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1 INTRODUCTION

The Massachusetts Water Resources Authority (MWRA) is conducting a long-term ambient monitoring
program in Massachusetts and Cape Cod Bays. The objectives of the program are to (1) verify
compliance with National Pollutant Discharge Elimination System (NPDES) permit requirements,

(2) evaluate whether the impact of the treated sewage effluent discharge on the environment is within the
bounds projected by the EPA Supplemental Environmental Impact Statement (EPA 1988), and

(3) determine whether change within the system exceeds the Contingency Plan thresholds (MWRA 2001).
A detailed description of the monitoring and its rationale is provided in the monitoring plans developed
for the baseline (MWRA 1991, 1997) and post-diversion periods (MWRA 2004). The 2009 data
represent the ninth full year of measurements in the bays since initiation of discharge from the bay outfall
on September 6, 2000. A timeline of major upgrades to the MWRA treatment system is provided for
reference in Table 1-1.

Table 1-1. Major Upgrades to the MWRA Treatment System.

Date | Upgrade

December 1991 | Sludge discharges ended

January 1995 | New primary plant on-line

December 1995 | Disinfection facilities completed

August, 1997 | Secondary treatment begins to be phased in

July 9, 1998 | Nut Island discharges ceased: south system flows transferred to Deer Island —
almost all flows receive secondary treatment

September 6, 2000 | New outfall diffuser system on-line

March 2001 | Upgrade to secondary treatment completed

October 2004 | Upgrades to secondary facilities (clarifiers, oxygen generation)

April 2005 | Biosolids line from Deer Island to Fore River completed and operational

Twelve water column monitoring surveys were conducted in 2009. The data generated during the surveys
have been reported in a series of survey reports and data reports. The purpose of this annual summary
report is to present the 2009 results in the context of the seasonal patterns and the annual cycle of
ecological events in Massachusetts and Cape Cod Bays. The 2009 data are also compared against the
Contingency Plan thresholds (MWRA 2001) and baseline and post-diversion data. Appendices A-D
provide abstracts and presentations from the May 2010 Annual Technical meeting focused on physical,
chemical, and biological parameters.

1.1 Data Sources

A detailed presentation of field sampling equipment and procedures, sample handling and custody,
sample processing and laboratory analysis, instrument performance specifications and data quality
objectives is given in the Quality Assurance Project Plan (Libby et al. 2009a). For each water column
survey, the survey objectives, station locations and tracklines, instrumentation and vessel information,
sampling methodologies, and staffing were documented in the survey plan. Following each survey, a
survey report was prepared to summarize the activities that were accomplished, details on any deviations
from the methods outlined in the QAPP, the actual sequence of events and tracklines, the number and
types of samples collected, a preliminary summary of in Situ water quality data, a rapid analysis of >20
pm phytoplankton species abundance in one sample, whale watch information, and any deviations from
the survey plan. Results for 2009 water column surveys are tabulated in data reports.

1-1
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1.2 Water Column Monitoring Program Overview

This report summarizes and evaluates water column monitoring results from the 12 water column surveys
conducted in 2009 (Table 1-2). The surveys collected water quality samples and observations at 7
stations in the nearfield 12 times per year, and at 27 stations in the farfield 6 times per year. Each station
is sampled once per survey except station N16 which is sampled twice during the combined
nearfield/farfield surveys. The 34 stations are distributed throughout Boston Harbor, Massachusetts Bay
and Cape Cod Bay (Figure 1-1). The nearfield is a rectangle covering an area of approximately 110 km®
around the MWRA outfall diffuser. Fifteen of the stations are sampled for phytoplankton and
zooplankton. Two additional zooplankton stations (F32 and F33) in Cape Cod Bay are sampled during
the February and April farfield surveys (Figure 1-2). The farfield stations have been organized into
regional groupings for some analyses (Figure 1-1 and Figure 1-2). For this report, subsets of the data
have also been grouped to focus on the deep-water stations off of Cape Ann (F26 and F27 — Northern
Boundary) and in Stellwagen Basin (F12, F17, F19 and F22 — see Figure 1-1).

The data are also grouped by season for comparisons of biological and nutrient data and also for
calculation of chlorophyll, Phaeocystis, and Pseudo-nitzschia Contingency Plan thresholds. The seasons
are defined as the following 4-month periods: winter/spring from January to April, summer from May to
August, and fall from September to December. Comparisons of baseline and post-diversion data are
made for a variety of parameters. The baseline period is defined as February 1992 to September 6, 2000
and the post-diversion is September 7, 2000 to November 2009. Spanning both periods, year 2000 data
are not used for calculating annual means, but the 2000 data are typically included in plots and analyses
broken out by survey and season. Specific details on how 2000 data are treated are included in the
captions and text.

Table 1-2. Water column surveys for 2009. The nearfield day is underlined.

Survey Type of Survey Survey Dates
WF091 Nearfield/Farfield February 6, 7,10, 11
WEF(092 Nearfield/Farfield February 25, 26
WNO093 Nearfield March 18

WF094 Nearfield/Farfield April §, 9, 10
WNO096 Nearfield May 12

WF097 Nearfield/Farfield June 15, 16, 17
WNO099 Nearfield July 21

WF09B Nearfield/Farfield August 17, 18, 19
WN09C Nearfield September 1
WNO09D Nearfield September 30
WF09E Nearfield/Farfield October 20, 21, 22
WNO9F Nearfield November 10

1-2
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Figure 1-1.

MWRA stations and their regional groupings. Also shown are the MWRA outfall and

instrumented buoys operated by GoMOOS and NOAA's NDBC.
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2 MONITORING RESULTS

Over the course of the HOM program, the expected seasonal pattern of water column events for this latitude
has been observed in the data collected in Massachusetts and Cape Cod Bays. The general pattern is evident
though the timing and year-to-year manifestations of the events are variable. A winter/spring phytoplankton
bloom occurs as light becomes more available and temperatures increase; nutrients are readily available. In
recent years, the winter/spring diatom bloom has been followed by a bloom of Phaeocystis pouchetii in
April. Then late in the spring, the water column transitions from well-mixed to stratified conditions. This
cuts off the nutrient supply to surface waters and terminates the spring bloom. The summer is generally a
period of strong stratification, depleted surface water nutrients, and a relatively stable mixed-assemblage
phytoplankton community. In the fall, as temperatures cool, stratification weakens and nutrients are again
supplied to surface waters. This transition often contributes to the development of a fall phytoplankton
bloom. Dissolved oxygen concentrations are lowest in the bottom waters prior to this fall overturn of the
water column — usually in October. By late fall or early winter, the water column becomes well mixed and
resets to winter conditions, when nutrients are available but waters are too dark and cold to support rapid
phytoplankton growth. This sequence is evident every year. The major features in 2009 and differences
from previous years are discussed below.

2.1 2009 Results

Overall, the physical, water quality, and biological conditions in 2009 followed typical seasonal patterns
observed previously in the monitoring program (1992-2008). Mean annual and mean seasonal values of
many variables for 2009 were close to the averages over all years including: winds, temperature,
stratification, nutrients, phytoplankton biomass, dissolved oxygen and zooplankton abundance and
community structure. The most notable characteristic of the physical environment in 2009 were the cold,
stormy conditions during June and July and the associated high river flow during this summer period. These
conditions resulted in less upwelling than normal, rough sea conditions with sporadic mixing, and large
pulses of freshwater. It was also stormier during the late fall of 2009 contributing to the seasonal turnover of
the water column.

As usual, nutrient concentrations were at a maximum in February, remained high until the March/April
Phaeocystis bloom, were low in the summer, and then increased in the fall. Phytoplankton biomass patterns
varied as a result of a major regional Phaeocystis bloom in April, as well as nearshore diatom blooms in
summer (observed in the harbor, coastal, and Cape Cod Bay regions) and in fall throughout the bays to
varying degrees. Chlorophyll and particulate organic carbon (POC) concentrations peaked in most areas
during the February to April Phaeocystis bloom. There was an Alexandrium fundyense Contingency Plan
caution threshold exceedance, but overall the Alexandrium bloom was minor and short lived. A
chronological synopsis of the 2009 results is provided below and additional details are presented in
Appendices A-D.

In early February nutrient concentrations were elevated across Massachusetts Bay for nitrate (NOj), silicate
(Si0y), and phosphate (PO,) (Figure 2-1). Levels in Cape Cod Bay were slightly lower than those in
Massachusetts Bay, though not as low as typically observed for February in Cape Cod Bay. This may have
been due to the lack of the usual winter diatom bloom in Cape Cod Bay (Figure 2-2). There was a slight
decrease in SiO,4 concentrations in the shallow waters of Cape Cod Bay, Boston Harbor, and the coastal
region that may have been related to an increase in diatoms that was not captured during the February
surveys. By late February, instead of diatoms, there was a minor bloom of Phaeocystis in Cape Cod Bay
that exhibited the maximum survey mean areal fluorescence in the bay for 2009. Riverine inputs were
normal during February and much lower than observed in 2008 (Figure 2-3).
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There was a sharp decline in NO; and PO, by April throughout the bays, while SiO4 concentrations remained
elevated with survey mean concentrations in the nearfield remaining around 9 uM into May. The decrease in
NO; was coincident with a large Phaeocystis bloom observed across the bay in April (Figure 2-2). The
bloom was strongest in the offshore and northern boundary areas of Massachusetts Bay with mean area
abundances increasing from <1 million cells L™ inshore to ~5 million cells L™ in the offshore area and 10
million cells L™ at the northern boundary area. A maximum abundance of ~15 million cells L™ was
observed in the mid-depth sample at station F26 along the northern boundary (Appendix B Slide 18).
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Figure 2-1. Time-series of survey mean nutrient concentrations in Massachusetts and Cape Cod Bays.
Mean concentrations over depths and stations within each region in 20009.

The high April abundances of Phaeocystis resulted in peak survey mean concentrations of chlorophyll and
POC for the year at the offshore and northern boundary stations (Figure 2-4). A coincident April peak in
productivity was observed at station NO4 while at stations F23 and N18 there was only a slight increase in
productivity from low winter values (Figure 2-5). The peak in nearfield chlorophyll concentrations occurred
in March when dinoflagellate, cryptomonads, and microflagellate abundances were relatively high during the
onset of the Phaeocystis bloom. A similar pattern of increased microflagellate abundance was observed in
the nearfield prior to the 2008 Phaeocystis bloom. One possible mechanism may be an increase in single
celled (rather than colonial) Phaeocystis prior to the March or April bloom, which could have been
inadvertently classified as microflagellates. The spring peak in POC concentrations in the nearfield was
observed in May, which is odd considering that phytoplankton abundances were relatively low (Figure 2-2
and Figure 2-4).
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Figure 2-5. Potential areal productivity (mg C m™ d™') in 2009 at stations F23, N18, and N04.

In May, Phaeocystis was no longer present in the nearfield. As in 2005 — 2008, a bloom of the toxic
dinoflagellates species Alexandrium fundyense was occurring in the Gulf of Maine in May 2009. As in
2005, 2006 and 2008, an early May northeasterly storm brought the bloom into the bay, but this storm was
relatively weak and unlike previous years no additional storms occurred in May 2009 (Figure 2-6). Model
forecasts' and early toxicity to the north of Massachusetts Bay led MWRA to request additional sampling for
Alexandrium during the May 12, 2009 nearfield survey. A maximum Alexandrium abundance of

151 cells L' was measured in the surface waters at station N18, which triggered initiation of the
Alexandrium Rapid Response Surveys (Libby 2006). A series of three rapid response surveys were
conducted on May 20, May 27, and June 8. Alexandrium abundances remained relatively low during these
surveys and by June 8 the bloom was essentially over in the bay (Appendix B Slide 16).

! http://www.whoi.edu/page.do?pid=39136&tid=282&cid=56567&ct=162 for details on WHOI forecast for 2009.
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The summer of 2009 was one of the wettest summers on record with major storm/rainfall events from late
June into August. River flows for the July to September period were the highest observed over the course of
the MWRA monitoring program (Figure 2-3). Coincident with these meteorological events there was an
overall increase in nutrient concentrations throughout the bays from June to August (Figure 2-1). There was
also a summer diatom bloom dominated by Skeletonema and comprised of other diatoms such as
Dactyliosolen fragilissimus in Boston Harbor, coastal waters, and Cape Cod Bay (Figure 2-2). Harbor
productivity peaked at 1,755 mg C m™ d' during this summer bloom, but remained relatively low at the
nearfield stations (Figure 2-5).

