Changes in contaminants in winter flounder, lobster, and caged mussels in Massachusetts and Cape Cod Bays and Boston Harbor: 1995-2006

Massachusetts Water Resources Authority

Environmental Quality Department Report 2008-09

Citation:

Kane-Driscoll S, Edwards M, Pembroke A, Nestler EC, and C Gurshin. 2008. Changes in contaminants in winter flounder, lobster, and caged mussels in Massachusetts and Cape Cod **Bays and Boston Harbor: 1995-2006**. Boston: Massachusetts Water Resources Authority. Report 2008-09. 73 p.

Changes in contaminants in winter flounder, lobster, and caged mussels in

Massachusetts and Cape Cod Bays and Boston Harbor: 1995-2006

submitted to

Massachusetts Water Resources Authority Environmental Quality Department 100 First Avenue Charlestown Navy Yard Boston, MA 02129 (617) 242-6000

prepared by

Susan Kane-Driscoll¹ Melanie Edwards² Ann Pembroke³ Eric Nestler³ Chris Gurshin³

¹Exponent 8 Winchester Place, Suite 303 Winchester, MA 01890

²Exponent 15375 SE 30th Place, Suite 250 Bellevue, WA 98007

³Normandeau Associates, Inc. 25 Nashua Road Bedford, NH 03110

June 2008

TABLE OF CONTENTS

Page

1.0	.0 INTRODUCTION						
2.0	ME'	METHODS					
	2.1	DATA HANDLING	8				
	2.2	STATISTICAL METHODS	8				
		2.2.1 BACI Analysis	9				
		2.2.2 Analysis of Variance	10				
3.0	MU	SSELS	11				
	3.1	BIOLOGY, ECOLOGY, AND BIOACCUMULATION	11				
		3.1.1 Distribution and Movement	11				
		3.1.2 Feeding Ecology	11				
		3.1.3 Bioaccumulation and Indicator Species Potential	11				
		3.1.4 Previous MWRA Findings	12				
	3.2	RESULTS OF THE BACI	13				
		3.2.1 Outfall Site	13				
		3.2.2 Deer Island Light	18				
		3.2.3 Large Navigation Buoy	19				
	3.3	RESULTS OF THE ANOVA	20				
4.0	LOI	BSTER	28				
	4.1	BIOLOGY, ECOLOGY, AND BIOACCUMULATION	28				
		4.1.1 Distribution and Movement	28				
		4.1.2 Habitat and Feeding Ecology	29				
		4.1.3 Bioaccumulation	30				
		4.1.4 Suitability as an Indicator Species	30				
		4.1.5 Previous MWRA Findings.	30				
	4.2	RESULTS OF THE BACI	31				
	4.3	RESULTS OF THE ANOVA	37				
5.0	WIN	VTER FLOUNDER	46				
	5.1	BIOLOGY, ECOLOGY, AND BIOACCUMULATION	46				
		5.1.1 Distribution and Movement	46				
		5.1.2 Bioaccumulation	47				
		5.1.3 Suitability as an Indicator Organism	47				
		5.1.4 Previous MWRA Findings	48				
	5.2	RESULTS OF THE BACI	48				
	5.3	RESULTS OF THE ANOVA	53				
6.0	COI	MPARISON TO THRESHOLDS	61				
	6.1	COMPARISON TO FDA LEVELS AND EPA RISK-BASED CONCENTRATIONS FOR					
		HUMAN HEALTH	61				

	6.2	COMPARISON OF MUSSELS TO EPA EQUILIBRIUM PARTITIONING BENCHMARI FOR THE PROTECTION OF BENTHIC ORGANISMS	KS 61
7.0	SUN MO	MMARY AND RECOMMENDATIONS FOR CHANGES TO THE NITORING PROGRAM	66
	7.1	MUSSELS	66
	7.2	Lobster	67
	7.3	WINTER FLOUNDER	67
8.0	CO	NCLUSIONS	68
9.0	REI	FERENCES	69

APPENDIX A DATA APPENDIX B STATISTICAL ANALYSES

LIST OF FIGURES

Page

Figure 1-1.	Boston Harbor and the bays with Outfall Site2
Figure 1-2.	Mussel collection and deployment locations
Figure 1-3.	Flounder monitoring locations
Figure 1-4.	Lobster monitoring locations
Figure 3-1.	Comparison of lead concentrations measured in mussel soft tissue between control and impact locations before and after relocation of the outfall
Figure 3-2.	Comparison of PCB concentrations measured in mussel soft tissue between control and impact locations before and after relocation of the outfall
Figure 3-3.	Comparison of high molecular weight (HMW) PAH concentrations measured in mussel soft tissue between control and impact locations before and after relocation of the outfall
Figure 3-4.	Comparison of chlordane concentrations measured in mussel soft tissue between control and impact locations before and after relocation of the outfall
Figure 3-5.	Lead concentrations in mussel soft tissue after the outfall went on-line
Figure 3-6.	High molecular weight (HMW) PAH concentrations in mussel soft tissue after the outfall went on-line
Figure 3-7.	Chlordane concentrations in mussel soft tissue after the outfall went on-line25
Figure 3-8.	Mercury concentrations in mussel soft tissue after the outfall went on-line
Figure 3-9.	PCB concentrations in mussel soft tissue after the outfall went on-line
Figure 4-1.	Comparison of PCB concentrations measured in lobster meat between control and impact locations before and after relocation of the outfall
Figure 4-2.	Comparison of chlordane concentrations measured in lobster meat between control and impact locations before and after relocation of the outfall
Figure 4-3.	Comparison of lead concentrations measured in lobster hepatopancreas between control and impact locations before and after relocation of the outfall
Figure 4-4.	Comparison of copper concentrations measured in lobster hepatopancreas between control and impact locations before and after relocation of the outfall

Figure 4-5.	Comparison of high molecular weight (HMW) PAH concentrations measured in lobster hepatopancreas between control and impact locations before and after relocation of the outfall
Figure 4-6.	Chlordane concentrations in lobster meat after the outfall went on-line
Figure 4-7.	Mercury concentrations in lobster meat after the outfall went on-line
Figure 4-8.	PCB concentrations in lobster hepatopancreas tissue after the outfall went on-line42
Figure 4-9.	High molecular weight (HMW) PAH concentrations in lobster hepatopancreas tissue after the outfall went on-line
Figure 4-10.	Cadmium concentrations in lobster hepatopancreas tissue after the outfall went on-line
Figure 4-11.	Copper concentrations in lobster hepatopancreas tissue after the outfall went on- line
Figure 5-1.	Comparison of 4,4'-DDE concentrations measured in flounder fillet between control and impact locations before and after relocation of the outfall
Figure 5-2.	Comparison of mercury concentrations measured in flounder fillet between control and impact locations before and after relocation of the outfall
Figure 5-3.	Comparison of mercury concentrations measured in flounder liver between control and impact locations before and after relocation of the outfall
Figure 5-4.	Comparison of PCB concentrations measured in flounder liver between control and impact locations before and after relocation of the outfall
Figure 5-5.	Chlordane concentrations in flounder fillet tissue after the outfall went on-line
Figure 5-6.	Mercury concentrations in flounder fillet tissue after the outfall went on-line
Figure 5-7.	Lead concentrations in flounder liver tissue after the outfall went on-line
Figure 5-8.	Chlordane concentrations in flounder liver tissue after the outfall went on-line

LIST OF TABLES

Page

Table 1-1.	Full list of target analytes	.6
Table 3-1.	Summary of Before/After Conclusions from the BACI Analysis of Concentrations in Mussel Tissue at the Outfall Site and the Large Navigation Buoy	14
Table 3-2.	Summary of Before/After Conclusions from the BACI Analysis of Concentrations in Mussel Soft Tissue at Deer Island Light.	19
Table 3-3.	Summary of Comparisons between Locations by Year for Mussel Soft Tissue	21
Table 4-1.	Summary of Before/After Conclusions from the BACI Analysis of Concentrations in Lobster Meat and Lobster Hepatopancreas at the Outfall Site.	32
Table 4-2.	Summary of Comparisons between Locations by Year for Lobster Meat.	38
Table 4-3.	Summary of Comparisons between Locations by Year for Lobster Hepatopancreas.	39
Table 5-1.	Summary of Before/After Conclusions from the BACI Analysis of Concentrations in Flounder Fillet and Liver Tissue at the Outfall Site	49
Table 5-2.	Summary of Comparisons between Locations by Year for Flounder Fillet	54
Table 5-3.	Summary of Comparisons between Locations by Year for Flounder Liver.	55
Table 6-1.	Comparison of 2006 Tissue Concentrations with Threshold Levels	63
Table 6-2.	Calculation of the Sum of Toxic Units for 34 PAHs Measured in Mussel Tissue.	64

EXECUTIVE SUMMARY

This report addresses various questions related to the Fish and Shellfish component of the Massachusetts Water Resources Authority's (MWRA) Harbor and Outfall Monitoring program for Boston Harbor and Massachusetts Bay. In September 2000, MWRA moved the outfall that discharges wastewater from the MWRA Deer Island Treatment Plant (DITP) in Boston Harbor to a new outfall diffuser system located 9.5 miles from the DITP in Massachusetts Bay (Figure 1-1). The goal of this report is to examine whether levels of contaminants in flounder, lobster, or mussels have changed as a result of the relocation of the outfall, and whether current levels of contaminants in fish and shellfish are significantly different among organisms collected from the area of the outfall, Boston Harbor, and reference sites in Cape Cod Bay. A secondary goal of this report is to examine whether current levels of contaminants in the edible tissue of fish and shellfish collected near the outfall present a risk to human health or to the environment. This report also makes recommendations in regard to the future monitoring for toxic contaminants in fish and shellfish.

MUSSELS

Concentrations of contaminants in caged mussels deployed in the vicinity of the outfall were expected to increase after the effluent was diverted to the outfall in 2000. Post-relocation concentrations of lead, PCBs, high molecular weight PAHs, total PAHs, chlordane and 4,4'-DDE were significantly greater at the Outfall Site after taking into account any changes at the Control site in Cape Cod Bay. However, current concentrations of these contaminants are below MWRA threshold levels and U.S. Food and Drug Administration (FDA) action limits. The FDA action levels represent limits at or above which FDA will take legal action to remove products from the market. In addition, current concentrations of PAHs in mussels at all locations were below U.S. Environmental Protection Agency (EPA) benchmarks for the protection of aquatic organisms, and concentrations of lead, mercury, chlordane, and 4,4'-DDE were below EPA screening-level human health risk-based concentrations (RBCs). Note, however, that the EPA RBCs, which are based on conservative estimates of the rates of consumption of fish or shellfish, do not constitute regulation or guidance and are used primarily to screen out chemicals as contaminants of concern in an initial phse of a risk assessment. Average concentrations of PCBs exceeded the EPA screening-level RBC at all locations, although concentrations of PCBs at the Outfall Site were significantly lower than concentrations at Cape Cod Bay, indicating a broader regional distribution of PCBs. These results provide an important support for ending the mussel monitoring program.

