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Introduction 

The Benthic Nutrient Cycling portion of the Massachusetts Water Resources Authority’s (MWRA) 
Outfall Monitoring Program was designed to monitor biogeochemical processes in depositional sediments 
of Boston Harbor and Massachusetts Bay. These data have been used to assess changes in parameters 
relevant to eutrophication (e.g.: organic carbon loading, sediment oxygen demand, nutrient flux, 
denitrification), particularly in the context of changing wastewater disposal practices. These data have 
also been used to examine benthic-pelagic coupling, specifically by providing data for the Bays 
Eutrophication Model. This summary report presents the status of both systems through the 2009 
sampling season, with data from 2009 highlighted as appropriate. It includes as Appendix I a PowerPoint 
file that was presented at the Monitoring Program’s Annual Technical Meeting for 2009, held April 29, 
2010. Slides from the presentation “Benthic Nutrient Cycling: 2009” are referred to in the report. For a 
more in-depth discussion of these studies, see Tucker et al., 2008 and references therein 
(http://www.mwra.state.ma.us/harbor/enquad/pdf/2008-14.pdf). 
 
The benthic flux component of the monitoring program began in its current design in 1993.  From 1993 
through 2000, the focus was on monitoring recovery of Boston Harbor as significant improvements in 
wastewater treatment and discharge were being implemented. Monitoring was also conducted in 
Massachusetts Bay and Stellwagen Basin in order to establish a baseline dataset for those environments. 
In September, 2000, a new outfall became operational, diverting wastewater from the historical outfall 
sites within Boston Harbor to a deepwater site 9 miles offshore in Massachusetts Bay. At this point, the 
focus shifted to Massachusetts Bay, and to watching for signs of any unexpected or significant impacts in 
the area near or even “downstream” of the new outfall. Monitoring of Boston Harbor continued in order 
to document further changes after the removal of effluent discharge. 
 
Data presented in this report are from sediment samples collected four times a year: in May, to capture the 
deposition of the spring phytoplankton bloom; in July and August, to capture the warmest part of the 
season; and in October, before the breakdown of thermal stratification in Massachusetts Bay. Sediment 
cores were collected by box corer from three stations in Massachusetts Bay near the location of the ocean 
outfall and one station in Stellwagen Basin,  which serves as a reference station (Appendix I: Slide 2) and 
by SCUBA from four stations in Boston Harbor (Appendix I: Slide 13). Survey dates, site coordinates, 
and field data for 2009 may be found in Appendix II. Details of field and laboratory protocols may be 
found in Tucker and Giblin, 2008 (http://www.mwra.state.ma.us/harbor/enquad/pdf/2008-06.pdf). 
 
Both Boston Harbor and western Massachusetts Bay have been monitored extensively under this 
monitoring program.  We have documented remarkable recovery in the harbor, which began with 
treatment upgrades before the outfall was relocated, and, nine years since the ocean outfall became 
operational, no discernible change in the bay. 

Massachusetts Bay 

One of the concerns for the benthic environment in the vicinity of the bay outfall was that organic matter 
deposition to the sediments might increase, either as direct input from the effluent or from stimulation of 
primary production, leading to a degradation of the benthic habitat.   Accordingly, we have measured 
organic carbon and chlorophyll in the top few centimeters of sediments at our study sites (three nearfield 
and one farfield in Stellwagen Basin; Appendix I:  Slide 2).   We have seen no change in organic carbon 
content at any of our stations (measurements are reported as percent dry weight, made on the top 2 cm of 
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sediment ); annual average values  are typically between about 1.2% and 1.5%, although values under 1% 
and over 2% have been observed (Appendix I:  Slide 3, top).  In 2009, individual survey values from 
MB01 displayed this range, starting with a high of 2.4% in May (likely related to an early-season pulse of 
chlorophyll, described below) and declining to 0.8% in October.   Otherwise, organic carbon ranged 
between 1% and 1.6% at all stations and for all surveys.    Similarly, we have not detected a change in 
benthic chlorophyll a (reported as areal inventory for the top 5 cm of sediment) between the two periods.  
Annual averages typically range between about 5 to 7 ug cm-2, but may vary considerably both spatially 
and temporally (Appendix I:  Slide 3, bottom).    For example, in 2009, we observed an apparent local and 
short-term increase in chlorophyll a at Station MB01 in May that was absent from the other 3 stations and 
for the rest of the sampling year (Appendix I:  Slide 4).  The May inventory for Station MB01 was 13.6 
ug cm-2, whereas values for the rest of the stations and surveys were on the low end of observations, 
ranging from 1 to 4 ug cm-2.  In fact, 2009 was the second year in a row with relatively low sediment 
chlorophyll (nearfield survey average of 3.9 and 3.6 ug cm-2 for 2008 and 2009, respectively). 