Bottom water dissolved oxygen (DO) concentrations declined over the April to August time period, though
in the nearfield there was a slight increase in bottom DO levels from June to July (Figure 2-7). This
increase may have been the result of mixing caused by the large storm event in late June (Appendix A Slide
14). Overall the relatively high riverine inputs led to lower surface salinity and stronger stratification in the
nearfield from mid-June through August (Figure 2-8 and Figure 2-9). The lower salinity surface layer is
even more pronounced in the high-resolution data from the NOAA NDBC Buoy 44013 located to the south
ecast of the nearfield (Figure 2-8). The storm induced increase in bottom water DO levels observed in the
nearfield between the June and July surveys (and presumably throughout the region since DO dynamics
respond directly to regional physical forcing mechanisms) likely prevented very low annual mean bottom
water DO levels from being reached in the fall (Figure 2-7).
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Figure 2-6. Time-series of wind stress and water and air temperature at GoMOOS Buoy A in March-

June 2009. The dashed lines indicate water column surveys.
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Figure 2-7. Time-series of average bottom dissolved oxygen concentration in Massachusetts and Cape
Cod Bays in 2009. Average represents the bottom values from all stations in each region.
Error bars represent +1 standard deviation.
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Figure 2-8. Comparison of the 2009 surface and bottom salinity near the outfall site (nearfield stations

N16, N18 and N20) for 2009 (red line) compared to 2008 (dark blue line) and the previous
16 years of observations (1992-2007; light blue). The surface salinity data (June-December
2009) recorded at NOAA NDBC Buoy 44013 is in black.
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Figure 2-9. Stratification near the outfall site (nearfield stations N16, N18 and N20) for 2009 (red line)
compared to 2008 (dark blue line) and the previous 16 years of observations (1992-2007;
light blue).

In the fall of 2009, blooms of diatoms Skeletonema and Dactyliosolen (and others) were observed in the
nearfield in late September and throughout the bays in October (Figure 2-2). These were the same species
that dominated the August diatom bloom at the inshore harbor, coastal and Cape Cod Bay areas. The fall
diatom blooms in the nearfield and northern boundary areas resulted in secondary peaks in chlorophyll and
POC concentrations (Figure 2-4). Annual maxima in primary productivity were measured at the nearfield
stations N04 and N18 (1,091 and 2,718 mg C m™ d’'; respectively) in late September (Figure 2-5). By
October, productivity levels in the nearfield and Boston Harbor had decreased to <300 mg C m™> d™'.
Nutrient concentrations were quite variable in the nearfield during the fall likely due to the frequency and
magnitude of fall storms in 2009 (Appendix A slide 15). Similar variability at the farfield areas was not
observed due to more limited sampling (August and October).

Bottom water DO concentrations reached a minimum in late September of 7.23 mg L™ in the nearfield
(Figure 2-7). By October, DO levels in the nearfield and other inshore areas had increased to >8 mg L™,
while DO levels at the offshore and northern boundary stations remained lower. The stormy weather in the
fall likely kept the DO levels well above 6 mg L™'. The observed fall values (average Sept-Nov) were
consistent with the regression model (Appendix A Slide 24). The model indicated that the temperature effect
(due to downwelling conditions) should have resulted in lower than normal DO, but the salinity effect
produced higher DO values. Note that the model does not take into account the intensity of fall storms,
which is also a potentially important variable affecting the fall DO values.

Total zooplankton abundance in 2009 followed a normal seasonal cycle with low abundance during the
colder months, peaking in summer, and declining again in the fall. Zooplankton patterns appeared to be
regionally coherent. Mean abundances for most regions peaked at close to 80,000 animals m™ with Cape
Cod Bay slightly lower at 65,000 animals m™ and the northern boundary area having the highest peak
abundance of 115,000 animals m™ (Figure 2-10). The peaks in total zooplankton abundance occurred in
June in the inshore waters (coastal, Boston Harbor and Cape Cod Bay) and in August in the nearfield,
offshore and north boundary areas. Zooplankton community composition was similar to most previous
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years. Abundance was dominated by copepods (copepodites and adults; most of which were Oithona similis,
with secondary contributions by Pseudocalanus spp., followed by copepod nauplii, and non-copepods.
Barnacle nauplii were relatively abundant in February and April in Boston Harbor and coastal areas. Other
non-copepod zooplankton such as Evadne nordmani and Oikopleura dioica, comprised >10% of total
zooplankton in the nearfield during the months of May, August and September (Figure 2-10).
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Figure 2-10.  Zooplankton abundance by major taxonomic group in six areas during 2009.
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2.2

Contingency Plan Thresholds for 2009

Contingency Plan Threshold water quality parameters include 1) DO concentrations and percent saturation in
bottom waters of the nearfield and Stellwagen Basin, 2) rate of decline of DO from June to October in the
nearfield, 3) annual and seasonal chlorophyll levels in the nearfield, 4) seasonal means of the nuisance algae
Phaeocystis pouchetii and Pseudo-nitzschia pungens in the nearfield, and 5) individual sample counts of
Alexandrium fundyense in the nearfield (Table 2-1). The DO values compared against thresholds are
calculated based on the mean of bottom water values for surveys conducted from June to October. The
seasonal rate of nearfield bottom water DO decline is calculated from June to October. The chlorophyll
values are calculated as survey means of areal chlorophyll (mg m™) and then averaged over seasonal and
annual time periods. The Phaeocystis and Pseudo-nitzschia seasonal values are calculated as the mean of the
nearfield station means (each station is sampled surface and mid-depth). The Pseudo-nitzschia “pungens”
threshold designation can include both non-toxic P. pungens as well as the domoic-acid-producing species

P. multiseries; these appear identical under a light microscope. Since resolving the species identifications of
these two species requires scanning electron microscopy or molecular probes, all P. pungens and Pseudo-
nitzschia unidentified beyond species were included in the threshold. For A. fundyense, each individual
sample value is compared against the threshold of 100 cells L™

Table 2-1. Contingency plan threshold values for water column monitoring in 2009. Exceedance
shaded blue.
Parameter Time Caution Warning Baseline/ 2009
Period Level Level Background
Bottom Water DO Survey Mean <6.5 (unless | <6.0 (unless Nearfield: 5.75 Nearfield min: 7.23
concentration June-October background | background SW Basin: 6.2 SW Basin min: 6.79
(mg L™ lower) lower)
Bottom Water DO Survey Mean | <80% (unless | <75% (unless | Nearfield: 64.3% | Nearfield min: 77.5%
percent saturation June-October background | background | SW Basin: 66.3% | SW Basin min: 71.8%
(%) lower) lower)
Bottom Water DO Seasonal 0.037 0.049 0.024 0.010
rate of decline June-October
(Nearfield, mg L™ d™)
Chlorophyll Annual 118 158 79 52
2
(mean, mg m”) Winter/spring 238 - 62 63
Summer 93 -- 51 43
Autumn 212 - 97 49
Phaeocystis pouchetii Winter/spring 2,020,000 - 468,000 402,000
-1
(mean, cells L™) Summer 357 - 72 Absent
Autumn 2,540 -- 317 Absent
Pseudo-nitzschia Winter/spring 21,000 -- 6,200 Absent
pungens - Summer 43,100 - 14,600 Absent
(mean, cells L)
Autumn 24,700 - 9,940 1,460
Alexandrium fundyense Any nearfield 100 - Baseline Max 151
(cells L™ sample 163

2-9




Monitoring Results November 2010

As described earlier, DO concentrations in 2009 followed trends that have been observed consistently since
1992. Bottom water DO levels are at a maximum in the winter, decrease over the course of the summer
during seasonal stratification, and reach annual minimum levels just prior to stratification breaking down in
the fall —usually October. Since the bay outfall came on line, there has been no change in the DO cycle in
the nearfield and Stellwagen Basin (Figure 2-11). The 2009 bottom water minimum in the nearfield was
comparable to the baseline and post-diversion mean minima and well above the Contingency Plan thresholds
(Table 2-1). In Stellwagen Basin, the 2009 minimum DO concentration was slightly lower than the baseline
and post-diversion means. Also note that the June nearfield bottom water DO concentration was below these
previous minima while the October 2009 DO levels were well above previous levels. It is expected that
these valleys (June) and peaks (October) in nearfield bottom water DO levels are related to physical forcing
dynamics — wet summer and stormy fall. Bottom water DO levels in the bays are primarily driven by
regional physical oceanographic processes and have been unaffected by the diversion to the bay outfall
(Geyer et al. 2002, Libby et al. 2009b).
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Figure 2-11.  Time-series of survey mean bottom water DO concentration (top) and percent saturation
(bottom) in the nearfield (left) and Stellwagen Basin (right) during baseline (black), post-
diversion (blue), and 2009 (red). Data for Stellwagen Basin collected from stations F12,
F17, F19, and F22. Error bars represent + SE.
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There were no exceedances of 150

nearfield chlorophyll thresholds in

2009. The seasonal and annual 125 +

nearfield mean areal chlorophyll

levels for 2009 were all relatively ‘E 100 -

low and well below threshold 2

values (Table 2-1). Even with the = 5|

April Phaeocystis bloom, the c: | —

winter/spring mean value was only o — I

63 mg m~, the lowest winter/spring 2 507 L -
mean areal chlorophyll level since %

1998 — “the year without a bloom” g 257

(Figure 2-12). The summer, fall,

and annual 2009 nearfield areal 0 . . .
chlorophyll means were also quite Annual Winter/Spring ~ Summer Fall

low and lower than the baseline and
post-diversion means.

‘ OBaseline OPost-Diversion —2009 ‘

Figure 2-12. Comparison of baseline and post-diversion
seasonal and annual mean areal chlorophyll (mg
m?) in the nearfield. Error bars represent + SE.

All three of the harmful or nuisance
phytoplankton species included in
the Contingency Plan thresholds
(Pseudo-nitzschia spp.,
Alexandrium fundyense and Phaeocystis pouchetii) were observed in 2009. The only threshold exceedance
in 2009 was for Alexandrium, which reached abundances of 151 cells L in the nearfield, which is just over
the 100 cells L™ caution threshold (Table 2-1). The 2009 Alexandrium abundances were similar to the low
levels seen in 2007 and much lower than observed during the Alexandrium blooms of 2005, 2006, and 2008
(Figure 2-13). Overall the 2009 Alexandrium bloom in Massachusetts Bay was small, of short duration, and
led to limited and relatively brief shellfishing closures.

MWRA sampled for Alexandrium in Massachusetts Bay using the probe method on four surveys from May
to June, and again during the nearfield survey in July following a report of “red water” off of Portsmouth,
NH on July 10, 2009 (B. Keafer pers. comm.). Subsequent analyses by WHOI researchers of the samples
collected of Portsmouth showed Alexandrium abundances of 25,000 to nearly 1,800,000 cells L't WHOI
conducted a rapid response survey on July 12, 2009 that showed elevated abundances off Cape Ann with
levels reaching 7,200 cells L™ offshore but much lower abundances in Massachusetts Bay (Figure 2-14).
Subsequent surveys by MWRA (July 21) and WHOI (July 19-23) showed that this July bloom had ended
and abundances in and to the north of Massachusetts Bay had decreased to <5 cells L. The WHOI survey
results are available online®. The stormy conditions, elevated runoff and downwelling favorable winds in
June and July may have contributed to the conditions conducive for this July 2009 “red tide” event. Also of
note is that low levels of Alexandrium (2.5 cells L") were detected in October 2009. This marks the second
year in a row that low levels of Alexandrium were detected in autumn.

? http://science.whoi.edu/users/olga/alex_surveys 2009/WHOI _Alexandrium_Surveys _2009.html
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Figure 2-13.  Nearfield Alexandrium abundance for individual samples (cells L'; note log axis).
Contingency Plan threshold value shown as dashed line.

Phaeocystis abundance in the nearfield in April 2009
reached a sample maximum of 2.8 million cells L™,
but the seasonal mean was only 402,000 cells L™
which is well below the winter/spring threshold — it
was the tenth year in a row that a bloom has been
observed in the bays (Figure 2-15). Phaeocystis
blooms appear to be a normal occurrence for the
system.