LOBSTER

Concentrations of contaminants in lobsters at the Outfall Site did not increase as a result of the relocation of the outfall. Concentrations of all contaminants were below MWRA thresholds and available FDA action limits, and concentrations of most contaminants were also below EPA screening-level RBCs. Although concentrations of PCBs exceeded the EPA screening-level RBC at all locations, current (2006) concentrations of PCBs in lobsters from the Outfall Site are not significantly different from concentrations at Cape Cod Bay, indicating a broader regional distribution of PCBs. These findings support ending the lobster monitoring program.

FLOUNDER

Concentrations of contaminants in flounders at the Outfall Site did not increase as a result of the relocation of the outfall. Concentrations of all contaminants in flounder were below FDA action limits and MWRA thresholds. Concentrations of all contaminants, except PCBs, were below EPA screening-level RBCs. Concentrations of PCBs at all locations exceeded the EPA screening-level RBC, and 2006 concentrations of PCBs in flounder liver and fillet from the Outfall Site were significantly higher than concentrations at Cape Cod Bay. These findings support modifying the flounder monitoring program by eliminating the measurements of toxic contaminants.

1.0 INTRODUCTION

In September 2000, the Massachusetts Water Resources Authority (MWRA) diverted its wastewater discharge from the mouth of Boston Harbor to a new outfall diffuser system in Massachusetts Bay, 9.5 miles from the Deer Island Treatment Plant (DITP, Figure 1-1). Prior to the startup of the new outfall, MWRA implemented a long-term Harbor and Outfall Monitoring (HOM) program for Boston Harbor, Massachusetts Bay, and Cape Cod Bay, as required by the Federal Court Record of Decision and by MWRA's National Pollutant Discharge Elimination System Permit. These require MWRA to monitor the effluent and ambient receiving waters in accordance with a monitoring plan (MWRA 1991, 1997, 2004), which was developed in response to the U.S. Environmental Protection Agency's (EPA's) Supplemental Environmental Impact Statement (SEIS; U.S. EPA 1998). The purpose of the HOM program is to ensure compliance with the permit, to assess whether the outfall has effects beyond the area identified in the SEIS as acceptable, and to collect data for use in outfall management (Hunt et al. 2006). As part of the HOM program, MWRA has collected tissue chemistry data to assess the environmental impact of the effluent on fish and shellfish (MWRA 1991, 1997, 2004). Blue mussels collected from a reference location were deployed for 60 days at monitoring sites near the outfall, in Boston Harbor, and in Cape Cod Bay (Figure 1-2). Indigenous winter flounder and American lobster were also collected from several locations in Boston Harbor and Massachusetts Bay (Figures 1-3 and 1-4, respectively). The tissues of these three indicator species were analyzed for a suite of target analytes (Table 1-1). This report focuses on results for cadmium, copper, lead, and mercury, and the organics 4,4'-DDE, chlordane, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). In order to assess potential outfall impacts, tissue chemistry data were compared to established contingency plan thresholds (MWRA 2001, 2004).

The primary objectives of this report are to provide information to support MWRA's planning for future monitoring, and to provide the public and regulatory agencies with information about current levels and trends in contaminants in fish and shellfish collected from the area of the outfall, Boston Harbor, and the Cape Cod Bay reference sites. Specifically, this report addresses the following:

- 1. Have the levels of contaminants in tissues of fish and shellfish around the outfall changed since discharge from the outfall began?
- 2. Are the current levels of contaminants in fish and shellfish different among the outfall, Boston Harbor, and a reference site?
- 3. Do the current levels of contaminants in the edible tissue of fish and shellfish around the outfall represent a risk to human health or the environment?

Figure 1-1. Boston Harbor and the bays with Outfall Site

Figure 1-2. Mussel collection and deployment locations

Figure 1-3. Flounder monitoring locations

June 2008

Figure 1-4. Lobster monitoring locations

Trace Metals	Polynuclear Aromatic Hydrocarbons (PAHs)		
Cadmium	1-Methylnaphthalene		
Chromium	1-Methylphenanthrene		
Copper	2,3,5-Trimethylnaphthalene		
Lead	2,6-Dimethylnaphthalene		
Mercury	2-Methylnaphthalene		
Nickel	Acenaphthene		
Silver	Acenaphthylene		
Zinc	Anthracene		
	Benz[a]anthracene		
Pesticides	Benzo[a]pyrene		
4,4 DDD olefin (DDMU)	Benzo[b]fluoranthene		
Aldrin	Benzo[e]pyrene		
cis-Chlordane	Benzo[ghi]perylene		
Dieldrin	Benzo[k]fluoranthene		
Endrin	Benzothiazole		
Heptachlor	Biphenyl		
Heptachlor epoxide	C1-Chrysenes		
Hexachlorobenzene	C2-Chrysenes		
Lindane	C3-Chrysenes		
Mirex	C4-Chrysenes		
o,p'-DDD	C1-Dibenzothiophenes		
o,p'-DDE	C2-Dibenzothiophenes		
o,p'-DDT	C3-Dibenzothiophenes		
p,p'-DDD	C1-Fluoranthenes/pyrenes		
p,p'-DDE	C2-Fluoranthenes/pyrenes		
p,p'-DDT	C3-Fluoranthenes/pyrenes		
trans-Nonachlor	C1-Fluorenes		
	C2-Fluorenes		
Polychlorinated Biphenyls	C3-Fluorenes		
2,4'-Dichlorobiphenyl	C1-Naphthalenes		
2,2',5-Trichlorobiphenyl	C2-Naphthalenes		
2,4,4'-Trichlorobiphenyl	C3-Naphthalenes		
2,2',3,5'-Tetrachlorobiphenyl	C4-Naphthalenes		
2,2',5,5'-Tetrachlorobiphenyl	C1-Phenanthrenes/anthracenes		
2,3',4,4'-Tetrachlorobiphenyl	C2-Phenanthrenes/anthracenes		
3,3',4,4'-Tetrachlorobiphenyl	C3-Phenanthrenes/anthracenes		
2,2',4,5,5'-Pentachlorobiphenyl	C4-Phenanthrenes/anthracenes		
2,3,3',4,4'-Pentachlorobiphenyl	Chrysene		
2,3',4,4',5-Pentachlorobiphenyl	Dibenz[a,h]anthracene		
3,3',4,4',5-Pentachlorobiphenyl	Dibenzofuran		
2,2',3,3',4,4'-Hexachlorobiphenyl	Dibenzothiophene		
2,2',3,4,4',5'-Hexachlorobiphenyl	Fluoranthene		
2,2',4,4',5,5'-Hexachlorobiphenyl	Fluorene		

Table 1-1.Full list of target analytes

Polychlorinated Biphenyls (cont.)	Polynuclear Aromatic Hydrocarbons (cont.)
2,2',3,3',4,4',5-Heptachlorobiphenyl	Indeno[1,2,3-cd]pyrene
2,2',3,4,4',5,5'-Heptachlorobiphenyl	Naphthalene
2,2',3,4',5,5',6-Heptachlorobiphenyl	Perylene
2,2',3,3',4,4',5,6-Octachlorobiphenyl	Phenanthrene
2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	Pyrene
Decachlorobiphenyl	

2.0 METHODS

2.1 DATA HANDLING

Because various laboratories have generated the tissue chemistry data, this report examines analytes that demonstrated consistency of analytical quantitation over the course of the HOM program. The subset examined in this report includes cadmium, copper, lead, and mercury, and the organics, 4,4'-DDE (the predominant isomer of total DDT), chlordane, PCBs, and PAHs. Chlordane, PCBs, and PAHs were evaluated as sums. Chlordane is the sum of *cis*-chlordane and *trans*-nonachlor. In the statistical evaluation, PCBs is the sum of congeners 138 and 153, the predominant isomers of total PCBs. For comparison to risk-based criteria, total PCBs is the sum of all 20 reported congeners. Low molecular weight (LMW) and high molecular weight (HMW) PAHs are summed according to the historical National Oceanic and Atmospheric Administration (NOAA) list of compounds (see Table 1-1 for a complete list). This includes 12 analytes each for the HMW PAH and LMW PAH sums. Seven of the 12 LMW PAH analytes on the NOAA list were reported in all samples with PAH results, while the five additional analytes were reported for only a subset of samples. For this reason, LMW PAH are summed two ways—as the sum of all 12 analytes, and as the sum of only the 7 most commonly reported analytes. This approach dictates that total PAHs also be summed two ways, based on which LMW PAH sum is included. The other analytes analyzed are mercury, lead, cadmium, copper, and 4,4'-DDE.

The statistical evaluations were conducted using data reported on a dry-weight basis, surrogate corrected organic contaminant data, and undetected results included at half the detection limit (Appendix A). The comparisons to risk-based criteria were conducted using wet-weight basis results. When calculating the summed compounds, undetected results were included at half of the detection limit when the sum included both detected and undetected results. If all chemicals in a sum were undetected then the maximum detection limit was reported rather than the sum of the detection limits. This value was then included in the statistical analysis at half. If all chemicals were detected then the summed compound was simply the sum of the results.

2.2 STATISTICAL METHODS

Two approaches were taken to evaluate whether concentrations at the Outfall Site were significantly different from other locations and times. A before-after control impact (BACI) model was used to assess whether concentrations prior to the relocation of the outfall were significantly different from concentrations after the relocation, and whether differences were related to the relocation of the outfall. Additionally, data for each year following the outfall relocation were evaluated using an analysis of variance (ANOVA) to compare concentrations among locations. Locations examined included the Outfall Site (OS), Cape Cod Bay (CCB and ECCB), and Deer Island Light and Flats (DIL and DIF, respectively) for all tissue types, as well as Boston Inner Harbor (IH) and the Large Navigation Buoy (LNB) for mussel tissue. For mussel tissues the Outfall Site was represented by stations OSM, OS-M1, OS-M2, OS-M3, OS-M4, OS-M5, and OS-M6. Note that prior to 2001, mussels could not be deployed at the Outfall Site since the outfall was still being constructed. Therefore, prior to 2001 mussels deployed at the Large Navigation Buoy are used to represent conditions at the Outfall Site (for more detail see Nestler et al. 2007). All statistical analyses used a

log₁₀-transformation of the concentrations to meet the underlying method assumptions of homogeneous variability and normality. Normal probability and residual plots showed that log₁₀-transformations of all data provided consistently better adherence to the statistical assumptions.

