflow receiving water data, 1989-1996. Boston: Massachusetts Water Resources Authority. Report ENQUAD 98-09.

Holm-Hanson. O, Lorenzen, C. J, Holmes, R. W, and Strickland, J. D. H. 1965. Fluorometric determination of chlorophyll. J. Cons. Int. Explor. Mer. 30: 3-15.

Murphy, J. and Riley, J. 1962. A modified single solution for the determination of phosphate in natural waters. Anal. Chim. Acta. 27:31.

MADEP. 1996. Massachusetts surface water quality standards. Massachusetts Department of Environmental Protection, Division of Water Pollution Control, Technical Services Branch. Westborough, MA (Revision of 314 CMR 4.00, effective January, 2008).

MADEP. 2002. Boston Harbor 1999 Water Quality Assessment Report. Massachusetts Department of Environmental Protection, Division of Watershed Management. Worcester, MA. Report 70-AC-1.

MWRA. 2009. (DCN 5000.0). Department of Laboratory Services Quality Assurance Management Plan, Revision 3.0. Massachusetts Water Resources Authority, Boston, MA.

MWRA. 2011. Combined Sewer Overflow Control Plan, Annual Progress Report 2010. Massachusetts Water Resources Authority, Boston, MA.

MWRA 2012. Letter dated April 30 to USEPA and MA DEP regarding CSO Discharge Estimates and Rainfall Analyses for Calendar Year 2011. Massachusetts Water Resources Authority, Boston, MA.

Solarzano, L, and Sharp, J. H. 1980a. Determination of total dissolved phosphorus and particulate phosphorus in natural waters. Limnology and Oceanography, 25, 754-758.

Solarzano, L, and Sharp, J. H. 1980b. Determination of total dissolved nitrogen in natural waters. Limnology and Oceanography, 25, 750-754.

USEPA, Office of Water. 1986. Ambient Water Quality for Bacteria – 1986. Washington, D.C. Office of Water. EPA 440/5-84-002.

Wu D. 2011. NPDES compliance summary report, fiscal year 2011. Boston: Massachusetts Water Resources Authority. Report ENQUAD 2011-06.



Massachusetts Water Resources Authority Charlestown Navy Yard 100 First Avenue Boston, MA 02129 (617) 242-6000 www.mwra.com