Pseudo-nitzschia were absent in the winter/spring
and summer and observed at low levels (mean 1,470
cells L) during the fall in the nearfield. These
levels continue the trend of low abundances since
the peaks in 1998-1999 and are well below the fall
Contingency Plan threshold and levels that would
cause amnesic shellfish poisoning.
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Figure 2-15.  Winter/spring seasonal mean nearfield Phaeocystis abundance (cells L) for 1992 to 2009.
Contingency Plan threshold value shown as dashed line.
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2.3 Interannual Comparisons

2.3.1 Nutrients and Biomass

In comparison to baseline conditions, the changes in the nutrient regimes are quite clear and consistent with
model predictions (Libby et al. 2009b, Signell et al. 1996). Ammonium (NH,) has dramatically decreased in
Boston Harbor (>80%) and nearby coastal waters while initially increasing to a lesser degree (~1 uM) in the
nearfield (Figure 2-16). This increase has been expressed as elevated levels of NH, in the effluent plume,
which are generally confined to an area within 10-20 km of the outfall (Figure 2-17). Since 2003 there has
been an overall decrease in annual mean NH,4 concentrations across the bay including the nearfield. Current
annual mean levels in the bay are comparable to those observed in the 1990’s. The nearfield, since
diversion, has averaged about 1 uM above background (as represented by data from the northern boundary).

In Boston Harbor, the dramatic decrease in NH,4 has been concurrent with significant decreases in other
nutrients, chlorophyll, and POC, and an increase in bottom water dissolved oxygen (Taylor 2006). In the
nearfield, regression analysis showed the moderate increase in NH4 concentrations was most apparent in
summer and that POC also increased in the nearfield in the summer (Libby et al. 2009b). There has also
been a trend of higher winter/spring chlorophyll in most of Massachusetts Bay, including the nearfield area
(Figure 2-17 and Appendix B Slides 24-27). The higher chlorophyll is largely from Phaeocystis blooms,
which are regional and have occurred every year since 2000.

16
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Figure 2-16.  Time-series of annual mean NH, concentrations (uUM) by area. Data collected from all
depths and all stations sampled in each area. Error bars represent +1 standard deviation.
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Figure 2-17.  Change in seasonal NH, concentrations (M; top row) and areal chlorophyll (mg m?;
bottom row) from baseline to post-diversion. Change calculated as the difference in means
over all depths for each season from each station.
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"Before-After, Control-Impact" (BACI) statistical analyses put the changes in POC and NH, in context.
BACI analysis found that only NH,4 concentrations changed between the impact (inner nearfield) and control
(outer nearfield, Massachusetts Bay offshore, and Cape Cod Bay) areas (Libby et al. 2009b). NH,4 was
higher in the inner nearfield. The analyses did not find statistically notable changes in chlorophyll or POC in

this “impact” area compared to “control”
regions of the bays that are 5 to >50 km
distant, supporting the understanding that
observed changes in phytoplankton
biomass are associated with regional
processes.

BACI analyses were carried out including
the 2009 data, focusing on a set of stations
(Figure 2-18) that are a subset of those
included in the proposed revised
monitoring plan (MWRA 2010). Station
N18 nearest the outfall was designated as
the “impacted” site and compared to a
range of control stations: Boston Harbor
(F23), northeast of the outfall (N04 and
F22), and 15 km (F13), 30 km (F06) and
>50 km (FO1 and F02) to the south of the
outfall. The results were essentially the
same as those seen previously for groups of
stations (Libby et al. 2009b). The only
statistical differences (p<0.05) noted in the
baseline vs. post-diversion comparison for
each station were for NH,, which increased
at station N 18 (winter/spring and summer)
and decreased at station F23 (all seasons).
The BACI comparisons between station
N18 and the other stations yielded increases
in NHy at station N18 for nearly all of the
station and season comparisons. None of
the other BACI results showed any changes
between stations for NO;, SiO4, POC, or
areal fluorescence.
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- 70
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< 40 Kilometers
Figure 2-18.  Stations included in the BACT analyses.

Red = “impacted” station,
Green = “control” stations.

As predicted, there has been an increase in NH, in the nearfield relative to the baseline and also relative to
the regional background concentrations. The signature levels of NH, in the effluent plume are generally
confined to an area within 10-20 km of the outfall. Annual Phaeocystis blooms have caused elevated
chlorophyll and POC in spring, but those blooms are regional and not caused by the outfall.
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2.3.2 Productivity

Productivity (a measure of phytoplankton growth rates) at station F23 was higher than the other stations in
1995-1997 (Figure 2-19). After 1997 annual mean productivity at the 3 monitoring stations is generally
comparable and remarkably synchronized over time. In 2009, annual productivity was low (~200 g C m™d™)
and comparable across all three stations and continued the pattern of lower potential annual productivity
values for all stations since 2003 (Figure 2-19). The 2009 annual productivity is comparable to the low
values measured for 1998, which was thought to reflect environmental conditions (Keller et al. 2001).

A comparison of 1995-2002 vs. 2003-2007 annual productivity indicated that there has been a decrease
(p<0.05) at all three stations in recent years (Libby et al. 2009b). The decreased began two years after
outfall relocation (September 2000). Reduced nutrient loading at the Boston Harbor station has likely played
arole in the decreased productivity there, but the recent decreases in productivity at the nearfield stations do
not seem related to the outfall as the slight increase in NH4 concentrations in the nearfield would be expected
to lead to increases rather than decreases in productivity. Rather, as in noted for 1998, environmental
conditions may be playing a role with reduced wind speeds contributing to lower productivity in both the
harbor and nearfield areas.

At all three stations, primary production was positively correlated with average summer wind speed and with
average summer wind gusts with r* values of 0.44 or greater. The mean summer wind speed and the summer
average wind gusts were lower in the period 2003 to 2009 compared to the period 1995 to 2002 (Figure
2-20). Thus the decrease in productivity since 2003 at the nearfield stations and the harbor station can be
correlated with reduced wind intensities during these years. We hypothesize that enhanced stratification due
to lighter winds prevented the mixing of subsurface nutrients to fuel primary production especially during
the summer season.
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Figure 2-19.  Potential annual production (g C m™ y™) for stations F23, N16/N18, and N04.
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Figure 2-20.  Summer (July-September) average wind speed and average wind gusts (m s™') at NOAA
NDBC station 44013 for 1995-2002 and 2003-2009. The error bars represent +1 standard
deviation.
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2.3.3 Plankton

The 2009 phytoplankton patterns generally followed observed long-term trends, including the long-term
decline in diatom abundance (Figure 2-21). No changes in total phytoplankton abundance were detected,
but changes in phytoplankton functional groups have been occurring. For example, 2009 mean diatom
abundance in the nearfield (131,400 cell L") was one-third the 1992-2008 mean of 368,100 cells L™ (Mann-
Whitney U test, p = 0.0030). This long-term decline in diatom abundance has been ongoing since 2004, and
is largely due to a reduction in winter-spring diatom bloom magnitude during the last decade of Phaeocystis
dominance of the winter-spring bloom (Libby et al. 2009¢). The increase in Phaeocystis has been especially
dramatic in the coastal, nearfield, offshore, and boundary regions where there have been 2 to 4-fold
increases. Another group that appears to be increasing in abundance is cryptomonads which during 2009
had a mean nearfield abundance level of 185,600 cells L compared to a 1992-2008 long-term mean of
127,400 cells L' (Mann-Whitney U test, p = 0.0186).
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Figure 2-21.  Time-series of survey mean total phytoplankton (top) and diatom (bottom) abundance (10°
cells L") in the nearfield in 2009 compared against the baseline range, baseline mean and post-diversion
mean.
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Patterns and trends assessed only by phytoplankton numerical abundance will not show changes in the
relative contribution of variously sized phytoplankton groups or species to total phytoplankton biomass
(expressed as pg phytoplankton carbon L™). A preliminary investigation of long-term patterns of
phytoplankton biomass since 1992 is presented here (Figure 2-22; Appendix C Slides 20-28). For the
nearfield, based on the findings that there has been a decline in diatoms since 2004 (Libby et al. 2009¢), the
abundance and biomass observed during the most recent five years (2005-2009) was compared to that
observed during the first 13 years of monitoring (1992-2004). These results are summarized in Table 2-2.

Table 2-2. Summary of nearfield phytoplankton biomass and abundance changes in recent years (2005
—2009) compared to 1992-2004. Comparisons made using Mann-Whitney test. Surface
nearfield observations used; typically n = 182 (1992-2004) and n = 60 (2005-2009);

statistically significant (p< 0.05) differences in red (increase) or blue (decline).

1992 - 2004 | 2005 - 2009 | change | P value
Biomass (ug C L™
Total phytoplankton 95 73 -22( 0.0023
Diatoms 57 43 -14 |1 0.0008
Dinoflagellates 14 4 -10| 0.0040
Abundance (cells L™)
Total phytoplankton | 1.384 x 10°| 1.334 x 10° 0.6699
Diatoms 273,600 167,300 | - 106,300 | < 0.0001
Dinoflagellates 18,700 34,000 15,300 | 0.0297
Cell Carbon (pg C cell™)
Total phytoplankton 67 41 -26 | <0.0001
Diatoms 268 435 167 | 0.0003
Dinoflagellates 1,812 570 - 1,242 | <0.0001

At the community level, total phytoplankton carbon during 2005-2009 (73 g C L™") was about 75% of that
observed during 1992-2004 (95 ug C L™'; Table 2-2). The majority of this decline was due to a change in
mean diatom biomass from 57 pug C L™ (1992-2004) to 43 pg C L™ (2005-2009). A large decline in
dinoflagellate biomass also contributed to the overall decline (14 to 4 g C L™).

There was a shift toward bigger diatoms (more carbon per cell) and lighter dinoflagelates and other cells
making up the total. Even though total diatom biomass has decreased over this period, diatoms appear to
have increased their mean carbon per cell content. Recent summer increases in Dactyliosolen fragilissimus
and other large diatoms (Guinardia flaccida, for example) appear to be driving the long-term increase in
mean diatom cellular carbon. For dinoflagellates and total phytoplankton there has been a decline in carbon
per cell between the two periods examined. The decline in dinoflagellate cellular carbon was driven by a
decline in large dinoflagellates (Ceratium spp.) and a recent increase in smaller species (small Gymnodinium
spp. and Heterocapsa rotundatum). The dominance of winter-spring phytoplankton by small cells
(Phaeocystis) appears to be driving the decline in mean phytoplankton size. Other factors contributing to
this decrease in total phytoplankton carbon per cell include the recent increase in microflagellate and
cryptomonads abundances.
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Figure 2-22.  Long-term trend (1992- 2009) in (a) total phytoplankton biomass (ug L™), (b) total

phytoplankton average carbon per cell (pg C cell), (c) diatom biomass (ug L), and (d)
diatom average carbon per cell (pg C cell™") derived from time series analysis. Long-term
mean levels are also shown (dotted lines). Data from stations N04, N16 and N18, only.
Note difference in axes for mean biomass.

There have been apparent shifts within the phytoplankton community assemblage that are associated with
long-term, regional trends. It appears that diatoms and dinoflagellates have generally declined in abundance
while microflagellates and Phaeocystis have increased. This change has driven the overall phytoplankton
biomass (ug C L) lower, but at the same time there have been community changes towards larger diatoms
and smaller dinoflagellates. There is no plausible outfall-related link or causality associated with these shifts
as they occur over large spatial scales; such broad patterns appear instead to be related to regional ecosystem
dynamics in the Gulf of Maine.

The abundance and structure patterns of the zooplankton community in Massachusetts and Cape Cod Bays
are generally similar from year to year. The zooplankton community assemblage in the bays is dominated
throughout the year by copepod nauplii, Oithona similis, and Pseudocalanus spp. Subdominant are other
copepods such as Calanus finmarchicus, Paracalanus parvus, Centropages typicus and C. hamatus. There
are sporadic pulses of various meroplankters such as bivalve and gastropod veligers, barnacle nauplii, and
polychaete larvae (Libby et al. 2007). Zooplankton abundance from 1992-2009 gave seasonal patterns of
abundance that generally followed temperature, with low levels in winter, rising through spring to maximum
summer levels, declining in the fall. The most apparent change has been the lower overall abundance of
zooplankton since 2001 throughout the bays (Figure 2-23).
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Figure 2-23.  Time series of total zooplankton abundance by area (1992- 2009).