2.2.1 BACI Analysis

The BACI model is a complex ANOVA that includes factors for period (i.e., before and after) and location (control and impact), as well as an interaction term and a term to adjust for year-to-year variability (Smith 2002). The complete BACI model fit initially was of the following form:

$$X_{ijk} = \mu + \alpha_i + \tau_{k(i)} + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ijk}$$

where:

 $X_{ij} = \log_{10}$ (concentration) for the ith period at the jth location in the kth year

 μ = overall mean

 α_i = main effect of period (before v. after)

 $\tau_{k(i)}$ = year within period (year-to-year variability within each period)

 β_i = main effect of location (control v. impact)

 $(\alpha\beta)_{ij}$ = interaction term between period and location

 ε_{ijk} = error (unaccounted-for variability).

Type 3 sums of squares were used to account for the inconsistent number of samples within each period and at each location. Significance was determined at a 95 percent confidence level (alpha = 0.05).

A stepwise approach was used to reduce the complexity of the final model by removing components that were not significant. If the interaction term was not significant, it was removed and the model was refit. However, if the interaction term was significant, the interaction term and the main effect terms for period and location remained in the model, i.e., only the year-to-year variability might be removed, and the main effect term remained in the model even if they were not significant. A sequential approach of removing individual terms that were not significant continued until the model included only significant terms. Note that in some cases the year-to-year variability can be large due to the specifics of the laboratory analyses (e.g., elevated detection limits). In such cases, accounting for this variability substantially influences the interpretation of the BACI results.

Although a significant term in an ANOVA indicates a difference, it does not identify the specific nature of the difference. Therefore, following the ANOVA, pair-wise comparisons were used to evaluate the specific nature of the concentration differences. The most sensitive (smallest critical value) pair-wise comparison method was used in all cases. Primarily, Fisher's least significant difference and Tukey's methods were used, though in some cases Sidak's method was more powerful. In every instance, the overall confidence level across all comparisons was maintained at 95 percent.

The conclusions that can be drawn from the BACI analyses depend upon whether or not the interaction term is significant. For models without a significant interaction term, the main effect term for period reflects an *overall* change in concentration between periods, and the main effect term for

location reflects an *overall* difference between locations. However, a significant interaction term indicates important differences in the results that are not consistent across periods or locations. For example, a significant interaction can result from a difference between locations that is not the same for each period. Alternatively, a significant interaction can result from a change between periods that is not the same for each location. Thus, if the interaction term is significant, conclusions drawn from the main effects are of little value since they can mask important interactions. Therefore, if the interaction term is significant, the interaction term takes precedence over the main effects in the interpretation of the results, and conclusions based on the main effects are not considered.

Because the intent of this analysis is to examine the change that is attributable to the relocation of the outfall, rather than to other factors such as changes in treatment technology, laboratory analyses, or sample collection, the "before" period should encompass a time period that minimizes these other factors. However, to maximize the power of the test, it has been suggested that the "before," or baseline, period should be as long as possible. To address these concerns, we conducted two BACI analyses, one defining the "before" period as 1995–2000, and one as 1998–2000, to account for changes in sampling and analysis that might have contributed to the variability in the samples. For example, prior to 1998, changes in the wastewater treatment process (e.g., discharge of sludge, primary vs. secondary treatment) are likely to contribute to variability. In addition, prior to 1995, differences in the laboratory analyses are likely to contribute to the variability. Finally, prior to 1995, certain samples consisted of individual organisms rather than composites, and certain lobster samples were likely collected immediately upon migrating into the harbor.

The Outfall Site was considered the impact location. Concentrations of contaminants at the Outfall Site were expected to increase after the relocation of the outfall. The Large Navigation Buoy was also considered an impact site for mussels. Another BACI model was fit to the mussel tissue data using Deer Island Light as the impact location. Concentrations of contaminants were expected to decline at Deer Island Light after the relocation of the outfall. Although originally included in the monitoring program because of concerns that the effluent could impact Cape Cod Bay, there was no indication of impact and the Cape Cod locations were used as the control locations in the BACI analyses.

2.2.2 Analysis of Variance

A simpler ANOVA was used to assess differences in concentration between locations. The Outfall Site, East Cape Cod Bay, and Deer Island Flats were compared for flounder and lobster tissue samples. The Outfall Site, Cape Cod Bay, Deer Island Light, Boston Inner Harbor, and the Large Navigation Buoy were compared for mussel tissue contaminants. Separate comparisons were conducted for 2001, 2002, 2003, and 2006. Tissue contaminant monitoring did not occur consistently in 2004 and 2005. Results from additional locations that were not consistently sampled during these years were also excluded. These included flounder samples from Broad Sound (BS) (2002 only) and off of Nantasket Beach (NB) (2002 and 2006 only). Following the ANOVA for each year, pair-wise comparisons between locations were evaluated using an overall 95 percent confidence level. The most sensitive (smallest critical value) pair-wise comparison method was used, which in all cases was Tukey's method.

3.0 MUSSELS

3.1 BIOLOGY, ECOLOGY, AND BIOACCUMULATION

3.1.1 Distribution and Movement

The blue mussel (*Mytilus edulis*) is a common bivalve mollusk in coastal waters of the Arctic, North Pacific, and North Atlantic oceans (Newell 1989). Several aspects of the biology and natural history of the blue mussel make it a good indicator organism. One such aspect is their widespread distribution and abundance. In the western North Atlantic, blue mussels range from Labrador to Cape Hatteras, North Carolina (Newell 1989). They are common in the littoral and sublittoral zones (<99 m depth) throughout this range, and can be collected easily from the rocky intertidal zone, where they are often abundant. As an indicator organism, availability is a practical and logistical necessity.

Blue mussels are semi-sessile organisms that anchor to secure substrates using byssal threads secreted from glands in the animal's foot (Newell 1989). Mussels can reposition themselves, and achieve some limited mobility by adjusting the lengths of their byssal threads or secreting new ones. This enables them to avoid being smothered by accumulating sediments, to position more favorably in water currents, and even to move to the outside edge of mussel clumps. This also allows mussels to re-attach and position themselves for feeding, when deployed in cages as a sentinel organism, therefore the area in which they are exposed is well defined.

3.1.2 Feeding Ecology

Mussels are also ecologically important, both as a prey item to fish and wildlife in coastal ecosystems and as a filter feeder. Blue mussels are active suspension feeders, filtering organic particles from the water column and increasing water clarity. Adult mussels feed by pumping seawater through gills, which retain suspended particles. Phytoplankton are the dominant food item in the diet of blue mussels, but bacteria attached to detritus also serve as an important source of protein to the mussel. Filter feeding is an important pathway for exposure of mussels to contaminants in the water column.

3.1.3 Bioaccumulation and Indicator Species Potential

The tendency for mussels to bioaccumulate contaminants makes them useful biomonitoring organisms. For example, although mussels and other mollusks do possess active mixed-function oxygenase enzyme systems, the rate at which mussels can metabolize and eliminate organic contaminants, such as PAHs, is much slower than in vertebrates (Stegeman and Lech 1991). Although bioaccumulation of organic contaminants by invertebrates is influenced by a variety of biochemical and environmental factors, the concentration of organic contaminants in tissues of invertebrates does reflect the concentration of contaminant in the environment (Hellou 1996). Mussels and other aquatic invertebrates also accumulate heavy metals from the aquatic environment, but the net accumulation is not predictable by simple chemical partition coefficients, such as those that describe the affinity of an organic contaminant between water and lipid. Uptake of heavy metals by facilitated diffusion follows simple diffusion laws, but there may be corresponding automatic loss of metal from the body when the external concentration falls (Rainbow 1996). Digestive uptake of metals by invertebrates is fundamentally different than in vertebrates, since invertebrates possess the ability to take up metals by both extracellular and intracellular digestion, while vertebrates rely only

on the former (Roesijadi and Robinson 1994). The ultimate fate of various metals depends on how the particular organism handles the specific metal. As a general rule, heavy metals reach body concentrations in aquatic invertebrates that are orders of magnitude greater than external concentrations (Eisler 1981). Some species, such as mollusks, have physiological processes that store detoxified metals that are accumulated in excess of metabolic requirements.

All of the previously mentioned factors make mollusks a preferred organism for use in monitoring studies (Mix and Schaffer 1983; James 1989; O'Connor and Lauenstein 2006). In addition, mussels are also an important seafood product. Wild stocks support commercial fisheries, and farm-raised mussels are important in the aquaculture industry. As a seafood item, the public is interested in contaminant levels in mussels.

Blue mussels have become a widely used indicator of human-caused contamination. Since 1986, this organism has been used in the Mussel Watch Project, a monitoring program run by the National Status and Trends Program of NOAA to assess spatial distributions and temporal trends in contaminants (O'Connor 1998). Mussel Watch employs indigenous mussels to monitor contaminant concentrations in coastal and estuarine waters of the United States. The Gulfwatch program, a chemical contaminant-monitoring program for the Gulf of Maine, also uses indigenous blue mussels (Chase et al. 2001). By contrast, in MWRA's monitoring program, blue mussels are collected from a reference location and are then deployed in cages and recovered from Boston Harbor, Massachusetts Bay, and Cape Cod Bay. Regardless of whether indigenous populations or caged mussels are used, these national and regional databases can be used to help interpret MWRA's local results (see Hunt et al. 2006; Hunt et al. 2007).

3.1.4 Previous MWRA Findings

Concentrations of contaminants in fish and shellfish in the HOM program have been reported in a series of monitoring reports (http://www.mwra.state.ma.us/harbor/enquad/trlist.html). In the early part of the period after the outfall was relocated (2001–2003) concentrations of certain contaminants (mercury, lead, total DDT, total PCBs, total PAHs, total chlordane, dieldrin, hexachlorobenzene, lindane, and HMW PAH) were significantly higher in mussels deployed at the Outfall Site than during the pre-discharge period (1998–2000) (Wisneski et al. 2004). However, average post-discharge concentrations of some of these contaminants (mercury and lead) at the Outfall Site were similar to concentrations in pre-deployment mussels or were within the historical range measured at the Outfall Site throughout the program (most pesticides).