Consistent with the lack of change in organic matter deposition has been the lack of change in redox 
indictors.  Eh profiles in both nearfield and farfield sediments continued to show highly oxidized 
conditions throughout the 2009 sampling season (Appendix I:  Slide 5).   As is typical, a redox potential 
discontinuity was often undetectable by visual inspection.   That is, cores from Massachusetts Bay often 
retained the grey-green color indicative of oxygenated sediments down to the bottom of the core. 

Changes in sediment oxygen demand (SOD) that may have indicated an adverse impact of the outfall 
have also been absent (Appendix I:  Slide 6).  In fact, the overall average for the nearfield in the post-
relocation period (2001-2009; 14.6 mmol m-2 d-1) is slightly lower than for the pre-relocation period 
(1994-2000; 16.2 mmol m-2 d-1), although the difference is not meaningful given the variability in the 
data, which was also larger in the pre-relocation period.    In 2009, the average rate of oxygen 
consumption by nearfield sediments was 12.7 mmol m-2 d-1, among the lowest in the monitoring record.  
Average SOD at the farfield station is essentially the same for the two periods (11.6 and 11.1 mmol m-2 d-

1 for pre- and post-relocation, respectively), although, like the nearfield, the 2009 average (8.2 mmol m-2 
d-1) was among the lowest observed.  Sediment chlorophyll levels noted above suggest two successive 
years of relatively little phytoplankton deposition to these sediments, which may have contributed to low 
SOD as well as nutrient fluxes (below).  

Fluxes of dissolved inorganic nitrogen (DIN = NH4
+ + NO3

-+NO2
-) have followed a similar pattern 

(Appendix I:  Slide 7).  Again, there is overlap in the range of observations reported before and after 
outfall relocation, but the overall nearfield average  for the “after” period is only about half  that of the 
“before” period (0.4 compared to 0.8 mmol m-2 d-1).  DIN flux for the past two years, in particular, has 
been quite low, averaging less than 0.2 mmol m-2 d-1 .  Rates in the farfield show a decline as well, (from 
0.3 to 0.1 mmol m-2 d-1).  This declining trend has been in the NH4

+ component of the flux (Appendix I:  
Slide 8, top), which is sometimes directed into the sediment (observed more frequently during the post-
relocation period).    Average NH4

+ flux before relocation was 0.6 mmol m-2 d-1 ; after relocation it is 0.2 
mmol m-2 d-1 .   Whereas NH4

+ was the major component of the DIN flux during the baseline period, NO3
-

+NO2
- , which has shown on average no change (Appendix I:  Slide 8, bottom), now comprises an 

equivalent flux.  In the nearfield, average NH4
+ flux was < 0.1 mmol m-2 d-1  in 2009 compared to a nitrate 

flux of 0.15 mmol m-2 d-1.    In the farfield, there was an average NH4
+ influx of about 0.1 mmol m-2 d-1  in 

2009 and  a NO3
- efflux of 0.1 mmol m-2 d-1  , resulting in essentially no net DIN flux at this station. 

Phosphate (PO4
-) fluxes have followed similar decreasing trends in both magnitude and variability. 

Phosphate fluxes have always been small, but in the period since outfall relocation, they have been 
particularly so, and have fluctuated between efflux and influx (Appendix I:  Slide 9, top).   These weak 
fluxes are often qualified by very low coefficients of determination (r2) for the linear regressions used to 
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calculate them.  For the 2009 sampling season, there was essentially no net PO4

- flux from nearfield 
sediments and a very small flux, < 0.02 mmol m-2 d-1 , from the farfield.  