A time series analysis (following methods of Broekhuizen and McKenzie 1995) was applied to the nearfield
zooplankton dataset to examine this apparent decline (Libby et al. 2009b). The analysis determined that
there had been a substantial long-term decline in the nearfield means for the abundance of total zooplankton
from 2001-2006 due to a long-term decline in total copepods. Total copepod abundance rebounded
somewhat in 2007-2009 (Figure 2-24). This increase in zooplankton/copepod abundance appears to have
been led by a rebound in Oithona abundance to above the long-term mean level since 2007 (Appendix C
Slide 45). Nearfield Calanus finmarchicus attained elevated abundance during 2009 (Appendix C Slide 46),
featuring the greatest nearfield average abundance levels recorded during 18 years of monitoring. It is
unclear why total zooplankton and copepod abundances were lower in 2001-2006 compared to baseline. The
timing of this decline coincides with the diversion of the outfall, but there are no plausible cause and effect
relationships between the outfall diversion and apparent region-wide decline. Several possibilities for such
declines have emerged from recent studies in the Gulf of Maine and shelf waters of the western North
Atlantic which hypothesize that the changes may relate to large-scale climatic phenomena such as freshening
of the Northwest Atlantic due to Arctic melting (Green and Pershing 2007; Pershing et al. 2005).
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3 SUMMARY

In general, water column conditions in 2009 exhibited typical seasonal patterns observed over the course of
the monitoring program (1992-2008). Mean annual and mean seasonal values of many variables for 2009
were close to the averages over all years including: winds, temperature, stratification, nutrients,
phytoplankton biomass, dissolved oxygen and zooplankton abundance and community structure. The most
notable differences in 2009 resulted from the cold, stormy conditions and associated high river flow during
the summer. These conditions resulted in less upwelling than normal, rough sea conditions/sporadic mixing,
and large pulses of freshwater. The stormier trend for 2009 was also evident in late fall during the seasonal
turnover of the water column. In Massachusetts Bay, these physical conditions led to variable nutrient
concentrations from survey to survey in the nearfield (late summer/fall) as well as changes in bottom water
DO concentrations (increases in late June and October)that likely precluded low bottom water DO levels
(<6.0 mg L") from occurring in fall 2009. In the western Gulf of Maine (Portsmouth to Cape Ann), the
stormy conditions in June and early July may have contributed to the development of the Alexandrium “red
tide” event observed by WHOI scientists on July 10, 2009. Overall, the water column characteristics in 2009
were comparable to those observed during the baseline and post-diversion periods.

There are clear changes in the nutrient regimes following diversion — NH4 has dramatically decreased in
Boston Harbor (by ~80%) and nearby coastal waters while increasing less in the nearfield (the changes are
consistent with model predictions made during the planning process). The signature levels of NH, in the
plume are generally confined to an area within 10-20 km of the outfall. The higher nearfield NH,4
concentrations, however, have not translated directly into changes in biomass, whether measured as
chlorophyll, POC, or phytoplankton abundance. There has been an increase in winter/spring biomass in the
nearfield and most of Massachusetts Bay but this is due to larger scale regional trends in phytoplankton
bloom dynamics.

In Boston Harbor, there have been significant decreases in seasonal chlorophyll and POC commensurate
with the decreases in dissolved inorganic nutrients (Taylor 2006). The harbor has also exhibited patterns in
these parameters (and productivity) that are comparable to those observed in the nearfield and other
temperate coastal waters (Libby et al. 2009b). The spatial pattern of summer decreases in chlorophyll and
POC in Boston Harbor and nearby coastal waters along the South Shore is as predicted based on the removal
of the source of the surface water nutrients that supported the high biomass during the baseline (Signell et al.
1996). Although there appears to be a direct relationship between decreases in nutrients and biomass in
Boston Harbor, for the bay the association between observed changes is not as clear.

The BACT statistical analyses based on stations and groups of stations indicates that the only differences
(P<0.05) between baseline and post-diversion were for NH, concentrations, which were higher at station
N18 and the inner nearfield compared to control stations or groups of stations in the outer nearfield, MB
offshore, and Cape Cod Bay during all three seasons (Libby et al. 2009b). This indicates that even though
there has been an increase in NH, at these stations close to the bay outfall, there have not been any changes
in chlorophyll or POC in this “impacted” area compared to “control” stations or regions of the bays that are 5
to >50 km distant. There certainly have been changes in these parameters post-diversion, but they have
changed in both "impact" and "control" areas and thus appear to be associated with regional processes.

Analyses of long-term phytoplankton trends indicate that there have been shifts within the phytoplankton
community assemblage since diversion to the bay outfall. Diatoms and dinoflagellates have generally
declined, while microflagellates and Phaeocystis have had relative increases. Similar changes have also
been observed in overall phytoplankton biomass and levels of carbon per cell. Total phytoplankton, diatom
and dinoflagellate biomass (ug C L) has decreased in recent years as has the levels of carbon per cell for
dinoflagellates and total phytoplankton. The decrease in carbon per cell for dinoflagellates has been due to a
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decrease in large cell species such as Ceratium spp. and a commensurate increase in dominance of smaller
cell species (small Gymnodinium spp. and Heterocapsa rotundatum). The overall decrease in phytoplankton
carbon per cell can be attributed to the dominance of the winter/spring blooms by the small celled
Phaeocystis and the recent increase in microflagellate and cryptomonads abundances. There is no outfall-
related link or causality associated with these shifts as many of the changes are occurring over larger spatial
scales and, as with the changes in Phaeocystis (regional blooms), appear to be related broader regional
ecosystem dynamics in the Gulf of Maine.

In 2009, the Alexandrium “bloom” was minor compared to the major red tides of 2005, 2006, and 2008; the
maximum cell abundance in Massachusetts Bay only reached 150 cells L. However, the major red tides of
2005, 2006, and 2008 garnered much publicity due to their novelty (lack of blooms in Massachusetts Bay)
and impact on local shellfishing economies. During the first 13 years of the monitoring program,
Alexandrium abundance had been low (0-100 cells I'"), but in recent years it has reached bloom levels of
>1,000 to 60,000 cells L™ and led to widespread toxicity closures in the bay three out of the last five years.
Again there are no indications of a regional outfall effect on the A. fundyense blooms. A modeling analysis
estimated that if an outfall effect had occurred, it would have been minor (Anderson et al. 2007).
Alexandrium blooms may become regular, annual events in the western Gulf of Maine and Massachusetts
Bay.

There was a general decline in total zooplankton (mainly copepods) in the nearfield and other Massachusetts
Bay areas from 2001 to 2006 followed by a rebound in 2007-2009. The timing of the decline coincides with
the diversion of the outfall, but there are no plausible linkages between the diversion and apparent baywide
decline, nor the subsequent increase. The values in 1999 and 2000 were anomalously high. Abundance can
change in response to a variety of biological processes (changes in grazing pressure top-down or bottom-up;
e.g. Frank et al. 2005) or regional physical processes (i.e. different water masses, NAO or freshening of the
Northwest Atlantic due to Arctic melting, etc.; e.g. Turner et al. 2006, Jiang et al. 2007, and Pershing et al.
2005).

The nitrogen levels in Massachusetts Bay (including the nearfield) vary considerably over space and time
and are governed by regional factors. These factors include different loadings to the system, changes in
seasonal biological patterns or circulation shifts related to larger scale processes. As predicted, there has
been an increase in NH,4 (about one micro molar) in the nearfield relative to the baseline and also relative to
the regional background concentrations. This local relative increase in ammonium has not had adverse
effects either near or distant from the discharge. Meanwhile, the corresponding decrease in nutrient loadings
to Boston Harbor has resulted in significant improvements in water quality (Taylor 2006).
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A. Physical Characterization

Massachusetts Bay physics, 2009.
Rocky Geyer, Woods Hole Oceanographic Institution

A.l. Overview

The most notable characteristic of the physical regime in 2009 was cold, stormy conditions during June and
July, resulting in less upwelling than normal, rough sea conditions, and pulses of freshwater input. The late fall
was also stormier than normal. Otherwise the conditions were in the normal range.

A2 Forcing variables

Air temperature (slide 3) was below normal during June and July, due to the low pressure systems that hit the
system during June and July.

River flow (slide 4) was normal during January and February, but the spring freshet was essentially absent in
2009, so the months of March-May were dryer than normal. Two major storms during the summer, one in late
June and the other in late July, caused higher than normal run-off during the summer. 2009 had the wettest
summer of the monitoring program, based on the flow of the Merrimack and Charles Rivers. The fall was back
to normal for the Merrimack and higher than normal for the Charles. 2009 continues the trend of wetter than
normal conditions that has been continuing since 2004 (slide 6).

Winds showed the influence of the summertime storms, resulting in net downwelling conditions during June and
weak upwelling in July (slide 7). The anomalous wind conditions are mainly due to two storms, one around
June 23 and the other around July 24 (slide 14). Strong downwelling occurred during the fall due to stormier
than normal conditions from late October to the end of the year (slide 15).

Waves were larger than normal during June and July and from October to December (slide 8), due to the
storminess during those time periods.

A3, Water properties

Surface water temperature did not show significant anomalies from the MWRA surveys (slide 11), but the
continuous NOAA data (slide 12) showed a significant drop in late June and late July due to the passage of low
pressure systems. Water temperature was warmer than normal during the fall, but otherwise normal.

Salinity was significantly lower than average during June and July (slide 18), due to the freshwater inflow. The
lowest salinity happened between the MWRA cruises, but it was recorded by the NOAA buoy, reaching the
lowest value (27.5 psu) that has been observed during the monitoring program.

Stratification was slightly higher than average during the summer due to the freshwater inflow.

Dissolved oxygen got down to near 7 mg/l during September in the nearfield bottom water (slide 23), but it
came back up in October, due to an early storm event. The downwelling conditions during the summer resulted
in lower DO conditions than normal, but the storminess of the fall kept the DO from getting close to 6 mg/I.
The observed values (average Sept-Nov) were consistent with the regression model (slide 24), which indicated
that the temperature effect (due to downwelling conditions) should have resulted in lower than normal DO, but
the salinity effect produced higher DO values. Note that this model does not take into account the intensity of
fall storms, which is also a potentially important variable affecting the fall DO values.
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Water temperature: time series 10
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Water temperature: seasonal pattern from buoy data
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Summer winds and surface water temperature
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Water salinity: time series 16
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..ditto, overlaying buoy data 18
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Water stratification: seasonal pattern
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Dissolved Oxygen: seasonal pattern
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B. Water Quality

Water quality and program overview, 2009.
Scott Libby, Battelle

Over the course of the HOM program, a general sequence of water quality events has emerged from the data
collected in Massachusetts and Cape Cod Bays. The trends are evident even though the timing and year-to-year
manifestations of these events are variable. Typically a winter/spring phytoplankton bloom occurs as light
becomes more available, temperatures increase, and nutrients are readily available. In recent years, the
winter/spring diatom bloom has been typically followed by a bloom of Phaeocystis pouchetii in April. Late in
the spring, the water column transitions from well-mixed to stratified conditions. This cuts off the nutrient
supply to surface waters and terminates the spring bloom. The summer is generally a period of strong
stratification, depleted surface water nutrients, and a relatively stable mixed-assemblage phytoplankton
community. In the fall, as temperatures cool, stratification deteriorates and nutrients are again supplied to
surface waters. This transition often contributes to the development of a fall phytoplankton bloom. Dissolved
oxygen concentrations are lowest in the bottom waters prior to the fall overturn of the water column — usually in
October. By late fall or early winter, the water column becomes well mixed and resets to winter conditions.
This sequence is evident every year. The major features and differences from the baseline in 2009 are discussed
below.

B.1. Chronological pattern

In early and late February nutrient concentrations were elevated across Massachusetts Bay for nitrate (NO3),
silicate (SiOy), and phosphate (PO,) (Slides 4 and 5). Levels in Cape Cod Bay were slightly lower than those
in Massachusetts Bay, but higher than typically observed for February and possibly due to the lack of a winter
diatom bloom the Cape Cod Bay (Slide 7). Instead of diatoms, there was a minor bloom of Phaeocystis in Cape
Cod Bay in late February that exhibited the maximum survey mean areal fluorescence in the bay for 2009.
There was a sharp decline in NOs and PO4 by April throughout the bays, while SiO4 concentrations remained
elevated with survey mean concentrations in the nearfield remaining around 9 uM into May. The decrease in
NO; was coincident with a large Phaeocystis bloom observed across the bay in April (Slides 7-10). The bloom
was strongest in the offshore areas of Massachusetts Bay with abundances of 5 million cells L™ at stations in the
nearfield and offshore areas and a maximum abundance of ~15 million cells L™ at mid-depth at station F26
along the northern boundary (Slide 18). The high abundances of Phaeocystis resulted in annual peak survey
mean concentrations of chlorophyll and POC at the offshore and northern boundary stations. The annual peak
in nearfield chlorophyll concentrations occurred in March when dinoflagellate and microflagellate abundances
were relatively high and preceded or occurred during the onset of the Phaeocystis bloom. The spring peak in
POC concentrations in the nearfield was observed in May, which is odd in that phytoplankton abundances were
relatively low.