Total chlordane was an exception, being significantly higher in mussels deployed at the Outfall Site during the early post-discharge period in comparison to pre-discharge levels, and higher at the Outfall Site than at any other station in 2001 and 2002. In 2006, however, levels of chlordane trended substantially downward at the Outfall Site and were at or near historical lows at all stations (Nestler et al. 2007).

Similar to chlordane, concentrations of HMW PAH and total PAHs (mostly because of the contribution of HMW PAH) increased at the Outfall Site coincident with outfall startup. Although HMW PAHs at the Outfall Site were elevated in the post-discharge period (2001–2006) in comparison to pre-discharge, concentrations were lower in 2006 than in the earlier period (2001–2003) (Nestler et al. 2007).

Concentrations of total PAHs and total chlordane in mussels deployed at the Outfall Site exceeded contingency plan caution levels in 2001 and 2002, and PAH thresholds were exceeded in 2003 (Hunt et al. 2006). As a result of these exceedances, an investigative study was conducted to examine factors affecting contaminant levels and to assess the potential for environmental impact (Hunt et al. 2002). This study found that measured levels of PAHs and chlordane in mussels were below levels associated with impacts to growth and other chronic adverse impacts to aquatic organisms. In 2006, concentrations of total PAHs and chlordane were lower, and none of the contaminants exceeded the U.S. Food and Drug Administration (FDA) action limits or MWRA caution or warning thresholds.

3.2 RESULTS OF THE BACI

The BACI analyses address the question of whether contaminant levels at the impact sites changed since the outfall was relocated, and whether the observed changes were likely related to the relocation of the outfall. Changes that occurred at both the impact and the control locations are not likely to be related to the relocation of the outfall. As noted above, the "before" period is defined in two ways, as 1995–2000 and as 1998–2000, to account for changes in sampling and analysis that might have contributed to the variability in the samples. Note that there were no mussel samples collected at Cape Cod Bay during 1995–1997.

While BACI statistics were calculated for the 1995–2000 "before" period, interpretation of these results is hampered by lack of suitable control data (i.e., Cape Cod Bay). Therefore, only the results of the analysis using the 1998–2000 "before" period are discussed. All results (employing both the 1995–2000 and 1998–2000 "before" data) can be found in Appendix B (Tables B-1, B-2, and B-3 and Figures B-1 through B-8). The box plots use a log scale on the y-axis so that the distribution of the data can be visualized most effectively. The top part of each BACI table (Tables B-1, B-2, and B-3) presents the P-values for the various components of the final ANOVA model. After fitting the ANOVA, pair-wise comparisons were performed to evaluate the nature of the specific differences. The second part of each table presents conclusions that are based on the pair-wise comparison results. As previously noted in Section 2.2.1, if the interaction term is significant, conclusions drawn from the main effects are of little value since they can mask important interactions. Therefore, when the interaction term is significant, the interaction term takes precedence over the main effects in the interpretation of the results, and conclusions based on the main effects are not indicated in the lower portions of the BACI tables. Keep in mind that an impact from the relocation of the outfall can only be indicated by a significant interaction term but a significant interaction term does not necessarily indicate an impact as a result of the outfall relocation.

3.2.1 Outfall Site

Detailed results of the BACI analyses comparing the Outfall Site to the Cape Cod Bay control site are presented in Table B-1 in Appendix B. Table 3-1 summarizes only the before/after comparisons from these models. All contaminants, except mercury, have a significant interaction term, indicating a *potential* for an effect from relocation of the outfall. For mercury, concentrations at both locations are greater after relocation than before. This was also true for lead (Figure 3-1) but the increase at the Outfall Site was significantly more than the increase observed at Cape Cod Bay, likely indicative of an effect from relocation of the outfall. Although LWM PAHs have a significant interaction term and location differences, after accounting for year-to-year variability, concentrations after relocation decreased more at the Outfall Site than at Cape Cod Bay compared to before relocation.

	Before/After Main Effect	Interaction Term	Before vs. Aft	er Assessment 1998–2000)	Outfall Effect Likely?	Explanation
Outfall Site			ССВ	OS		•
Lead	NE	Signif.	After > Before	After > Before	Yes	outfall larger increase
Mercury	Signif.	Not Signif.	After > Before	After > Before	No	both increased after
PCBs	NE	Signif.		After > Before	Yes	outfall increased after
HMW PAHs	NE	Signif.		After > Before	Yes	outfall increased after
LMW PAHs (7)	NE	Signif.	Before > After	Before > After	No	no increase after
Total PAHs (19)	NE	Signif.	Before > After	After > Before	Yes	outfall increased after
Chlordane	NE	Signif.	Before > After	After > Before	Yes	outfall increased after
4,4'-DDE	NE	Signif.		After > Before	Yes	outfall increased after
Large Navigation	Buoy		CCB	LNB		
Lead	Signif.	Not Signif.	After > Before	After > Before	No	both increased after
Mercury	NE	Signif.	After > Before	After > Before	No	LNB smaller increase
PCBs	NE	Signif.		After > Before	Yes	LNB increased after
HMW PAHs	NE	Signif.		After > Before	Yes	LNB increased after
LMW PAHs (7)	NE	Signif.	Before > After	Before > After	No	no increase after
Total PAHs (19)	NE	Signif.	Before > After	After > Before	Yes	LNB increased after
Chlordane	NE	Signif.	Before > After	After > Before	Yes	LNB increased after
4,4'-DDE	Not Signif.	Not Signif.			No	no increase after

Table 3-1.Summary of Before/After Conclusions from the BACI Analysis of Concentrations
in Mussel Tissue at the Outfall Site and the Large Navigation Buoy.

Note: Significance was determined using a 0.05 level (95 percent confidence)

- indicates no significant difference between before and after periods

BACI - Before-After-Control-Impact statistical analysis

CCB - Cape Cod Bay

LNB - Large navigation buoy

- NE not evaluated due to significance of interaction term
- OS Outfall location (includes stations OSM, OS-M1, OS-M2, OS-M3, OS-M4, OS-M5, and OS-M6)
- PAH polycyclic aromatic hydrocarbon
- PCB polychlorinated biphenyl

Chlordane: Sum of *cis*-chlordane and *trans*-nonachlor

LMW PAH (7): Sum of 7 low-molecular-weight compounds (acenaphthene, acenaphthylene, anthracene, biphenyl, fluorene, naphthalene, phenanthrene)

HMW PAH (12): Sum of 12 high-molecular-weight compounds (benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[e]pyrene, benzo[ghi]perylene, benzo[k]fluoranthene, chrysene, dibenz[a,h]anthracene, fluoranthene, indeno[1,2,3-cd]pyrene, perylene, and pyrene)

Total PAH (19): Sum of LMW PAH and HMW PAH

PCB: Sum of congeners 138 and 153

Figure 3-1. Comparison of lead concentrations measured in mussel soft tissue between control and impact locations before and after relocation of the outfall

Concentrations of all other contaminants, PCBs (Figure 3-2), HMW PAHs (Figure 3-3), total PAHs, chlordane (Figure 3-4), and 4,4'-DDE, have significant interaction terms and concentrations significantly *greater* at the Outfall Site after relocation than before, without a similar change at the control site.

Thus, concentrations of lead, PCBs, HMW PAHs, total PAHs, chlordane, and 4,4'-DDE in mussels at the Outfall Site have significantly increased since relocation of the outfall.

Figure 3-2. Comparison of PCB concentrations measured in mussel soft tissue between control and impact locations before and after relocation of the outfall

1,000

100=

10

1

HMVV PAH (ng/g dry weight)

Likely effect

from outfall?

YES

	Deer Island Light	Cape Cod Bay	Outfall
	1998- 2001- 2000 2006	1998- 2001- 2000 2006	1998- 2001- 2000 2006
LEGEND			
Maximum 75th Percentile Median 25th Percentile Minimum	Control - Cape Cod Bay (C Impact - Deer Island Light or Large Naviga Before - 1995 - 2000 or 19 After - 2001 - 2006	CCB) (DIL), Outfall (OSM, OS tion Buoy (LNB) 998 - 2000	⊱M1 - OS-M6),

Likely effect

from outfall?

NO

HMW PAH is the sum of the 12 HMW analytes on the historical NOAA list

Likely effect

from outfall?

YES

Large Nav. Buoy 1998- 2001-2000 2006

Figure 3-3. Comparison of high molecular weight (HMW) PAH concentrations measured in mussel soft tissue between control and impact locations before and after relocation of the outfall

Control

3.2.2 Deer Island Light

Detailed results of the BACI analyses comparing concentrations at Deer Island Light with the Cape Cod Bay control site are presented in Table B-2 in Appendix B. Table 3-2 summarizes only the before/after comparisons from these models. Note that concentrations at Deer Island Light were expected to decline after the outfall was relocated away from Deer Island in 2000. The interaction terms were not significant for lead, mercury, LMW PAHs, total PAHs, and 4,4'-DDE. These compounds, except mercury, have significantly lower concentrations at both locations after relocation, but the change at Deer Island Light was not significantly more than at Cape Cod Bay, therefore the decrease cannot be attributed to the relocation. In contrast, chlordane also shows significantly lower concentrations at both locations after relocation. Concentrations of mercury were higher at both locations after relocation compared to the period before relocation. HMW PAHs showed no significant difference between periods for either location (Figure 3-3). Only PCBs (Figure 3-2) have a significant interaction term due to differences between periods at Deer Island Light than at the control site. However, post-relocation

concentrations of PCBs at Deer Island Light were significantly higher in comparison to the before period, contrary to expectations following movement of the outfall away from Deer Island Light.

Before/After Main Effect		Interaction Term	Before vs. After Assessment (before = 1998–2000)		Outfall Effect Likely?	Explanation
Deer Island Light			CCB	DIL		
Lead	Signif.	Not Signif.	Before > After	Before > After	No	both decreased after
Mercury	Signif.	Not Signif.	After > Before	After > Before	No	no decrease after
PCBs	NE	Signif.		After > Before	No	no decrease after
HMW PAHs	NE	Signif.			No	no decrease after
LMW PAHs (7)	Signif.	Not Signif.	Before > After	Before > After	No	both decreased after
Total PAHs (19)	Signif.	Not Signif.	Before > After	Before > After	No	both decreased after
Chlordane	NE	Signif.	Before > After	Before > After	Yes	DIL larger decrease
4,4'-DDE	Signif.	Not Signif.	Before > After	Before > After	No	both decreased after

Table 3-2.Summary of Before/After Conclusions from the BACI Analysis of Concentrations
in Mussel Soft Tissue at Deer Island Light.