Silica fluxes are typically sizable, but they too have shown a downward trend and a decrease in variability 
(Appendix I:  Slide 9, bottom).   Average silica flux for the pre-relocation period was 4.7 mmol m-2 d-1  
and 4.3 mmol m-2 d-1  for the nearfield and farfield, respectively, and  3.2 and 3.5 for the post-relocation 
period.   In 2009 silica fluxes were similar and among the lowest in the record for both areas, averaging 
2.4 mmol m-2 d-1   for the survey year. 

The pre- to post-relocation comparison for denitrification includes the caveats that sampling frequency, 
stations sampled, and methods have changed during the monitoring program.  This lack of evenness in the 
dataset precludes comparing period averages, but we nevertheless believe a valid assessment of change 
may be made.  The trends we see roughly track those of the other fluxes, that is, the data show higher 
rates and greater variability in the earlier period and no noticeable change at the time of the outfall 
diversion ) (Appendix I:  Slide 10).    The change in methods implemented in 2004 has allowed us to 
measure denitrification at all four stations and all surveys.   Since then, rates have averaged 1.5 and 1.3  
mmol N m-2 d-1  for the nearfield and farfield, respectively, with summer high rates in 2006 at MB02 and 
MB03 reaching about 3.5 mmol N m-2 d-1 ,   not dissimilar from some of the higher rates reported in the 
earlier period.  Rates for 2009 were typical, averaging 1.4 and 1.3 mmol N m-2 d-1    for the nearfield and 
farfield, respectively.      Denitrification typically accounts for over 70% of the combined DIN + 
denitrification flux, a characteristic that has been noted throughout the program (Appendix I:  Slide 11).   

In summary, we have not observed any negative impacts to depositional sediments at three stations in the 
vicinity of the ocean outfall (Appendix I:  Slide 12).  That is, we have observed no indication of increased 
organic matter loading at these sites, nor have we detected a change in redox conditions.  There has also 
been no increase in sediment oxygen demand or nutrient fluxes, nor any discernible change in 
denitrification.   Variability in these parameters seems to vary with region-wide biological and physical 
phenomena.   

Boston Harbor 

Treatment upgrades that reduced solids loading to Boston Harbor initiated recovery of harbor sediments 
at our four monitoring stations (Appendix I:  Slide 13) before the effluent was diverted offshore.  These 
changes were reflected in the organic carbon content of harbor sediments, which decreased in step with 
these changes, and was particularly noticeable at two stations, BH03 and BH08A, that had been most 
directly affected by sludge disposal (Appendix I:  Slide 14).  The concurrent appearance of large colonies 
of tube building amphipods (Ampelisca sp.) in the harbor accelerated the removal of organic matter by 
stimulating benthic nutrient cycling.    Organic carbon content of nearly 4% at Station BH03 has declined 
to about 2.2% for the post-relocation period, which is very similar to the four-station average for the 
period. 

Sediment chlorophyll as a measure of organic matter content in shallow water environments like the 
harbor is complicated by the fact that it may include both phytoplankton deposition and in situ 
production.    Chlorophyll a inventories for surface sediments have varied widely (Appendix I:  Slide 15, 
top) depending on production, which may be limited by light in the harbor as well as by grazing.  
Accordingly, there has been no change in average chlorophyll inventories since outfall relocation 
(Appendix I:  Slide 15, bottom).   Largest inventories and most variability have often been observed at 
Stations BH02 and QB01, where benthic organisms were relatively sparse and benthic diatoms were often 
noted.   The presence of Ampelisca communities,  e.g. at BH03 and BH08A, typically corresponded to 
lower chlorophyll a levels.  In 2008 and 2009, when another amphipod (Leptocheirus pinguis) became 
abundant in the harbor, chlorophyll a levels fell at BH02 and QB01, presumably in response to this new 
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grazing pressure.   Profiles through the top 5 cm (Appendix I:  Slide 16) show that the 2009 season started 
with high concentrations in the spring that did not persist until the July survey.  For example, at Station 
BH02 in May (Appendix I:  Slide 16, Fig. a), concentrations over 10 µg cc-1 were measured as deep as 2-
3 cm; integration over the top 5 cm yielded an inventory of almost 34 µg cm-3;  by July the inventory was 
about 10 µg cm-3 , which was approximately the baseline level for all four stations in 2009.     