In May, Phaeocystis was no longer present in the nearfield. As in 2005 — 2008, a bloom of the toxic
dinoflagellates species Alexandrium fundyense was occurring in the Gulf of Maine in May 2009. As in 2005,
2006 and 2008, an early May northeasterly storm brought the bloom into the bay, but unlike previous years this
storm was relatively weak and no subsequent storm events occurred in May 2009 (see Phys-O slide 13). Model
forecasts and early toxicity to the north led MWRA to request additional sampling for Alexandrium during the
May 12, 2009 nearfield survey. A maximum Alexandrium abundance of 150 cells L™ was measured in the
surface waters at station N 18, which triggered initiation of the Alexandrium Rapid Response Surveys (Libby
2006). A series of three rapid response surveys were conducted on May 20, May 27, and June 8. Alexandrium
abundances remained relatively low during these surveys and by June 8 the bloom was essentially over in the
bay (Slide 16).
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The summer of 2009 was one of the wettest summers on record with major storm/rainfall events from late June
into August. River flows for the July to September period were the highest observed over the course of the
MWRA monitoring program (see Phys-O Slide 4). Coincident with these meteorological events there was an
overall increase in nutrient concentrations throughout the bays from June to August. There was also a summer
diatom bloom dominated by Skeletonema and also comprised of other diatoms such as Dactyliosolen
fragilissimus in Boston Harbor, coastal waters, and Cape Cod Bay (Slides 7 and 10). Additionally, bottom
water dissolved oxygen (DO) concentrations declined over the April to August time period, though in the
nearfield there was an increase in bottom DO levels from June to July that may have been associated with the
physical dynamics of the system associated with the storms, riverine inputs, or pervasive downwelling favorable
conditions. The summer increase in bottom water DO levels that was observed in the nearfield, and presumably
throughout the region since DO dynamics are regional physical forcing mechanisms, likely prevented very low
annual mean bottom water DO levels from being reached in the fall (Slide 13).

In the fall of 2009, blooms of diatoms Skeletonema and Dactyliosolen (and others) were observed in the
nearfield in late September and further offshore (offshore and northern boundary areas) in October (Slides 8-9).
These were the same species that dominated the August diatom bloom at the inshore harbor, coastal and Cape
Cod Bay areas. The fall diatom blooms at these offshore areas resulted in secondary peaks in chlorophyll and
POC concentrations. Nutrient concentrations were quite variable in the nearfield during the fall and likely due
to the frequency of strong fall storms in 2009. We did not observe similar variability at the farfield areas due to
limited sampling (August and October). Bottom water DO concentrations reached a minimum in late
September of 7.23 mg L' (Slide 11). By October, nearfield, as well as at other inshore areas, DO levels had
increased to >8 mg L™ while DO levels at the offshore and northern boundary stations remained lower. The
2009 bottom water minimum in the nearfield was comparable to the baseline and post-diversion mean minima
(Slide 13). In Stellwagen Basin, the 2009 minimum DO concentration was slightly lower than the baseline and
post-diversion means. Also note that the June nearfield bottom water DO concentration was below these
previous minima while the October 2009 DO levels were well above previous levels. It is expected that these
valleys (June) and peaks (October) in nearfield bottom water DO levels are related to physical forcing dynamics
— wet summer and stormy fall.

In 2009, seasonal and annual chlorophyll levels were well below threshold values (Slide 12) and although 2009
bottom water DO levels were quite low in Stellwagen Basin compared to baseline and post-diversion means,
both nearfield and Stellwagen DO levels were well above the DO thresholds. The only threshold exceedance in
2009 was for Alexandrium, which reached abundances of 151 cells L™ in the nearfield, which is just over the
100 cells L™ threshold (Slide 14). Overall the 2009 Alexandrium bloom in Massachusetts Bay was small, short
duration, and led to limited shellfishing closures (both spatially and also of short duration). Phaeocystis
abundance in the nearfield in April 2009 reached a sample maximum of 2.8 million cells L, but the seasonal
mean was only 402,000 cells L™ which is well below the winter/spring threshold — it was the tenth year in a row
that a bloom has been observed in the bays (Slide 17). Phaeocystis blooms appear to be more of a normal
occurrence for the system than was thought following the baseline monitoring period.

In comparison to baseline conditions, the changes in the nutrient regimes are quite clear and consistent with
model predictions. Ammonium (NH4) has dramatically decreased in Boston Harbor (>80%) and nearby coastal
waters while initially increasing to a lesser degree (~1 uM) in the nearfield (Slide 21). Since 2003 there has
been an overall decrease in annual mean NH, concentrations across the bay including the nearfield. Current
annual mean levels in the bay are comparable to those observed in the 1990’s.

In Boston Harbor, the dramatic decrease in NH4 has been concurrent with significant decreases in other
nutrients, chlorophyll, and POC, and an increase in bottom water dissolved oxygen (Taylor 2006). In the
nearfield, regression analysis showed the moderate increase in NH4 concentrations was most apparent in
summer and also POC increased in the nearfield in the summer (Libby et al. 2008). There has also been a trend
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of higher winter/spring chlorophyll in most of Massachusetts Bay, including the nearfield (Slides 24-27 and 31-
32), but this appears to be related to regional processes governing the consistent annual blooms of Phaeocystis
in March-April since 2000.

B.2. Statistical tests

"Before-After, Control-Impact" (BACI) statistical analyses put the changes in POC and NH4 in context. BACI
analysis found that only NH4 concentrations changed between the impact (inner nearfield) and control (outer
nearfield, Massachusetts Bay offshore, and Cape Cod Bay) areas (Libby et al. 2008). NH, was higher in the
inner nearfield. The analyses did not find statistically notable changes in chlorophyll or POC in this “impact”
area compared to “control” regions of the bays that are 5 to >50 km distant, supporting the understanding that
observed changes in phytoplankton biomass are associated with regional processes.

The BACI analyses were rerun including the 2009 data for a set of stations rather than groups of stations (Slide
33). The stations selected for the analysis are a subset of those proposed by MWRA for AMP revision. Station
N18 nearest the outfall was designated as the “impacted” site and a range of controls were compared for the
harbor (F23), northeast (NO4 and F22), and 15 km (F13), 30 km (F06) and >50 km (FO1 and F02) to the south.
The results were essentially the same. The only statistical differences (p<0.05) noted in the baseline vs. post-
diversion comparison for each station were for NH,, which increased at station N18 (winter/spring and summer)
and decreased at stations F23 (all seasons). The BACI comparisons between station N18 and the other stations
yielded increases in NHy for nearly all of the station and season comparisons. None of the other BACI results
showed any changes between stations for NO;, Si04, POC, or areal fluorescence.

As predicted, there has been an increase in NHy in the nearfield relative to the baseline and also relative to the
regional background concentrations. The signature levels of NHy in the effluent plume are generally confined
to an area within 10-20 km of the outfall. Statistical analyses indicate that even though there are apparent trends
of increasing chlorophyll and POC in the bays during the winter/spring that these changes are not related to the
outfall, but are rather baywide trends associated with processes governing the greater western Gulf of Maine
(i.e. consistent annual occurrence of the Phaeocystis blooms).
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2009 Water Column
Overview

MWRA Annual Technical Meeting
April 29, 2010

Scott Libby

Presentation Overview

+ 2009 nutrient, chlorophyll, and DO results

—“Typical” trends generally observed in these parameters

— Major events in 2009
- Phaeocystis bloom (again.....)
- Alexandrium bloom (again.....)

» Compare post transfer years and baseline

—Have nutrients changed near the outfall or in the farfield? Yes.

— Has phytoplankton biomass changed? Yes, but regionally.

— Has dissolved oxygen changed? No.

o 3
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2009 Nutrients across regions 4
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2009 Biomass across regions 6
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2009 Phytoplankton in the Nearfield 8
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2009 Phytoplankton in Boston Harbor 10
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2009 Dissolved Oxygen 11
in bottom waters across regions
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Threshold Values for DO and Chlorophyll 12
Parameter Time Period | Caution Level | Warning Level Background 2009
Bottom Water | Survey Mean < 6.5 mg/l < 6.0 mg/l Nearfield 5.75
DO in June- (unless (unless mg/l 7.23 mg/l
. background background Stellwagen 6.2 6.79 mg/I
concentration October
lower) lower) mg/I
0, (o)
Bottom Water | Survey Mean < 80% < 75% Nearfield - 64.3% o
DO in June- (unless (unless Stellwagen - 77.5%
0,
o4saturation October background background 66.3% 71.8%
lower) lower)
Bottom Water June to
DO 0.037 0.049 0.010
. October
depletion rate
Annual 118 mg/m?2 158 mg/m?2 - 52 mg/m?2
Winter/spring | 238 mg/m? -- -- 63 mg/m?
Chlorophyll
Summer 93 mg/m? -- -- 43 mg/m?
Autumn 212 mg/m? - - 49 mg/m?
No exceedances for DO or Chlorophyll in 2009
. - 13
Bottom DO: Post vs. baseline
Nearfield Stellwagen
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Threshold Values for Nuisance Species (cellslL) 14
Parameter Phaeocystis pouchetii Pseudo-nitzschia Alexandrium
Season or Winter/ Winter/ Any near-
sample unit spring Summer | Autumn | spring | Summer | Autumn | field sample
Caution Level | 2,020,000 357 2,540 | 21,000 | 43,100 | 24,700 100
2001 186,400 0 0| 6,620 163 6,030 35
2002 269,000 | 14,900 0 896 234 3,210 8
2003 482,000 1,700 0 275 84 12,100 7
2004 2,870,000 | 164,400 0 11 380 660 5
2005 438,500 517 0 147 3,320 45 36,831
2006 383,000 | 18,000 0 0 0 222 5,668
2007 2,150,000 0 0 78 0 0 7
2008 1,980,000 0 0 540 171 60,430
2009 402,000 0t 0 0 1,460 151
* No Phaeocystis or Pseudonitzschia exceedance in 2009
» Exceedance of Alexandrium threshold in May 2009
15

Nearfield Alexandrium Abundance

100000

10000 +

1000

100

10

Alexandrium per sample (cells/l +1 )
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2009 Alexandrium bloom in Mass Bay 16
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Phaeocystis pouchetii blooms 1992-2009 17
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April 2009 Phaeocystis Distribution 18
_ » Bloom first observed in Cape
i > Cod Bay at station FO2 in
| ® " February (1.5 million cells/L)
- e » Observed throughout the bays
W = (13 stations)
(C.D|. © - Highest levels (>10 million
B R, © cells/L) observed to the
" ) northeast at mid-depth (F26 and
g L F27)
e « With a maximum of ~15 million
cells/L at F26 at mid-depth
= © | Similar to many of the past
2009 + Phaeocystis blooms — regional
-' (bays and western Gulf of
Maine), but with an early bloom
in CCB
19
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- Nutrients 2009 Summary 20

— High concentrations in February and March with sharp decline (except for SiO,)
coincident with the Phaeocystis bloom in MA Bay in April

— Slightly lower NO, and SiO, in CCB in February and a sharp decrease in SiO, in
February, but slight decline in this nutrient from late February to April in CCB

(earlier occurrence of Phaeocystis bloom)
— Slight increase from June to August — perhaps related to stormy summer

* Chlorophyll
— Slightly elevated in CBB in March associated with early Phaeocystis bloom

— Annual peak survey means for chlorophyll and POC in April in the offshore areas of
MA Bay due to Phaeocystis bloom

— Highest concentrations associated with peak abundance in
boundary and offshore areas

— Increase in concentrations peaking during August diatom bloom observed in
coastal, harbor, and CCB areas

— Late fall increase in chlorophyll, POC, and diatoms in the nearfield and N. Boundary

* Dissolved Oxygen
— Slight increase in bottom water DO in July (related to high flow/storms?)
— Relatively high bottom water DO in 2009 with fall minimum of >7 mg/L in nearfield

Annual Mean Nutrients 21

16 +

* Post Diversion

— Large Decrease in 12
Boston Harbor (red)