Note: Significance was determined using a 0.05 level (95 percent confidence)

- indicates no significant difference between before and after periods

- BACI Before-After-Control-Impact statistical analysis
- CCB Cape Cod Bay
- DIL Deer Island Light
- NE not evaluated due to significance of interaction term
- PAH polycyclic aromatic hydrocarbon
- PCB polychlorinated biphenyl
- Chlordane: Sum of *cis*-chlordane and *trans*-nonachlor

LMW PAH (7): Sum of 7 low-molecular-weight compounds (acenaphthene, acenaphthylene, anthracene, biphenyl, fluorene, naphthalene, phenanthrene)

HMW PAH (12): Sum of 12 high-molecular-weight compounds (benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[e]pyrene, benzo[ghi]perylene, benzo[k]fluoranthene, chrysene, dibenz[a,h]anthracene, fluoranthene, indeno[1,2,3-cd]pyrene, perylene, and pyrene)

Total PAH (19): Sum of LMW PAH and HMW PAH

PCB: Sum of congeners 138 and 153

Thus, in general, the results for mussels at Deer Island Light indicate no change between periods or similar changes at both locations that are not attributable to the relocation of the outfall away from Deer Island Light. Only chlordane concentrations show evidence of an effect due to the relocation of the outfall away from Deer Island Light.

3.2.3 Large Navigation Buoy

Detailed results of the BACI analyses comparing concentrations at the Large Navigation Buoy with the Cape Cod Bay control site are presented in Table B-3 in Appendix B. Table 3-1 summarizes only the before/after comparisons from these models. All contaminants, except lead and 4,4'-DDE, have a significant interaction term, indicating a *potential* for an effect from relocation of the outfall (see Figure 3-1 for lead). Concentrations of PCBs, HMW PAHs, total PAHs, and chlordane have significant interaction terms and concentrations significantly *greater* at the Outfall Site after relocation than before, without a similar change at the control site (Figures 3-2, 3-3, and 3-4). Although LWM PAHs have a significant interaction term and location differences, after accounting

for year-to-year variability, post-relocation concentrations lowered more at the Outfall Site than Cape Cod Bay. For mercury, concentrations at both locations are greater after relocation than before but the increase was smaller at the Large Navigation Buoy than at the control site.

3.3 RESULTS OF THE ANOVA

This section addresses the question of whether current contaminant levels in mussels are different among the Outfall Site, Boston Harbor, and a reference site. Figures B-9 to B-16 in Appendix B show the measured concentrations at each location for each year of data analyzed. Results of the ANOVA analyses for each year since the relocation of the outfall are presented in Table 3-3 and Table B-4 of Appendix B. Tukey's multiple comparison test was used to test for pair-wise differences between locations at an overall 95 percent confidence level. Table 3-3 and Table B-4 present the comparisons of locations listed in each row to locations listed in each column for the various years. The location abbreviation entered at the intersection of each row-by-column comparison indicates the location that has a significantly higher concentration. Dashed entries indicate no significant difference in concentration between locations.

In general, concentrations of most compounds in most years tend to be highest at the Inner Harbor, next highest at Deer Island Light, lower at the Outfall Site, and lowest at Cape Cod Bay and the Large Navigation Buoy (e.g., Figure 3-5 for lead). HMW PAHs (2003 only) and chlordane (2001–2003) were exceptions, however, with concentrations at the Outfall Site that were significantly higher than at Deer Island Light (Figures 3-6 and 3-7). In addition, 2006 concentrations of mercury (Figure 3-8) at the Outfall Site are not significantly different from those at Cape Cod Bay, and 2006 concentrations of PCBs (Figure 3-9) are significantly *lower* at the Outfall Site in comparison to Cape Cod Bay.

2001	2002	2003	2006
OS DIL CCB IH	OS DIL CCB IH	OS DIL CCB IH	OS DIL CCB IH
Lead			
P-value = <0.0001	<i>P</i> -value = <0.0001	<i>P</i> -value = <0.0001	<i>P</i> -value = <0.0001
DIL DIL	DIL	DIL	DIL
CCB DIL	OS DIL	DIL	DIL
IH IH IH IH	IH IH IH	IH IH IH	IH IH
LNB nd nd nd nd	OS DIL IH	DIL IH	DIL IH
Mercury			
P-value = <0.0001	<i>P</i> -value = <0.0001	<i>P</i> -value = <0.0001	P-value = 0.0086
DIL			
CCB OS	OS DIL	OS	
IH IH IH	IH IH	IH IH IH	IH
LNB nd nd nd nd	OS DIL LNB IH	OS DIL IH	IH
PCB			
P-value = <0.0001	P-value = <0.0001	P-value = <0.0001	P-value = <0.0001
CCB DIL	OS DIL	OS DIL	CCB DIL
и и и	и и и	IH IH IH	IH IH
LNB OS DIL IH	DIL LNB IH	DIL LNB IH	DIL IH
HIVIVY PAH P value $-$ <0.0001	P volue $-$ <0.0001	$P_{\rm volus} = <0.0001$	P value $-$ <0.0001
	r-value = <0.0001	r-value = <0.0001	r - value = < 0.0001
CCB OS DIL			
и и и			н н н
LNB OS DIL LNB IH	OS LNB IH	OS LNB IH	OS LNB IH
LMW PAH (12)	D	D	D1
P-value = <0.0001	P-value = <0.0001	P-value = <0.0001	P-value = 0.0001
тн тн тн			
I NB DII IH	INB IH	OS INB IH	
			00 11
Total PAH (24)	D 1 0.0001	D 1 0.0001	D 1 0.0001
P-value = <0.0001	P-value = <0.0001	P-value = <0.0001	P-value = <0.0001
LIND US DIL LIND IH	US LIND IFI	US LIND IH	US LIND IH

Table 3-3. Summary of Comparisons between Locations by Year for Mussel Soft Tissue.

Changes in contaminants in winter flounder, lobs	ter, and caged mussels in
Massachusetts and Cape Cod Bays and Boston Ha	urbor: 1995-2006

June 2	2008
--------	------

	2001			2002		2003				2006						
	OS	DIL	CCB	IH	OS	DIL	CCB	IH	OS	DIL	CCB	IH	OS	DIL	CCB	IH
Chlordane																
	P-val	ue =	< 0.00	001	P-va	lue =	< 0.00	01	P-va	lue =	< 0.00	001	P-val	ue =	0.00	02
DIL	OS				OS				OS							
CCB	OS	DIL			OS	DIL			OS	DIL			OS	DIL		
IH	OS	IH	IH		OS	IH	IH		IH	IH	IH				IH	
LNB	OS	LNB	LNB		OS	LNB	LNB		OS		LNB	IH				IH
4,4'-DDE																
	P-val	ue =	< 0.00	001	P-va	lue =	$<\!0.00$	01	P-va	lue =	< 0.00	001	P-val	ue =	0.00	01
DIL	DIL								DIL				DIL			
CCB	CCB	DIL			OS	DIL				DIL						
IH	IH	IH	IH		IH	IH	IH		IH	IH	IH		IH			
LNB	OS	DIL	CCB	IH		DIL	LNB	IH		DIL		IH		DIL		IH

Note: *P*-value is from the ANOVA model. Tukey's multiple comparison test was used to test for pariwise differences between locations at an overall 95 percent confidence level.

Location abreviation indicates location has significantly higher concentration.

- indicates no significant difference in concentration between locations

CCB - Cape Cod Bay

- DIL Deer Island Light
- IH Boston inner harbor
- LNB Large navigation buoy
- nd no data available
- OS outfall location (includes stations OSM, OS-M1, OS-M2, OS-M3, OS-M4, OS-M5, and OS-M6)
- PAH polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

Chlordane: Sum of *cis*-chlordane and *trans*-nonachlor

LMW PAH (12): Sum of 12 low molecular weight compounds (acenaphthene, acenaphthylene, anthracene, biphenyl, fluorene, naphthalene, phenanthrene, 1-methylnaphthalene, 1-

methylphenanthrene, 2,3,5-triethylnaphthalene, 2,6-dimethylnaphthalene, and 2-methylnaphthalene) HMW PAH: Sum of 12 high molecular weight compounds (benz[a]anthracene, benzo[a]pyrene,

benzo[b]fluoranthene, benzo[e]pyrene, benzo[ghi]perylene, benzo[k]fluoranthene, chrysene,

dibenz[a,h]anthracene, fluoranthene, indeno[1,2,3-cd]pyrene, perylene, and pyrene)

Total PAH (24): Sum of LMW PAH and HMW PAH

PCB: Sum of congeners 138 and 153

Outfall includes stations OSM, OS-M1 , OS-M2, OS-M3, OS-M4, OS-M5, and OS-M6

Figure 3-5. Lead concentrations in mussel soft tissue after the outfall went on-line

Outfall includes stations OSM, OS-M1 , OS-M2, OS-M3, OS-M4, OS-M5, and OS-M6

Figure 3-6. High molecular weight (HMW) PAH concentrations in mussel soft tissue after the outfall went on-line

Outfall includes stations OSM, OS-M1 , OS-M2, OS-M3, OS-M4, OS-M5, and OS-M6

Figure 3-7. Chlordane concentrations in mussel soft tissue after the outfall went on-line

Outfall includes stations OSM, OS-M1 , OS-M2, OS-M3, OS-M4, OS-M5, and OS-M6

Figure 3-8. Mercury concentrations in mussel soft tissue after the outfall went on-line

Figure 3-9. PCB concentrations in mussel soft tissue after the outfall went on-line

4.0 LOBSTER

4.1 BIOLOGY, ECOLOGY, AND BIOACCUMULATION

4.1.1 Distribution and Movement

American lobster (*Homarus americanus*) range from Labrador south to North Carolina and from the intertidal zone to a depth of 720 m, but major concentrations of lobster are in the Gulf of Maine and coastal waters of New Brunswick and Nova Scotia (MacKenzie and Moring 1985). American lobsters are widely distributed in coastal waters in the northeastern United States. Similar to many marine animals, adult lobsters display seasonal movements, which include nomadism, migration, and homing that are characterized by varying scales. In general, the annual scale of movement is driven in part by thermal advantages.