Colonization of the harbor by large numbers of Leptocheirus pinguis began in 2007, and was associated 
with elevated rates of SOD and nutrient fluxes at Station BH02.  In 2008, Leptocheirus was even more 
abundant, and fluxes increased further at Station BH02 and became elevated at Station BH08A (Appendix 
I:  Slide 17).   In 2009, amphipod abundance declined, and fluxes began to return to levels more typical of 
the post-relocation period.  

During the first stages of harbor cleanup, SOD at some harbor stations was among the highest reported in 
the literature.  Peaks in SOD corresponded to peak amphipod abundance.  Rates began to abate before 
effluent diversion, as less organic carbon was being delivered to the harbor and sediment stores were 
burned off.    Accordingly, the range of rates reported for the pre-diversion period is large, with an 
average for the period of 62 mmol m-2 d-1 (Appendix I:  Slide 18).      Through 2006, the post-relocation 
average had declined to 34 mmol m-2 d-1, a reduction of nearly 50%.  In 2007, however, with the 
appearance of Leptocheirus, harbor average SOD began to climb due to high rates at BH02 (survey year 
average = 75 mmol m-2 d-1),  and increased further in 2008 due to very high rates at BH02 and BH08A 
(106 and 102 mmol m-2 d-1, respectively).  In 2009, SOD was back to post-relocation “normal” at BH08A 
(33 mmol m-2 d-1) and, although still high, had declined at Station BH02 as well (65 mmol m-2 d-1).  The 
resulting four-station annual average was 41 mmol m-2 d-1, down from 77 mmol m-2 d-1 in 2008 and 
approaching 2001-2006 values.  We have traditionally benchmarked harbor SOD averaged for the July 
and August surveys against summer rates reported for a range of coastal systems by Nixon in 1981 
(Appendix I:  Slide 19).  In this comparison of likely maximum rates, we also see a return in 2009 to 
levels more typical of the post-relocation, pre-Leptocheirus period. 

DIN fluxes closely follow the pattern set by SOD (Appendix I:  Slide 20).  DIN fluxes were high and 
variable during the pre-relocation period, and included declining rates related to effluent treatment 
achieved prior to diversion.  During this period the average DIN flux was about 5 mmol m-2 d-1.  For the 
first 6 years after diversion, DIN flux had fallen to an average of 2.7 mmol m-2 d-1.  In 2008, the annual 
average had increased back up to 4.5 mmol m-2 d-1.  In 2009, DIN fluxes fell back to 2.5 mmol m-2 d-1, a 
rate very characteristic of the 2001-2006 period.   

Within the DIN flux increase of 2007-2008 was a change in the relative proportion of the components of 
the DIN (Appendix I:  Slide 21).  Over half of the flux was comprised of NO3

- + NO2
-, whereas NH4

+ is 
more typically the major component of DIN fluxes associated with high rates of SOD.  Again we invoke 
amphipods to explain this observation; bioturbation aerates the sediments and stimulates nitrification, and 
flushes nutrient-rich porewaters out of the sediments.  We observed this phenomenon at Station BH03 
and BH08A during the peak years of Ampelisca colonization, and now we have seen it at Station BH02 
and again at BH08A with Leptocheirus.   This effect persisted at Station BH02 into 2009 despite reduced 
numbers of amphipods and a reduced total flux. 

The bioturbation effects noted above also influence denitrification rates.  Throughout the monitoring 
program, denitrification has been quite variable and at times quite high, although rates were apparently 
declining along with DIN fluxes until 2007, when they both began to increase at the stations with 
Leptocheirus (Appendix I:  Slide 22).    In 2009, however, denitrification at Station BH02 reached the 
maximum in our record, 16 mmol N m-2 d-1, even though DIN fluxes declined.  We speculate that a more 
moderate level of bioturbation may have created very favorable conditions for denitrification:  sufficient 
aeration to stimulate nitrification coupled with a porewater residence time long enough to allow the 
denitrifiers access to the resulting NO3

-.  At our harbor stations, denitrification generally accounts for 
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between 30% and 60% of the combined N flux (DIN + denitrification) out of the sediments (Appendix I:  
Slide 23). 