— Decrease in
Coastal area (green)
— Initial doubling in
nearfield (black) %1
— Unchanged
elsewhere MB and CCB :
° UL s R RS @QQ’ S

b D B> H A & O O N

O H” H H HT O O T O D

o After 2003 FFFEF L EE T S
—8—Boston Harbor ~ =—#=—Coastal =—#==Nearfield =—de=N.Boundary =+ Cape CodBay

— Decrease across all areas
— Current nearfield levels comparable to 90’s

NH; (uM)

 Other nutrients: more interannual variability and no long-term trends

2009 Water column monitoring results Appendix page B-13



Appendix B November 2010

2009 Nutrients: Post vs. baseline (nearfield) 22
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Areal Chlorophyll: Post vs. Baseline 24
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Areal Chlorophyll: Post vs. Baseline 26
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28

BACI Statistical Analysis (1992-2008)

» Grouped stations
—“Impacted” area g

- Inner nearfield: N16, N18 & N20 o
— Control areas b

- Outer nearfield:
NO1, NO4, NO7 & N10

- MB Offshore: BN

F12, F17, F19 & F28 | s
- CCB: F01, F02 & F03 s
* Pre vs. Post comparisons | “Lnicl
« Comparisons of differences |ome .
between impacted and .“" A
control areas pre vs. post I e e B [

Spatial changes after outfall relocation
(2001-2009 minus baseline): NH,

A T

T Inner Nearfield 1 Inner Nearfield T Inner Nearfield

| Outer Nearfield, CCB, | MB Offshore
and MB Offshore

BACI analysis indicated increases (p<0.05) in NH, above baseline levels
in the Inner Nearfield compared to all three control areas for each season
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Spatial changes after outfall relocation 30
(2001-2009 minus baseline): NO4

PR Rl T

(|) OL 1 A “M NO3
T Inner Nearfield, T Inner Nearfield T Inner Nearfield,
Outer Nearfield, Outer Nearfield,
and MB Offshore and CCB

All groups trending in the same direction — no change (p>0.05) for
Inner Nearfield compared to the three control areas for any season

Spatial changes after outfall relocation 31
(2001-2009 minus baseline): Chlorophyll

= =

T Inner Nearfield,
Outer Nearfield,
and MB Offshore

All groups trending in the same direction — no change (p>0.05) for
Inner Nearfield compared to the three control areas for any season
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Spatial changes after outfall relocation 32

(2001-2009 minus baseline): POC

e

T Inner Nearfield, 1 Inner Nearfield

Outer Nearfield

All groups trending in the same direction — no change (p>0.05) for
Inner Nearfield compared to the three control areas for any season

Updated BACI by stations (1992-2009) 33
* Ran analysis based on A R
proposed AMP revision PO
P ® GOMOOS-A
* Pre. vs. post station changes . O”
— Changes for NH, only (p<0.05) "“ "“Q
- Increase at N18 all seasons "’O Bl -
- Decrease at F23 all seasons 3 ,, m "
* BACI results PR
— Impact vs. Control sites ’ 7"";, O o
— Only changes were for NH, A% \
- Increase at N18 (pSOO5) relatlve ) Wnljer(jnlnmn. I\"!onlloring
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Post vs. Baseline Comparison - Summary 34

» “Typical” patterns observed in both time periods

* Nutrients
— NH, clearly increased in the nearfield. Regional increase in NO,
— Overall there has been decrease in NH, NO, SiO,, and PO, in Boston
Harbor and adjacent coastal waters ’
* Chlorophyll

— Trends in Nearfield compared to baseline
- Higher in winter/spring with March/April (Phaeocystis)
- Summer levels comparable
- Overall, fall levels have decreased compared to baseline
— Spring Phaeocystis blooms continue to be annual, regional events (00-09)
- Have changed April biomass levels in N. Boundary, Offshore and nearfield areas
— No change in Coastal, CCB or Boston Harbor areas.

* Dissolved Oxygen
— 2009 levels comparable to baseline in the nearfield and Stellwagen Basin

— No change in DO (interannual variability driven by regional processes)

. 35
Conclusions

* Changes in the nutrient regimes following diversion are
unambiguous.

— Ammonium has dramatically decreased in Boston Harbor (80%) and nearby
coastal waters while increasing to a lesser degree in the nearfield - consistent
with predictions.

— The signature levels of NH, in the plume are generally confined to an area
within 10-20 km of the outfall.

* In Boston Harbor, there have been concurrent, significant
decreases in other nutrients, chlorophyll, and POC.

* In the nearfield, there have been concurrent trends in
chlorophyll, POC, and phytoplankton, but....

— BACI analysis found that the only significant change between impact and
control stations was for NH, concentrations

— The analyses did not find statistically significant changes in chlorophyll

— Primarily because the changes have been regional in nature — occurring
throughout Massachusetts Bay and further offshore in the western Gulf of
Maine
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C. Plankton

Dave Borkman, University of Rhode Island
Jeff Turner, University of Massachusetts Dartmouth

Phytoplankton and zooplankton abundance and community composition were monitored during 2009, the 18™
year of MWRA’s comprehensive outfall monitoring program. Two nearfield stations were sampled 12 times
per year, and an additional 13 farfield stations were sampled six times per year.

C.1. Phytoplankton

At each plankton station, phytoplankton were sampled at two depths: near-surface and chlorophyll maximum
(or mid-depth). Part of the sample was preserved in Lugols, the rest was 20-um-screened to concentrate larger
cells and then preserved in formalin. Over the year, 204 whole-water samples and 204 screened-water samples
were collected. In the lab, the samples were concentrated by gravity, and then counted using phase contrast
light microscopy (250X and 500X).

The 2009 phytoplankton annual cycle was bimodal with winter-spring and late summer abundance peaks: a
Phaeocystis pouchetii bloom during April (but February in Cape Cod Bay; Slide 6) and a Skeletonema-
dominated summer diatom bloom during August (Boston Harbor & Cape Cod Bay; Slides 5-6) through October
(Offshore & Boundary regions; Slide 4). The 2009 Phaeocystis bloom marked the 10" year running that a
bloom of >10° cells L™ was detected, and marks the 12" of 18 years of monitoring that Phaeocystis dominated
the winter-spring phytoplankton (Slide 15). However, the 2009 Phaeocystis bloom was primarily an offshore
event, with maximum Phaeocystis abundance detected in the Offshore (5.4 x 10° cells L") and Boundary (14.9
x 10° cells L") regions. In contrast, the maximum 2009 Phaeocystis observation in the Nearfield was 2.8 x 10°
cells L. The gradient from greatest Phaeocystis abundance offshore to lowest abundance in the Coastal and
Harbor regions suggests an offshore origin for the 2009 Phaeocystis bloom. In addition, the timing of the 2009
Phaeocystis bloom was regionally variable, with a February peak in Cape Cod Bay and an April peak in all
other regions.

While 2009 diatom abundance remained below baseline mean levels through most of the year, a fall diatom
bloom that reached a maximum of 2.5 x 10° cells L' in the Nearfield on 30 September 2009 was an important
feature of the 2009 phytoplankton annual cycle (Slides 3 and 11). This diatom bloom was dominated by
Skeletonema spp. (formerly identified as Skeletonema costatum; see Zingone et al. 2005; Kooistra et al. 2008)
which reached a maximum of 2.2 x 10° cells L™ in the Nearfield on 30 September 2009. The summer
Skeletonema-dominated centric diatom bloom was region-wide, with peaks of 353,000 cells L™ (Coastal region)
to 2.48 x 10° cells L (Nearfield region). The timing of the summer/fall bloom varied from an August peak
(Cape Cod Bay and Boston Harbor) to an October peak in the Offshore and Boundary regions and Coastal
regions. The summer/fall diatom bloom, while Skeletonema-dominated, was also comprised of elevated
abundance of other diatoms such as Dactyliosolen fragilissimus (179,000 cells L™ in the Nearfield during late
September), Leptocylindrus danicus (66,000 cells L™ in the Nearfield during late September) and Guinardia
delicatula, Guinardia flaccida and Cerataulina pelagica which were each present at ca. 1,000 cells L™ during
the 2009 diatom bloom.

Other notable features of the 2009 phytoplankton cycle were elevated abundance, relative to baseline levels, of
microflagellates and cryptomonads during March 2009 (Slides 9-10). A similar pattern of increased
microflagellate and cryptomonad abundance during February and March was noted during 2008. One possible
mechanism for this may be an increase in single-celled (rather than colonial) Phaeocystis cells that could be
inadvertently classified as microflagellates.
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Dinoflagellates had below baseline mean abundance levels during most of 2009, continuing the recent pattern of
long-term reduced dinoflagellate abundance (Slide 12). However, October (41,000 cells L") and November
(47,000 cells L") Nearfield dinoflagellate abundance was elevated to levels that were approximately twice the
respective baseline mean levels. Much of this late 2009 dinoflagellate increase was due to elevated Ceratium
tripos abundance (Slide 13). Ceratium tripos was present at 2,000 — 2,500 cells L™ during October-November
2009 compared to a long-term mean abundance of 700 cells L™ during October and November. A single
nuisance or harmful algae bloom exceedance occurred in 2009. A maximum of 150 Alexandrium fundyense
cells L™ was recorded during May 2009 in the Nearfield (Slide 16). Of note is that low levels (2.5 cells L") of
Alexandrium were also detected in October of 2009. This marks the second year in a row that low levels of
Alexandrium were detected in autumn. The 2009 winter-spring Phaeocystis bloom did not exceed any warning
thresholds. Similarly, 2009 levels of Pseudo-nitzschia spp. remained at reduced levels (2009 maximum was
12,000 cells L) observed since 1998-1999 that did not exceed the warning threshold (Slide 17).

2009 phytoplankton patterns generally followed observed long-term trends, including the long-term decline in
diatom abundance (Slides 8 and 11). No changes in total phytoplankton abundance were detected, but changes
in phytoplankton functional groups have been occurring. For example, 2009 mean diatom abundance in the
Nearfield (131,400 cell L") was one-third the 1992-2008 mean of 368,100 cells L™ (Mann-Whitney U test, p =
0.0030). This long-term decline in diatom abundance has been ongoing since 2004, and is largely due to a
reduction in winter-spring diatom bloom magnitude during the last decade of Phaeocystis dominance of the
winter-spring bloom (Libby et al. 2009). Another group that appears to be increasing in abundance is
cryptomonads which during 2009 had a mean Nearfield abundance level of 185,600 cells L™ compared to a
1992-2008 long-term mean of 127,400 cells L™ (Mann-Whitney U test, p = 0.0186).

Patterns and trends assessed by only phytoplankton numerical abundance may obscure changes in the relative
contribution of variously sized phytoplankton groups or species to total phytoplankton biomass (expressed as pg
phytoplankton carbon L™). A preliminary investigation of long-term patterns of phytoplankton biomass during
1992-2009 was initiated (see Slides 20-28). For the Nearfield, the abundance and biomass observed during the
most recent five years (2005-2009) was compared to that observed during the first 13 years of monitoring
(1992-2004). These results are summarized in Table 1.

The following observations may be made from the comparison of 1992-2004 versus 2005-2009 biomass and
abundance (Table 1):

At the community level:

e Total phytoplankton carbon during 2005-2009 (73 g C L") was about 75% of that observed during
1992-2004 (95 ug C L™).

e Much of this decline was due to a change in mean diatom biomass from 57 ug C L™ (1992-2004) to 43
ug C L™ (2005-2009).

At the cellular level:

e Shifts in the mean cellular carbon of phytoplankton functional groups were detected: diatoms appear to
have increased their mean carbon per cell content while dinoflagellates and total phytoplankton have
declined in carbon per cell.

e Dominance of winter-spring phytoplankton by small cells (Phaeocystis) appears to be driving the
decline in mean phytoplankton size.

e Recent summer increases in Dactyliosolen fragilissimus and other large diatoms (Guinardia flaccida, for
example) appear to be driving the long-term increase in mean diatom cellular carbon.
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e The decline in dinoflagellate cellular carbon was driven by a decline in large dinoflagellates (Ceratium
spp.) and a recent increase in smaller species (small Gymnodinium spp. and Heterocapsa rotundatum).

Table 1. Summary of Nearfield phytoplankton biomass and abundance changes in recent years (2005 — 2009)
compared to 1992-2004. Comparisons made using Mann-Whitney test. Surface nearfield
observations used; typically n = 182 (1992-2004) and n = 60 (2005-2009). Blue denotes significant
decrease; red denotes significant increase.