Tagging studies have shown that movements of juvenile and adult lobsters in inshore populations are generally local, with seasonal movements less than 25 km (Lawton and Lavalli 1995). In a tagging study off Maine, 2,882 tagged American lobsters were released at three locations and by 2.5 years later, 88% of the recaptures were within 9.3 km of the release site and about 1% were recaptured more than 18.5 km from the release site (Krouse 1981). Correlated walk models using telemetry data of lobster populations in the Gulf of St. Lawrence showed two movement behaviors: residents and dispersers (Bowlby et al. 2007). While resident lobsters generally remain within the release area, dispersers typically make rapid movements away from release sites in autumn and a slow return in the spring (Bowlby et al. 2007). In a similar study of 8,503 recaptures, lobsters (51–152 mm carapace length) traveled an average distance that ranged from 2 to 19 km among the release sites in the Gulf of St. Lawrence (Comeau and Savoie 2002). The distances traveled in the study by Comeau and Savoie (2002) were not correlated to size, sex, or years at large. Ultrasonic telemetry and tag/recapture of lobsters in and around Great Bay estuary and coastal New Hampshire showed movements of less than 5 km toward the coast (Watson et al. 1999). In this study lobsters were tracked for up to a year and showed site-specific residency times of 2 to 4 weeks followed by rapid movement to new locations. Lobsters show greater growth in response to the warmer estuarine temperatures during summer, but move downriver toward the coast during spring and fall to avoid low salinity events (Watson et al. 1999). Lobsters respond to storm disturbances with movements of 5 km or less in horizontal displacement (Haakonsen and Anoruo 1994). The impression held by commercial fishers of the occurrence of large seasonal inshore-offshore migrations of inshore populations of adult lobsters is likely explained by temperature-related differences in catchability and seasonal removal by high fishing pressure (Lawton and Lavalli 1995).

A portion of some inshore lobster populations has been observed moving over long distances. Recapture of 4,304 lobsters tagged and released in inshore areas off southwestern Nova Scotia showed that 69% of immature lobsters and 40% of mature lobsters were recaptured less than 18.5 km from the release sites (Campbell and Stasko 1985). About 20% of the mature lobsters in this study were recaptured over 92.6 km (50 nautical miles) from the release site. In a similar study, Campbell and Stasko (1986) showed that lobsters tagged and released at three locations in the Bay of Fundy made movements indicating some intermixing of populations within the Bay of Fundy and throughout the Gulf of Maine and adjoining Continental Shelf. The seasonal shallow-deep migration of mature lobsters that Campbell and Stasko (1986) observed was possibly associated with optimizing temperature exposure for molting, growth, gonadal development, and egg development, with distances and directions of movement dependent on local topography.

Long distance movements of tagged lobsters from offshore populations have shown some lobsters make seasonal migrations. Off southern New England, approximately 20% of offshore lobster populations migrate inshore in spring and summer and migrate offshore in the fall and winter (Cooper and Uzmann 1971). Offshore lobsters from the Scotian Shelf and eastern Gulf of Maine make seasonal migrations to Georges and Browns Banks (Lawton and Lavalli 1995). It is thought that these movements are made to maintain an 8–14°C temperature range, resulting in faster growth (Lawton and Lavalli 1995). Rates of movement over ground for migratory offshore lobsters range from 7.4 to 9.3 km per day (Lawton and Lavalli 1995). Tag-recapture studies of offshore lobsters have shown examples of homing behavior as well (Lawton and Lavalli 1995). Ovigerous lobsters of offshore populations move to shallower offshore areas such as Georges and Browns Banks during summer months, often returning to the same location in successive years (Lawton and Lavalli 1995).

4.1.2 Habitat and Feeding Ecology

Juvenile lobsters prefer to settle on cobble beds, probably to avoid predation (Palma et al. 1998; Castro et al. 2001). Lobsters also inhabit kelp beds, particularly around the perimeter (Bologna and Steneck 1993). The selective habitat-seeking behavior and lower post-settlement mortality of lobsters are consistent with their lower fecundity and later onset of reproductive maturity, as compared to other crustaceans. Because there is a positive relationship between larval density and settlement, any process that affects the density of larval lobsters available for settlement may result in a change in the density of benthic stages. The density of lobsters from new recruits to sexually mature females can be predicted based on larval mortality rates, postlarval abundance, and available habitat for settlement (Incze et al. 2003).

Presence of physical shelter that can be used to escape predation is an important factor for small lobsters (Spanier et al. 1998, Castro et al. 2001). Lack of shelter causes lobsters to modify their behavior and places them at a greater risk of predation. Intraspecific shelter competition may drive declines of preharvestable-sized lobsters in shallow coastal zones and increase their abundance in offshore and deep waters (Steneck 2006). In small-scale experiments, Steneck (2006) showed that large lobsters leave or avoid areas of high population density and intense competition for low populated areas with less shelter competition.

Changes in water temperature can affect lobster catches. Increases in lobster catch have been correlated with increasing water temperature (Fogarty 1988; Campbell et al. 1991). Higher water temperature increases the activity level of lobsters, making them more likely to enter traps. Catch rates are shown to increase with higher bottom water temperatures and decrease with lower water temperatures 24 hours prior to traps being hauled (Drinkwater et al. 2006). Relative abundance of lobster and mean surface water temperatures in June through November in previous years are also correlated. Huntsman (1923; cited in Harding et al. 1983) hypothesized that warm summer surface water stimulates rapid growth of planktonic larvae so that the larval stages are completed and settlement occurs before the onset of cooler temperature and lobster catches 4 to 7 years later. A similar relationship was found between water temperature and lobster catch in Maine six years later

(Fogarty 1988), and in Nova Scotia four years (Campbell et al. 1991) and six to eight years later (Koeller 1998).

Peak feeding season for adult lobsters is between June and July, but feeding activity may remain high through September for males and through February for females (Lawton and Lavalli 1995). Activity of lobsters is generally highest during the night, but offshore lobsters and inshore lobsters inhabiting turbid waters may also be active during daylight (Lawton and Lavalli 1995). Daily foraging activity is typically limited to around 100 m to 2 km (Lawton and Lavalli 1995).

4.1.3 Bioaccumulation

The ability of aquatic invertebrates to take up contaminants from the environment has been well documented (Mix 1984; Roesijadi and Robinson 1994). In contrast to mollusks, which tend to have lower rates of metabolism and elimination of organic contaminants, certain species of crustaceans can metabolize organic contaminants relatively rapidly (James 1989). However, rates of metabolism by the American lobster, *H. americanus*, are slow and organic contaminants tend to accumulate in the hepatopancreas. For example, the half-life of a single dose of benzo[a]pyrene within *H. americanus* was estimated to be more than 2 months (Bend et al. 1981). Much less is known about the mechanisms and rates of elimination of metals from aquatic organisms than is known about the uptake and accumulation. The variety of mechanisms used to eliminate metals is complex and specific to the species and to the metal. Observed rates of release are often described by a two-compartment model, in which metals are more easily mobilized and exchanged from a rapidly releasing compartment than from a slowly releasing compartment in which metals are tightly bound (Roesijadi and Robinson 1994). Rapid accumulation and relatively slow rates of elimination contribute to the usefulness of the American lobster as a monitoring organism.

4.1.4 Suitability as an Indicator Species

As mentioned, lobsters make seasonal long-distance migrations between inshore and offshore waters. While lobsters have been easily available in Boston Harbor and Cape Cod Bay during the summer and early fall, they have rarely been available at the Outfall Site until the fall (Lefkovitz et al. 2001; Nestler et al 2007). It is the prevailing view among lobstermen that lobsters reach the area of the outfall in early to mid fall as part of their offshore migration. The rapid accumulation but relatively slow rate of elimination of contaminants makes lobster a good indicator species in areas where the lobsters are known to spend a considerable amount of time (e.g., Deer Island and Cape Cod Bay). However, in regions where they are more transient, like the outfall area, their benefit as an indicator species is greatly reduced.

4.1.5 **Previous MWRA Findings**

Previous HOM documents have reported that the highest levels of organic contaminants tended to be found in lobsters collected from Deer Island Flats in Boston Harbor and the lowest levels were typically found at East Cape Cod Bay (Nestler et al. 2007). In general, 2006 concentrations in lobster meat were comparable to, or at the lower end of, the historical range across all stations. Concentrations in hepatopancreas of several organic compounds increased in 2006 in comparison to 2003. For example, the concentrations of 4,4'-DDE at all locations were dramatically higher in 2006 than in previous years, matching historical highs at Deer Island Flats and East Cape Cod Bay. Increases were also observed in chlordane and selected PAHs at some locations. Levels of PCB congeners 138 and 153 were generally comparable to historical levels. Concentrations of metals in 2006 were also generally within historical ranges. A few metals, however, were at the upper end of the historical range, including nickel at Deer Island Flats and zinc at the Outfall Site (Nestler et al. 2007).

4.2 **RESULTS OF THE BACI**

The BACI analyses address the question of whether contaminant levels at the Outfall Site have changed since the outfall was relocated, and whether the observed changes were likely related to the relocation. As noted above, the "before" period is defined in two ways, as 1995–2000 and as 1998– 2000, to account for changes in sampling and analysis that might have contributed to the variability in the samples. All results (employing both the 1995–2000 and 1998–2000 "before" data) can be found in Appendix B (Tables B-5 and B-6 and Figures B-17 through B-30). The top part of each BACI table presents the *P*-values for the various components of the final ANOVA model. After fitting the ANOVA, pair-wise comparisons are performed to evaluate the nature of the specific differences. The second part of each table presents conclusions that are based on the pair-wise comparison results. As previously noted in Section 2.2.1, if the interaction term is significant, conclusions drawn from the main effects are of little value since they can mask important interactions. Therefore, when the interaction term is significant, the interaction term takes precedence over the main effects in the interpretation of the results, and conclusions based on the main effects are not indicated in the lower portions of the BACI tables. Keep in mind that an impact from the relocation of the outfall can only be indicated by a significant interaction term, but a significant interaction term does not necessarily indicate an impact from the outfall relocation.