In the early stages of harbor monitoring, we compiled a budget of nitrogen sinks versus inputs as part of 
an assessment of denitrification as a mitigator of nitrogen loading.  For that time, around 1991-1994, 
Kelly  (1997) gave N loading to the harbor as  8470 mmol N m-2 y-1  and burial within the harbor as 200 
mmol N m-2 yr-1.   Our average for denitrification was about 1200 mmol m-2 d-1.   The result was that 
denitrification could account for only 14% of the inputs, with burial accounting for 2%, and export the 
remaining 84% (Appendix I:  Slide 24, left).  In this early period we had less spatial coverage in our 
measurements than in recent years (two stations rather than 4), although we had more complete temporal 
coverage (5 surveys instead of 4, including one during winter).  Accounting for these differences, we have 
compiled a new budget.  The overall average for denitrification at these two stations since 2001 has 
declined by about 40%, but the overriding change has been in the reduction in loading effected by effluent 
diversion; recent estimates are about 14% of the early figures (Taylor, 2006).  Assuming that burial rates 
have remained the same, we arrive at a budget in which denitrification now removes ~60% of inputs 
(Appendix I:  Slide 24, right), consistent with typical continental shelf systems (Seitzinger and Giblin, 
1996).  

Phosphate and silica fluxes have generally paralleled the patterns we have observed in SOD and DIN 
fluxes, and have also returned to post-relocation “normal” levels after increases in 2007-2008.   The pre-
diversion average for PO4

- was 0.34 mmol m-2 d-1, and had dropped to 0.17 mmol m-2 d-1 in the 2001-2006 
period.   The 2009 average was 0.12 mmol m-2 d-1 (Appendix I:  Slide 25, top).  Silica fluxes are regulated 
more by dissolution chemistry than by biogeochemistry, and although they follow the general pattern as 
the other fluxes, they have not declined to the same extent.  They averaged 6.8 mmol m-2 d-1 for the pre-
relocation period, 5.2 for 2001-2006, and 6.1 mmol m-2 d-1 for 2009(Appendix I:  Slide 25, bottom).  
Regeneration of dissolved silica is important in maintaining a nutrient stoichiometry that supports diatom 
growth.   

Redox indicators at our harbor stations continue to show improved conditions in recent years. In contrast 
to sediments from Massachusetts Bay, harbor sediments typically show a transition from brown to 
blacker, apparently anoxic sediments that corresponds to a drop in Eh (Appendix I:  Slide 26).  However 
all four stations now have deeper oxidized layers than were present in the early years.  The most recent 
improvements have been at Station BH02, which had lagged behind the other three stations until it was 
colonized by Leptocheirus in 2007.   

To summarize, depositional sediments of Boston Harbor have recovered dramatically in the relatively 
short time since cleanup efforts began.  Sediment oxygen demand and nutrient fluxes during the period 
after outfall relocation are on average lower than baseline rates, even though rate decreases began during 
the baseline period.  Recent spikes in these processes (2007-2008), driven by a Leptocheirus pinguis 
bloom, have abated with amphipod abundance; however, they point out that similar episodes are likely to 
occur during the current period of lower change: the harbor remains a relatively rich habitat.  In contrast 
to the other fluxes, denitrification spiked in 2009 at one station, presumably due to ideal conditions 
provided by “just the right amount” of bioturbation.  Overall, however, denitrification has also decreased 
compared to baseline.  Even so, due to the very large reduction in nitrogen loading achieved by the outfall 
diversion, its importance as a nitrogen sink has increased. 
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Denitrification 
compared to

DIN Flux, 
2004-2009
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Farfield:  single station 
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Conclusions for 2009

Massachusetts Bayy

No indication of increased OM loading to nearfield

No change in redox conditions

No increase in SOD or nutrient fluxes

No discernible change in denitrification, which 
remains the major component of remineralized N
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Boston Harbor

Stations for 
Benthic Nutrient

Flux 

2 in North Harbor
1 in Quincy Bay
1 in Hingham Bay
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Amphipods II:  Leptocheirus pinguis
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July-August Average SOD for Boston Harbor
2009 compared to pre-relocation highs and with summer 
rates from other estuaries (Nixon, 1981) as benchmarks. 
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DIN Flux Components at Stations BH02 and BH08A
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Conclusions for 2009
Boston Harbor