1992 - 2004 2005 -2009 P value

Biomass (ug C L)

Total phytoplankton 95 73 0.0023
Diatoms 57 43 0.0008
Dinoflagellates 14 4 0.0040

Abundance (cells L™)
Total phytoplankton  1.384x 10°  1.334x10°  0.6699
Diatoms 273,600 167,300 < 0.0001

Dinoflagellates 18,700 34,000 0.0297

Cell Carbon (pg C cell™)
Total phytoplankton 67 41 <0.0001
Diatoms 268 435  0.0003
Dinoflagellates 1,812 570 <0.0001

C.2. Zooplankton

At each plankton station, zooplankton were sampled using vertical oblique net hauls (102 pm mesh) and
preserved in formalin. Over the year, 102 samples were collected. In the lab, the samples were counted using a
dissecting microscope.

The 2009 total zooplankton annual cycle in the nearfield featured reduced abundance of < 10,000 animals m™
during February through April followed by an increase to 55,000 to 81,000 animals m™ during May to August
and a return to < 40,000 animals m™ during September to November (Slides 30 and 35). As in previous years,
the zooplankton community was overwhelmingly dominated (90% numerically) by copepods. Meroplankton
(barnacle bivalves, gastropod veligers, polychaete larvae) and non-copepod zooplankton such as Evadne
nordmani and Oikopleura dioica, comprised >10% of total zooplankton during the months of May, August and
September. Zooplankton patterns appeared to be regionally coherent (Slides 31-33). Some minor regional
differences noted include elevated barnacle nauplii abundance during the spring in the Harbor and Coastal
regions and elevated (2 X mean) copepod abundance in the North Boundary region during August. In addition,
total zooplankton abundance had peak abundance during June in the Coastal, Boston Harbor and Cape Cod Bay
regions versus an August peak observed in the Offshore and North Boundary regions.

During 2009 Oithona similis continued to be the most abundant copepod, with Oithona representing about 33%
of total copepods numerically. The 2009 Oithona annual cycle featured reduced Oithona levels (100s to 2,400
m™) during February to April followed by an increase to 16,000 — 28,000 m™ during May through early
September and a return to Oithona levels of <10,000 m™ from late September through November 2009. The
summer Oithona levels were above the Oithona baseline mean levels (Slide 38).

Calanus finmarchicus comprised 0% (November) to 27% (March) of nearfield total zooplankton during 2009.
While not numerically dominant, Calanus is an important food resource for endangered Right Whales (Mayo &
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Marx 1990). 2009 Calanus finmarchicus abundance was elevated relative to the mean baseline level (Slide 39).
For example, Calanus abundance during May 2009 (14,378 animals m™) was 15-times the baseline May level
(960 animals m™) and June 2009 nearfield Calanus abundance (5,988 animals m™ ) was twice the baseline
mean level of 3,079 animals m™ (Slide 39). May 2009 Calanus abundance included the second greatest
individual Calanus abundance seen and the greatest Nearfield averaged Calanus abundance recorded in 18
years of monitoring. Also of note is that the 2009 Calanus annual cycle appears to continue the post-diversion
shift from double annual peaks (April & June, baseline) to a single May annual Calanus peak (post diversion).

Overall, 2009 zooplankton levels were near the long-term mean levels for most groups. This represents a return
to near mean levels during 2006-2009 following reduced zooplankton abundance during 2002-2005 (Slide 43).
This return to near mean levels appears to have been led by a rebound in copepod abundance, particularly an
increase in Oithona abundance to above the long-term mean level since 2007 (Slides 44-45). Nearfield Calanus
finmarchicus attained elevated abundance during 2009 (Slide 46), featuring the greatest nearfield average
abundance levels recorded during 18 years of monitoring.
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1
2009 Plankton Overview
David Borkman
URI Graduate School of Oceanography
Jeff Turner
UMass Dartmouth
2010 Science Meeting 29 April 2010

2009 Plankton Overview 2

» Phytoplankton and Zooplankton Monitoring
— 2 nearfield stations are visited 12 times/y
— 13 farfield stations are visited 6 times/y

— Phytoplankton sampled using nisken bottles at the surface and
at the mid-depth (or at chlorophyll-max). A portion is also
20-um screened for large rare dinoflagellates.

— Zooplankton sampled using vertical-oblique hauls of a
flow-metered 102-um mesh net
« Samples are enumerated for species and abundance

* Results are used to
— Test contingency plan thresholds
— Compare across years and regions
— Look for long-term patterns & trends
— Understand phytoplankton growth and predation
— Understand nuisance algal blooms
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Spring Phaeocystis bloom; autumn diatom bloom
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Regional phytoplankton composition patterns

* Microflagellate ‘baseline’ varies seasonally with temperature

» Phaeocystis
— 2009 was another “Phaeocystis year,” marking the 10t consecutive year with
samples having more than a million cells per liter. Before 2000, it was only seen
every 2 or 3 years.
— Blooms in April, but earlier (February) in Cape Cod Bay.
— Mainly Offshore and Boundary in 2009

* Diatoms
— Summer-Autumn bloom dominant in 2009
— August: Skeletonema and Dactyliosolen in Harbor & Cape Cod Bay
— September: Skeletonema and Dactyliosolen in Nearfield
— October: Skeletonema and Dactyliosolen in Offshore and Boundary

* Dinoflagellates
— Small cells (Gymnodinium, Heterocapsa) in spring
— Ceratium elevated in October and November

Total phytoplankton — nearfield

Baseline (pre-diversion) vs. post-diversion vs. 2009
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Microflagellates — nearfield
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Diatoms — nearfield
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10% cells L™

- : : 13
Ceratium (a subset of the previous slide) — nearfield
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14

2009 nearfield phytoplankton annual cycle
Total phytoplankton

— bimodal annual cycle
— elevated March & April (Phaeocystis)
— reduced July, August, October
— elevated in September (diatoms)
Microflagellates
— elevated in March
— reduced in July-August & October
Diatoms
— reduced Winter-Spring bloom (March)
— generally reduced except September (Skeletonema & Dactyliosolen)
Cryptophytes
— elevated during March
— reduced during November
Dinoflagellates
— reduced in Feb-May; near long-term mean in June-September
— elevated in October and November (Ceratium)
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Harmful and nuisance algae: Phaeocystis
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Pseudo-nitzschia continues to be low 17
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2009 nuisance and harmful species summary 18

» Another Phaeocystis bloom year (< 2007, 2008)

— Most abundant well offshore, peaking at 14.9 x 106 cells/L

— Only moderate levels in the nearfield (1.5 x 109 cells/L)
« Weak Alexandrium bloom

— Nearfield peaked at only 150 cells/L

— April-May bloom; but cells also present in October
 Pseudo-nitzschia continued to be low since 1999
— Peaked at 12,000 cells/L at the Boundary in October

2009 Water column monitoring results
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Phytoplankton cell biomass varies 5000-fold

19

Microflagellate
5 um sphere

<10 pg C/cell

Dactyliosolen fragilissimus
10-70 um diameter,

40-300 um length

332 pg Cleell

Ceratium tripos
60-90 um width,
200-400 um length
10,000 pg C/cell

50,000 pg C/cell max

Biomass/L = abundance/L * biomass/cell.
The latter term can be important
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Total phytoplankton
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Carbon per cell — total phytoplankton
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Carbon per cell — diatoms

Trend towards smaller cells (Gymnodinium, Heterocapsa)
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Biomass (carbon per liter) - diatoms 27
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Dinoflagellate biomass (ug cLY)
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* Fewer diatoms, more dinoflagellates.

biomass.

Table: Phytoplankton
abundance changes in
recent years (2005 —
2009) compared to
1992-2004.
Comparisons made
using Mann-Whitney
test. Surface nearfield
observations used;
typically n =182
(1992-2004) and n =
60 (2005-2009).

100,000

Phytoplankton Biomass and Abundance Summary 29
» Larger diatoms, but smaller dinoflagellates and total phytplankton.
— Smaller total phytoplankton, diatoms, and dinoflagellates.
* Decline in biomass of total phytoplankton dinoflagellates. Increase in diatom
* Dinoflagellate changes complex and reflect community composition changes
— Abundance increased (+80%); Biomass declined (-70%)
| 1992 - 2004 | 2005 - 2009 | change | P value
Biomass (g C L™
Total phytoplankton 95 73 -22 1 0.0023
Diatoms 57 43 -14 | 0.0008
Dinoflagellates 14 4 -10 | 0.0040
Abundance (cells L™
Total phytoplankton | 1.384 x 10°| 1.334 x 10° 0.6699
Diatoms 273,600 167,300 | - 106,300 [ < 0.0001
Dinoflagellates 18,700 34,000 15,300 | 0.0297
Cell Carbon (pg C cell™)
Total phytoplankton 67 41 -26 | <0.0001
Diatoms 268 435 167 | 0.0003
Dinoflagellates 1,812 570 - 1,242 | <0.0001
2009 Zooplank ?
Nearfield m Other (z00)

80,000 -

60,000 -

40,000 -

Abundance (# m?)

20,000 -

12-Feb
3-Mar

24-Mar
9-Apr
21-May
9-Jun
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22-Jul
18-Aug

2-Sep
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24-Oct

21-Nov
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H Copepod
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100,000
Nearfield m Other (zoo) 31
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g 3] N é o g N &
100,000
Boston Harbor = Other (zo0) 32
80,000 - ]
- Barnacle Larvae
£
RS 60,000 ——
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o
8
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s}
< —
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o | m— | |
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120,000
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35
Nearfield total zooplankton
300,000
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250,000 - 2009
- A=~ Post Mean
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£
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36
Nearfield copepods
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?
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v
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.. 37
Nearfield copepod nauplii
160,000
Baseline Range
Baseline Mean
—e—2009
120,000 A - A - Post Mean
@
£
v
@ 80,000 -
E
c
@
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. 38
Nearfield Oithona spp. total
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—&— 2009
60,000 - - A - Post Mean
@
£
v
© 40,000 -
E
c
©
20,000
0 ‘
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. . 39
Nearfield Calanus finmarchicus
16,000
Baseline Range
Baseline Mean
12,000 - o 2009
= A= Post Mean
£
0
@ 8,000 -
£
c
©
4,000
0
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2009 Zooplankton Annual Pattern 40
* Regional

— Generally regionally coherent
— Elevated Spring barnacle abundance in Harbor and Coastal regions
— Elevated (ca. 2X mean) copepod abundance North Boundary during August

* 2009 Zooplankton Annual Cycle
— June zooplankton peak in Cape Cod, Coastal and Harbor regions
— Oithona abundance reduced March and April; above baseline May-August
— August zooplankton peak in North Boundary and Offshore regions
— Increased total zooplankton led by increased Oithona abundance
— Calanus finnmarchicus
* Elevated May abundance (14,000 m3; 2™ greatest Nearfield avg)
+ Shift from bimodal (April and July peaks) to unimodal (May peak)?
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41
Total zooplankton long-term pattern, 1992-2009
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- return to near mean levels
2006-2009

Total copepods

- return to near mean levels
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D. Alexandrium Bloom

The 2009 Alexandrium bloom and the forecast for 2010
Don Anderson, Woods Hole Oceanographic Institution
Scott Libby, Battelle

In 2009 there was a moderate regional red tide in Massachusetts, with toxicity in Mass Bay and Boston Harbor.
This was consistent with predictions based on last year's data.

More noteworthy was a severe red tide in Maine — the worst in many years.

Cysts were very abundant later in the year, and closer than usual to Massachusetts Bay. Their later germination
may cause a severe bloom in 2010.

The 2009 red tide bloom in Massachusetts Bay
(and the forecast for 2010)

Donald M. Anderson
Woods Hole Oceanographic Institution

Scott Libby
Battelle
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Overview of MWRA’s Involvement 2

» Ambient Monitoring Plan and Contingency Plan call on
MWRA to support targeted Alexandrium monitoring

— Development of the Alexandrium Rapid Response Plan

* (Gain a better understanding of bloom dynamics and evaluate
the potential impact of MWRA outfall

— MWRA has conducted Alexandrium focused sampling the last

five years, often in conjunction with efforts of
WHOI/GOMTOX and PCCS

* So what happened in 2009?

— A moderate regional red tide in Massachusetts, with toxicity in
Mass Bay and Boston Harbor

— A severe red tide in Maine —the worst in many years.