Results of the BACI for lobster meat are presented in Tables 4-1 and B-5, Figures 4-1 and 4-2 and Figures B-17 to B-20. Table 4-1 summarizes only the before/after comparisons from these models. None of the results for lobster meat showed significant interactions that would indicate a potential for an effect from relocation of the outfall. None of the interaction terms for any of the parameters were significant when employing the 1998–2000 "before" data. Only chlordane showed a significant interaction when using the 1995–2000 "before" data, but in that case, the concentration of chlordane significantly decreased in the later period. Concentrations of PCBs (Figure 4-1) and 4,4'-DDE showed no change between time periods, whereas mercury and chlordane (Figure 4-2) were significantly lower at both stations after relocation of the outfall.

Results of the BACI analyses for lobster hepatopancreas are presented in Tables 4-1 and B-6, Figures 4-3 through 4-5, and Figures B-21 to B-30. Table 4-1 summarizes only the before/after comparisons from the BACI models. Of the 20 analyses, only concentrations of lead in the comparison using the 1995–2000 data had a significant interaction term (Table B-6). In this case, lead increased only at East Cape Cod Bay, but did not significantly change at the Outfall Site, between time periods (Figures 4-3 and B-23). In most other cases, concentrations decreased or stayed the same after relocation of the outfall. Cadmium and copper significantly increased at both sites after relocation when employing the 1995–2000 "before" data (Figures 4-4 and B-22 for copper). Although total PAHs and HMW PAH (Figure 4-5) concentrations show a possible increase at the Outfall Site, this difference was not statistically significant because of the large variability during the period after relocation. In summary, none of the results for lobster hepatopancreas indicate a potential for an effect from relocation of the outfall.

		T ()	Before vs. Afte	er Assessment	Outfall	
	Before/After Main Effect	Interaction Term	(before = 1	998–2000)	Effect Likely?	Explanation
Lobster Meat			ECCB	OS		
Mercury	Signif.	Not Signif.	Before > After	Before > After	No	no increase after
PCBs	Not Signif.	Not Signif.			No	no increase after
Chlordane	Signif.	Not Signif.	Before > After	Before > After	No	no increase after
4,4'-DDE	Not Signif.	Not Signif.			No	no increase after
Lobster Hepatopacro	eas		ECCB	OS		
Cadmium	Not Signif.	Not Signif.			No	no increase after
Copper	Not Signif.	Not Signif.			No	no increase after
Lead	Not Signif.	Not Signif.			No	no increase after
Mercury	Signif.	Not Signif.	Before > After	Before > After	No	no increase after
PCBs	Signif.	Not Signif.	Before > After	Before > After	No	no increase after
HMW PAHs	Not Signif.	Not Signif.			No	no increase after
LMW PAHs (7)	Not Signif.	Not Signif.			No	no increase after
Total PAHs (19)	Not Signif.	Not Signif.			No	no increase after
Chlordane	Signif.	Not Signif.	Before > After	Before > After	No	no increase after
4,4'-DDE	Signif.	Not Signif.	Before > After	Before > After	No	no increase after

Table 4-1.Summary of Before/After Conclusions from the BACI Analysis of Concentrations
in Lobster Meat and Lobster Hepatopancreas at the Outfall Site.

Note: Significance was determined using a 0.05 level (95 percent confidence)

- indicates no significant difference between before and after periods

BACI - Before-After-Control-Impact statistical analysis

ECCB - East Cape Cod Bay

OS - Outfall location

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

Chlordane: Sum of *cis*-chlordane and *trans*-nonachlor

LMW PAH (7): Sum of 7 low-molecular-weight compounds (acenaphthene, acenaphthylene, anthracene, biphenyl, fluorene, naphthalene, phenanthrene)

HMW PAH (12): Sum of 12 high-molecular-weight compounds (benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[e]pyrene, benzo[ghi]perylene, benzo[k]fluoranthene, chrysene,

dibenz[a,h]anthracene, fluoranthene, indeno[1,2,3-cd]pyrene, perylene, and pyrene)

Total PAH (19): Sum of LMW PAH and HMW PAH

Figure 4-1. Comparison of PCB concentrations measured in lobster meat between control and impact locations before and after relocation of the outfall

Figure 4-2. Comparison of chlordane concentrations measured in lobster meat between control and impact locations before and after relocation of the outfall

Figure 4-3. Comparison of lead concentrations measured in lobster hepatopancreas between control and impact locations before and after relocation of the outfall

Figure 4-4. Comparison of copper concentrations measured in lobster hepatopancreas between control and impact locations before and after relocation of the outfall

Figure 4-5. Comparison of high molecular weight (HMW) PAH concentrations measured in lobster hepatopancreas between control and impact locations before and after relocation of the outfall

4.3 **RESULTS OF THE ANOVA**

This section addresses the question of whether contaminant levels in lobster meat and lobster hepatopancreas are different between the Outfall Site, Deer Island Flats in Boston Harbor, and the East Cape Cod Bay reference site. Results of the ANOVA analyses are presented in Tables 4-2 and 4-3. Complete results and associated figures are included in Appendix B (Tables B-7 and B-8 and Figures B-31 through B-44).

Results of the lobster meat ANOVAs can be found in Tables 4-2 and B-7, Figures 4-6 and 4-7 and Figures B-31 to B-34. The post-diversion results from Table 4-2 are consistent with historical data. Concentrations of organic contaminants in lobster collected at Deer Island Flats have had higher concentrations than those collected at the outfall, which had higher concentrations than those collected at the outfall, which had higher meat collected in 2006 at the Outfall Site had lower chlordane concentrations than those collected at Cape Cod Bay (Figure 4-6). Mercury levels in Cape Cod Bay lobsters meat have usually been lower than both Deer Island and

Outfall lobsters but the latter two sites have never shown a clear pattern of either site having the highest concentration (Figure 4-7).

Lobster hepatopancreas results can be found in Tables 4-3 and B-8, Figures 4-8 to 4-11, and Figures B-35 to B-44. Similar to the lobster meat, organic contaminants in the hepatopancreas have always tended to be highest (sometimes significantly, other times only numerically) in Deer Island lobsters and lowest in those collected from Cape Cod Bay (Figures 4-8 and 4-9 show PCB and HMW PAH concentrations). Metals have shown a more variable pattern with no consistency as to which of the three stations is statistically or numerically highest or lowest (see Table 4-3 and Figures 4-10 and 4-11 for cadmium and copper).

		200	2001		2002		2003			2006		
	-	OS	DIF		OS	DIF		OS	DIF	-	OS	DIF
Mercury												
		P-value =	0.0040		<i>P</i> -value =	0.1545		P-value =	0.0076		P-value =	0.0060
	DIF											
	ECCB	OS	DIF					OS	DIF		OS	DIF
РСВ												
		<i>P</i> -value =	0.1370		<i>P</i> -value =	0.0238		<i>P</i> -value =	0.0548		<i>P</i> -value =	0.0359
	DIF											
	ECCB					DIF						DIF
Chlordane												
		<i>P</i> -value =	0.0048		<i>P</i> -value =	0.0102		P-value =	0.0001		<i>P</i> -value =	0.0013
	DIF							DIF			DIF	
	ECCB	OS	DIF			DIF		OS	DIF		ECCB	
4,4'-DDE												
		P-value =	0.9982		<i>P</i> -value =	0.0595		P-value =	0.0091		P-value =	0.0047
	DIF							DIF				
	ECCB								DIF		OS	DIF

Table 4-2. Summary of Comparisons between Locations by Year for Lobster Meat.

Note: *P*-value is from the ANOVA model. Tukey's multiple comparison test was used to test for pariwise differences between locations at an overall 95 percent confidence level.

Location abreviation indicates location has significantly higher concentration.

-- indicates no significant difference in concentration between locations

DIF - Deer Island Flats

ECCB - East Cape Cod Bay

OS - outfall location

PCB - polychlorinated biphenyl

Chlordane: Sum of *cis*-chlordane and *trans*-nonachlor

		2001		200	2	20	2003			2006		
		OS	DIF	OS	DIF	OS	DIF		OS	DIF		
Cadmium												
		<i>P</i> -value =	0.0019	P-value =	0.4837	<i>P</i> -value	= 0.8189		<i>P</i> -value =	0.0244		
	DIF	OS							OS			
	ECCB		ECCB									
Common												
Copper		D volue -	0 2692	D volue -	0.0150	D volue	00222		D voluo –	0.0550		
	DIE	P-value =	0.5082	P-value =	0.0150	<i>P</i> -value	= 0.0255	1	P-value =	0.0550		
					DIE							
	ECCB			05	DIF	05			05			
Lead												
		<i>P</i> -value =	0.7932	<i>P</i> -value =	0.5357	P-value	= 0.2521		<i>P</i> -value =	0.0028		
	DIF											
	ECCB								OS	DIF		
Monouna												
wiercury		D voluo –	0.2601	P voluo –	0.0510		- 0.0005		D voluo –	0.0062		
	DIE		0.2091		0.0519		- 0.0005		OS	0.0002		
	ECCB						DIE		03			
	LCCD					05	DII		05			
РСВ												
		<i>P</i> -value =	0.0184	<i>P</i> -value =	0.0009	<i>P</i> -value	= 0.0224		<i>P</i> -value =	0.1116		
	DIF			DIF								
	ECCB		DIF	OS	DIF		DIF					
HMW PAH	ſ											
	-	<i>P</i> -value =	0.0097	<i>P</i> -value =	0.0115	<i>P</i> -value	= 0.0001		P-value =	0.0013		
	DIF	DIF	0.0097		010110		0.0001		DIF	0.0010		
	ECCB		DIF		DIF	OS	DIF			DIF		
LMW PAH	l (12)	D 1	0.0001	D 1	0.0010	D 1	0.0001		D 1	0.0044		
	DIE	P-value =	0.0001	P-value =	0.0210	<i>P</i> -value	= 0.0001	1	P-value =	0.0044		
	DIF	DIF	DIE		DIE	OS	DIE		DIF	DIE		
	ECCB	OS	DIF		DIF	OS	DIF			DIF		
Total PAH	(24)											
		<i>P</i> -value =	0.0104	<i>P</i> -value =	0.0098	P-value	= 0.0001		<i>P</i> -value =	0.0013		
	DIF	DIF							DIF			
	ECCB		DIF		DIF	OS	DIF			DIF		
Chlandana								-				
Chiordane		D voluo -	0.0002	D volue –	0.0018		- 0.1075		D voluo –	0 0000		
	DIE		0.0002	I - value =	0.0010	<i>i</i> -value	- 0.1073	'	-value -	0.0000		
			DIE	05	DIE							
	ECCD	03	DIF	05	DIF							
4,4'-DDE												
		<i>P</i> -value =	0.0861	<i>P</i> -value =	0.0066	<i>P</i> -value	= 0.0001		<i>P</i> -value =	0.0249		
	DIF					DIF			DIF			
	ECCB				DIF		DIF					

Table 4-3. Summary of Comparisons between Locations by Year for Lobster Hepatopancreas.