SOD and nutrient fluxes at Station BH02 and BH08A 
returning to post-relocation levels from elevated rates g p
observed in 2008

Reduced fluxes related to reduced amphipod abundance

Post-relocation SOD and nutrient fluxes remain lower 
than baseline 

High summer rates of denitrification at Station BH02 

Relative importance of denitrification increased with 
reduction of loading; now accounts for ~60% of the N 
budget

27
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Sam Kelsey at the B Buoy, 12/09
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Appendix II.  Station names, survey IDs, date of survey, station locations, near-bottom water sampling 
depth, temperature, dissolved oxygen (D.O.) and salinity for Boston Harbor and Massachusetts Bay 
stations visited in 2009. 

Station Survey Date Latitude Longitude Dept
h (m) 

Temp. 
(oC) 

D.O. 
(mg/L) 

Salinity 
(psu) 

         
BH02 NC091 5/18/2009 42.34348 -71.00211 10 10.1 9.64 31.1 

 NC092 7/14/2009 42.34362 -71.00205 9 14.4 8.20 30.4 
 NC093 8/11/2009 42.34372 -71.00235 8 15.8 9.18 30.5 
 NC094 10/14/2009 42.3436 -71.00191 12 10.9 9.16 31.1 

BH03 NC091 5/18/2009 42.33055 -70.96175 8 10.4 9.67 30.7 
 NC092 7/14/2009 42.33075 -70.96165 8 16.2 8.21 29.9 
 NC093 8/11/2009 42.3306 -70.96181 7 16.7 8.68 30.3 
 NC094 10/14/2009 42.3308 -70.96172 10 10.9 9.17 31.1 

BH08A NC091 5/18/2009 42.29080 -70.92226 9 11.1 9.51 31.0 
 NC092 7/14/2009 42.29077 -70.92229 7 17.5 8.03 30.0 
 NC093 8/11/2009 42.29102 -70.92198 7 16.5 9.81 30.7 
 NC094 10/14/2009 42.291 -70.92218 9 11.0 9.21 31.2 

QB01 NC091 5/18/2009 42.29348 -70.98766 4 12.1 9.35 30.3 
 NC092 7/14/2009 42.29357 -70.98760 3 18.6 7.43 29.6 
 NC093 8/11/2009 42.2937 -70.98801 3 17.8 8.65 30.4 
 NC094 10/14/2009 42.29355 -70.98787 5 11.0 9.34 30.8 

MB01 NC091 5/19/2009 42.40303 -70.83723 32 3.9 9.35 32.4 
 NC092 7/13/2009 42.40302 -70.83728 33 7.4 10.05 31.8 
 NC093 8/10/2009 42.40298 -70.83735 32 8.2 9.91 31.8 
 NC094 10/13/2009 42.40318 -70.83725 33 9.3 6.69 31.7 

MB02 NC091 5/19/2009 42.39245 -70.83440 32 3.9 9.36 32.4 
 NC092 7/13/2009 42.39248 -70.83430 33 7.7 10.07 31.7 
 NC093 8/10/2009 42.39258 -70.83425 33 8.3 9.95 31.7 
 NC094 10/13/2009 42.39257 -70.83435 33 9.6 7.15 31.6 

MB03 NC091 5/19/2009 42.34775 -70.81638 33 4.2 9.71 32.3 
 NC092 7/13/2009 42.34789 -70.81603 32 7.8 9.23 31.7 
 NC093 8/10/2009 42.34792 -70.81622 32 8.0 8.65 31.8 
 NC094 10/13/2009 42.348 -70.81612 35 9.8 7.25 31.6 

MB05 NC091 5/19/2009 42.41642 -70.65179 44 3.8 11.02 32.7 
 NC092 7/13/2009 42.41658 -70.65202 41 6.9 10.47 32.1 
 NC093 8/10/2009 42.41665 -70.65195 38 8.6 10.37 32.0 
 NC094 10/13/2009 42.41645 -70.65197 42 8.8 7.69 31.8 
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