The 2009 forecast

2009 Water column monitoring results Appendix page D-2
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Alexandrium Population Dynamics Model 4
Cyst Dist. (#/cm”2)
— Endogenous Clock Germ. rate (% / day)

Gorminution as & Function of Tempersturs for LightDark

) absan

— fiteo
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05 /
f \\ j £y .
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Cyst Coarts, Sechmert loyer 7
1347, Composke

Cyst Connts, Secment liyer A (long) top Tom

Cys2 Counts, Sediment yer 1om 6
P Cape Hatteras, October 1528, 2004 R Ocears OC416, September 21-29, 2005

Latructe {degh)
Latrucle {degh)

" onghse ey
A G Bt 3 12,205
{
Total cyst abundances (# of cysts x 10!6) and % change relative to 1997 for 7
the Gulf of Maine (GOM) and Bay of Fundy (BOF) subdomains
Year GOM % BOF % Total (GOM +
change change BOF)
GOM BOF
1997 domain comparison (top 1 cm)
1997 25 100 2.8 100 5.3
2004 21.6 878 6.7 235 28.3
2005 9.9 404 3.7 130 13.6
2006 7.8 317 24 82 10.2
2007 28.2 1147 4.0 140 32.2
2008 11.8 478 2.1 75 13.9
1997 dmparison (1-3cm)
1997 4.4 100 1.0 100 5.4
2004 20.4 461 5.5 576 25.9
2005 41.2 931 20.0 2100 61.2
2006 15.4 348 6.7 703 22.1
2007 21.5 486 5.2 548 26.7
2008 17.2 389 4.2 442 21.4
1997 domain comparison (0-3 cm)
1997 6.88 100 3.8 100 10.7
2004 42.0 610 12.2 321 54.1
2005 52.1 757 23.7 624 74.8
2006 23.2 337 9.1 240 32.3
2007 49.7 722 9.2 243 58.9
2008 29.0 421 6.3 167 35.3
3.38 x 10 M4 cm”2 BOF area =0.95x 10"14 cm”2

2009 Water column monitoring results
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8
Hydrodynamics Benthic Cyst Map 2009 ensemble seasonal bloom
& meteorology forecast
2004 Scenario 1
2005 k / Scenario 2
2006 , 2008 " Scenario 3
2007 /
Scenario 4
2008 '
Scenario 5
9
- . . . . . > s . . . -
{1 Febli /jz%? I i r"/ /j{?’ 20 g fj&?
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i L fl V
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a0 1 " ’
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‘| aad Lo
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10

Impact of cyst abundance on the next year’s bloom

Area-averaged Cyst Index
40 T T T

Cyst Index

[Cells/L]

0 1 I 1 1
2003 2004 2005 2008 2007 2008
Years of Model Ouput

News release: Potential for ‘moderately large’ red tide in 2009 11

/= News Release : Researchers Re tential for ‘Moderately Large’ Red

— .

g /¥ i http://wwv.whoiedu/page.do?pid=75458&tid=28280d=56567&ct=162 vii*gp X P

Fle Edt View Favorites Tools Help Lnks
[ — » »

4 SR |4 News Release : Researchers Report Poten... | % - B &= - SrPagev ({iTook v

Woons HelE OCEANOGRAPHIC INSTITUTIC

Home About WHOI Research People Ships & Technology Education News & Multimedia
Around WHOI Media F Online Image Galleries Video, Audio & Animation Interactives Podcasts & RSS
| News Release : Researchers Report Potential for ‘Moderately Large’ Red Tide Outbreak in 3 snareths (= Emat & oot P08 = 7 T
i the Gulf of Maine Region for 2009
Toxic bloom expected to be smaller than last year, but still significant
= Archive of News R
i | FOR MMEDIATE RELEASE April 22, 2009
WHOI in the News. (508) 289-3340 Media Relations Otfice
media@whoi edu 93 Water Street 145 #16
| Journalism Programs ‘ Woods Hole Oceanographic Institution

Obituaries

April 22, 2009 6}? ld 5
Source: Media Relstions 4 g( ﬁy'
The potential for an outbreak of the phenomenon commonly called “red tide” is expected to be *‘moderately large” this spring and summer, —y aaat P —y
according to researchers with the Woods Hole Oceanographic Institution (WHOI) and North Carolina State University (NCSU).

This advisory is based in part on a regional seafloor survey of quantiies of Alexandrium fundyense — the algae notorious for producing a

toxin that accumulates in clams, mussels, and other shellfish and can cause paralytic shellfish poisoning (PSP) in humans who consume ~4

them. The survey maps are used with computer models that simulate different scenarios of weather and oceanographic conditions to

indicate where and in what abundance the toxic cells might be expected in 2009. ANFLEITEN. EPTERLyeeE.

The researchers found concentrations of Alexandrium cysts — the dormant seed-like stage of the algae’s life ¢ycle — in the Gulf of Maine to
be 40 percent lower than the historically high levels observed prior to Iast year's bloom, but still higher than the level preceding a major
regional bloom in spring 2006 that closed shellfish beds from Canada to Massachusetts Bay.

Tha Alausnsrim eiinis han hasn sandisad aash fall sinss A4 an nar of sl raeasesh and snal rasnsne s aesinee findad b b
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The 2009 Alexandrium fundyense bloom 12

[J  This shows that the prediction was correct. The closures were moderate across most of Massachusetts Bay, but
not down into CCB similar to 2006; and the abundances were lower than 2006 higher than 2007
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2009 Alexandrium chronology 14

® March 24 — WHOI releases 2008 cyst data and predicts
“moderately large” red tide event for 2009 — comparable to
2006

®  April 17 — Nauset system PSP toxicity closure

® Late April - early May PSP toxicity observed in Maine and
NH

® May 7 — High PSP approaching closure levels at Star Island,
NH

® May 12t MWRA sampled for Alexandrium on regular
nearfield survey (150 cells/L at N18)

® MWRA conducted three ARRS surveys and a harbor survey
over the following 4 weeks

— Abundances reached a maximum of 356 cells/L in late May —
coincident with highest PSP toxicity

— Bloom ended by June 8™ survey

15

May 20, 2009
Alexandrium Cell Count, AF091, Surface, 05/20/09 - 05/20/09 Alexandrium Cell Count, AF091, 10 M, 05/20/09 - 05/20/09
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427
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May 29, 2009

Alexandrium Cell Count, AF092, Surface, 05/27/09 - 05/29/09
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Alexandrium abundance — MWRA nearfield area 18
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1. Overall, downwelling favorable winds in 2009 were not as strong as those in 2005 and 2007 20
2. Yet the cumulative index was falling during June-July period in 2009 (downwelling),
but rising in all the other years (upwelling) except in Mass Bay in 2007
30 20
EWGOMWGOM
ol /\_/‘
g 0
\15 ) 4 -10
jun |
20|
2005
-40 : : : ¢ 30
20 10
WGOMWGOM Mass Bay ——
5/ ——
& T 1 ‘
E’ - _5 Al
2
1 ot
-30 : : : 415 : : : :
01-Apr 01-May 01-Jun 01-Jul 01-Aug 01-Apr 01-May 01-Jun 01-Jul 01-Aug
21

Summary 2009

Alexandrium population dynamics model & cyst abundance were
good predictors of the magnitude of the 2009 bloom

— This follows the 2008 bloom forecast that was the first prediction of a major
regional red tide

* May/June 2009 bloom cell abundance in Mass Bay was relatively
low — lower than the 2005, 2006 and 2008 blooms, comparable to
2007

» Unlike 2007 the cells that entered Massachusetts Bay resulted in
PSP closures (comparable in extent to 2006)

» Early May winds transported the bloom into Massachusetts Bay,
but unlike previous years, there were not subsequent storms and
the bloom petered out

» Persistent northeast and east winds in June and July caused a
resurgence of toxicity in eastern and western Maine

2009 Water column monitoring results Appendix page D-11



Appendix D

November 2010

What about 2010?

2009 cyst abundance
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Cyst Counts, Sediment layer 1em
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Probable cause of cyst seedbed extension in western GOM —

24

red water near Portsmouth and Cape Ann

Surface Live Counts
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2.8 Cyst Counts, Sediment layer 1em
] a 38 4422 7257 aes 1820 RV Oceanus OCA458, October (15-25) 2009
v < : 55
k] § :
4264 € = M’“
iﬁ | P
x a= Toe
1 .
424 126 1 i
\ 3 Y i g , s "4
. 0o m am o704
2 . -
3 422 “
E‘ &=
.g 2 = 3435
Z 5, 3
: 3
4Q
]
a8 -
@25
415
Live Counts Minkmum = 0 a
Masdenun = 7257, Statlon #5 ™
ineS
Mao= 715, Station #560
415
n 708 706 704 oz o 698 7S 7 65 69 685 B8 675 67 665 66 655
West Longitude Longhuds {dag)
[ ee— — |
o 10 100 1000 300 O s 3 S0 o 200 30 400 0N 700 1600 2060
Alexandrium (cells/L) Cyst {gystiem’?)
45
-
%
O 44
o
-
[}
-
% 43
-
4z A ik
Maia1437, Leg #1 5t 019
Gt Count, St loyr Yom
Y O 08, Do (1218800
45
-
z
g 44
T i
7 e
T {
% a3
o

2007

42 () Mire0
Mee=203, Leg #1 5t #12] MuxeSOS1, Avea | 5t #68M-3 Max=1208, Area | St#STMmeaner | LB R |
71 70 69 68 6/ 665 71 70 69 68 67 66 T1 V0 69 68 67 66 o
Longitude (degW) Longitude (degW) Longitude (degW)
Cyst(cysts!cmsl
0 25 50 100 200 300 500 70O 1000 2000 »2000

2009 Water column monitoring results

Appendix page D-13



Appendix D November 2010

Total cyst abundances (# of cysts x 10'6) and % change relative to 1997 for 26
the Western Gulf of Maine (WGOM) and Bay of Fundy (BOF) subdomains.
Year GOM % BOF % Total (GOM +
change change BOF)
GOM BOF
1997 domain comparison (top 1 cm)
1997 2.5 100 2.8 100 5.3
2004 21.6 878 6.7 235 28.3
2005 9.9 404 3.7 130 13.6
2006 7.8 317 2.4 82 10.2
2007 28.2 1147 4.0 140 32.2
2008 11.8 478 2.1 75 13.9
2009 35.6 1448 9.4 331 45.0
1997 domain comparison (1-3 cm)
1997 4.4 100 1.0 100 5.4
2004 20.4 461 5.5 576 25.9
2005 41.2 931 20.0 2100 61.2
2006 15.4 348 6.7 703 22.1
2007 21.5 486 5.2 548 26.7
2008 17.2 389 4.2 442 21.4
1997 domain comparison (0-3 cm)
1997 6.88 100 3.8 100 10.7
2004 42.0 610 12.2 321 54.1
2005 52.1 757 23.7 624 74.8
2006 23.2 337 9.1 240 32.3
2007 49.7 722 9.2 243 58.9
2008 29.0 421 6.3 167 35.3
3.38 x 10 “14 cm”2 BOF area  =0.95x 10”14 cm”2
27

Seasonal Ensemble Forecast for 2010

Weather & Benthic Cyst Map 2010 Bloom
Hydrodynamics Ensemble forecast
Scenario 1
2004
Scenario 2
2005 /
\ »  Scenario 3
2006
2009 —
2007 / Scenario 4
2008 Scenario 5
2009 Scenario 6
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Online animation:

28

http://omglnx3.meas.ncsu.edu/yli/10ensemble 2d/dino 10ensemble.htm
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News release Outlook for a s1gn1ﬁcant red t1de in 2010 30

Outlock for a Significant New England ‘Red Tide' in 2010 - Woods Hole Oceanograg!
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Seed population portends a large regional bloom; impacts will depend on ocean conditions and weather

FOR MMEDIATE RELEASE Febnuary 26, 2010
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Time series of simulated A. fundyense cell concentration 31
near the Mass Bay outfall
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Animation: wind stress and modeled A. fundyense bloom 34
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MAINE HAB INDEX (WEST AND EAST)
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Week of April 20 N Week of April 27 | N
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44 5
Week of June 1 Week of June 8
- P " K P o
46 7
Week of June 15 Week of June 22
“ ' June 18, 2009: “FYI - Last week
Alexandrium numbers in the
southwest portion of the Bay of :
Fundy were ~500 cells/Liter. This »;
r week the numbers have increased i
Lot from 25,000-50,000 cells/L.” Lot e . —
- Jennifer Martin, DFO ]
48 9
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