Note: *P*-value is from the ANOVA model. Tukey's multiple comparison test was used to test for pariwise differences between locations at an overall 95 percent confidence level. Location abreviation indicates location has significantly higher concentration.

- indicates no significant difference in concentration between locations
- DIF Deer Island Flats

--

- ECCB East Cape Cod Bay
- OS outfall location
- PAH polycyclic aromatic hydrocarbon
- PCB polychlorinated biphenyl
- Chlordane: Sum of cis-chlordane and trans-nonachlor

LMW PAH (12): Sum of 12 low molecular weight compounds (acenaphthene, acenaphthylene, anthracene, biphenyl, fluorene, naphthalene, phenanthrene, 1-methylnaphthalene, 1-

methylphenanthrene, 2,3,5-triethylnaphthalene, 2,6-dimethylnaphthalene, and 2-methylnaphthalene) HMW PAH: Sum of 12 high molecular weight compounds (benz[a]anthracene, benzo[a]pyrene,

benzo[b]fluoranthene, benzo[e]pyrene, benzo[ghi]perylene, benzo[k]fluoranthene, chrysene, dibenz[a,h]anthracene, fluoranthene, indeno[1,2,3-cd]pyrene, perylene, and pyrene)

Total PAH (24): Sum of LMW PAH and HMW PAH

Total chlordane is the sum of *cis*-chlordane and *trans*-nonachlor

Figure 4-6. Chlordane concentrations in lobster meat after the outfall went on-line

Figure 4-7. Mercury concentrations in lobster meat after the outfall went on-line

Figure 4-8. PCB concentrations in lobster hepatopancreas tissue after the outfall went on-line

HMW PAH is the sum of the 12 HMW analytes on the historical NOAA list

Figure 4-9. High molecular weight (HMW) PAH concentrations in lobster hepatopancreas tissue after the outfall went on-line

Figure 4-10. Cadmium concentrations in lobster hepatopancreas tissue after the outfall went on-line

Figure 4-11. Copper concentrations in lobster hepatopancreas tissue after the outfall went on-line

5.0 WINTER FLOUNDER

5.1 BIOLOGY, ECOLOGY, AND BIOACCUMULATION

5.1.1 Distribution and Movement

Winter flounder (*Pleuronectes americanus*) range from Labrador to Georgia (Scott and Scott 1988), but are most common from Nova Scotia to New Jersey (Perlmutter 1947). Populations of winter flounder are composed of reproductively isolated fish that spawn in specific estuaries or coastal embayments (Lobell 1939; Perlmutter 1947; Saila 1961). Differences in seasonal depth stratification and onshore-offshore distributions may in large part be explained by the behavioral responses to temperature and light as shown in experimental studies of thermoregulatory and diel behavior (Casterlin and Reynolds 1982). In addition, spatial distribution and movements of winter flounder depend on the life stage.

Depending on the season and geography, adult winter flounder can be found on a variety of substrates, including hard bottom in offshore areas, such as Georges Bank, and sand in shallow coastal habitats. Preferred temperatures for adult winter flounder are 10 to 15° C, but they survive temperatures ranging from -1.4 to 19.3° C. As a result of the protection of antifreeze proteins that are seasonally secreted in their blood serum, winter flounder are less susceptible to freezing or cold shock than to heat shock (Klein-MacPhee 2002). Adult winter flounder are mostly found in salinities above 22 ppt, but may tolerate salinity as low as 15 ppt (Pereira et al. 1999). Winter flounder are sensitive to dissolved oxygen below 3 ppm but may tolerate as low as 2 ppm dissolved oxygen at the expense of reduced growth (Klein-MacPhee 2002).

Adults are thought to enter inshore spawning areas in fall or early winter and spawn in late winter or early spring, with peak spawning in Massachusetts Bay during February and March. Adult winter flounder populations may have biased sex ratios. During an extensive mark-recapture study by Howe and Coates (1975) from 1960 to 1965, the female to male sex ratio of the 12,151 tagged winter flounder was 2.3:1 (about 70% female). Similarly, Saila (1961) reported 70% female of the 601 winter flounder tagged in a separate study. Fecundity of mature females ranges from approximately 220,000 eggs at age 3 to over 1.8 million eggs at age 15 (Saila et al. 1997). Winter flounder spawn during periods of low water temperature (e.g., 0–2.8°C near Gloucester, Massachusetts [Klein-MacPhee 2002]). Climatic factors influence timing of spawning and larval development (Sogard et al. 2001). Spawning sites generally occur in areas of estuaries where larvae would be minimally displaced by tidal movement (Crawford and Carey 1985).

A 10-year tagging study at 21 locations off the coast of Massachusetts north of Cape Cod showed that movements of winter flounder are generally localized and confined to inshore waters within 10 km of their release location (Howe and Coates 1975). For example, recaptured adult winter flounder that were tagged and released in Boston Harbor during 1960 and 1961 traveled an average distance of 3.4 and 2.2 km, respectively (Howe and Coates 1975). East and south of Cape Cod, the recapture study reported average seasonal movements of 5.7 to 61.2 km in a southeastward direction that was related to water temperature-depth contours. The average straight-line distance of winter flounder was approximately 10 miles based on recapture up to 730 days after release off Rhode Island during

winter (Saila 1961). Saila (1961) also observed greatest dispersion during June-November and the least movement during November to June in areas associated with breeding grounds.

5.1.2 Bioaccumulation

In comparison to invertebrates, rates of metabolism and elimination of organic contaminants in fish are relatively rapid. Rates of metabolism of PAH in fish are strongly induced by exposure to PAHs and planar halogenated hydrocarbons. Even in fish with induced rates of metabolism, halogenated hydrocarbons are metabolized more slowly than PAHs (Stegeman and Hahn 1994). Rapid metabolism and elimination of organic contaminants can result in reduced tissue concentrations. For example, metabolism of benz[a]acridine was estimated to reduce the bioaccumulation of that compound by nearly an order of magnitude (Varanasi and Stein 1991). Concentrations of compounds, such as PAHs, in fish tissue are therefore not routinely measured in monitoring programs. Concentrations of more persistent compounds in tissue, such as chlorinated biphenyls and pesticides, are, however, typically used as measures of environmental exposure of fish. As with invertebrates, fish can take up metals and maintain homeostasis up to certain levels by binding metals to inducible metal-binding ligands such as metallothionein, and sequestration of metals in lysosomes, inclusion bodies, and mineral concretions (DiGuilio et al. 1995). Specific patterns of accumulation and internal distribution depend upon the route of exposure, tissue, species, and life stage. Uptake of mercury is almost entirely in the form of methylmercury, and nearly all of the mercury in fish tissue is methylmercury. Most uptake of methylmercury is from the diet. Inorganic mercury is absorbed much less efficiently across the gut and gills and is eliminated more rapidly than methylmercury (Weiner and Spry 1996). Food chain structure influences the uptake and concentration of methylmercury in fish, and piscivorous fish usually contain higher concentrations than do cooccurring fish of lower trophic levels (Weiner and Spry 1996). The concentrations of mercury in fish tissue also tend to increase with the size or age of the fish. Adult winter flounder spend most of their time on or near the bottom, feeding opportunistically on polychaete worms, mollusks, crustaceans, other invertebrates, fish eggs, small fish, and vegetation (Klein-MacPhee 2002). Therefore, flounder tend to have lower levels of mercury than fish at higher trophic levels.

5.1.3 Suitability as an Indicator Organism

Juvenile winter flounder were widely used for pollution monitoring in areas south of Cape Cod because movement during this life stage is limited to inshore natal waters. Several tagging studies have shown that adult winter flounder make seasonal inshore-offshore migrations related to preferred water temperature and spawning activity. In Massachusetts Bay, winter flounder may leave inshore waters during the summer if water temperatures rise above the preferred temperature range of 12–15°C. Over the course of a year, the majority of individuals limit their movements from inshore waters to a few kilometers offshore. Populations may consist of a mixture of reproductively active, migratory adults and non-spawning or non-migratory adults. Bioaccumulation of potential contaminants in adult winter flounder in Massachusetts Bay will be dependent on differential exposure time at inshore spawning grounds and offshore waters during the summer. For this reason, the adult winter flounder are less ideal as a monitoring species, as compared to young of the year.

5.1.4 Previous MWRA Findings

Previous analyses of the monitoring data for flounder found that the spatial distribution of the levels of contaminants in flounder fillet and liver is consistent with regional distributions of sediment contamination; levels are higher in Boston Harbor than offshore in Massachusetts Bay and Cape Cod Bay (Hunt et al. 2006; Nestler et al. 2007). Mercury levels in edible tissue were found to be higher than expected in 2003, although still lower than contingency plan thresholds (Nestler et al. 2007). Total PCBs were also found to be higher in the post-discharge period, possibly as a result of the wetter/snowier weather during 2000–2002, which may have resulted in increased flux of contamination in precipitation and runoff (Hunt et al. 2006). Reports also found that levels of metals in liver are often highest at the Outfall Site, but tend to be more variable than levels of organic contaminants, show no clear temporal trend, and are comparable during the pre- and post-discharge period (Nestler et al. 2007).

5.2 **RESULTS OF THE BACI**

The BACI analyses address the question of whether contaminant levels at the Outfall Site changed since the relocation, and whether the observed changes were likely related to the relocation of the outfall. As noted above, the "before" period is defined in two ways, as 1995–2000 and as 1998–2000, to account for changes in sampling and analysis that might have contributed to the variability in the samples. All results (employing both the 1995–2000 and 1998–2000 "before" data) can be found in Appendix B (Tables B-9 and B-10 and Figures B-45 through B-58). The top part of each BACI table presents the P-values for the various components of the final ANOVA model. After fitting the ANOVA, pair-wise comparisons were performed to evaluate the nature of the specific differences. The second part of each table presents conclusions that are based on the pair-wise comparison results. As previously noted in Section 2.2.1, if the interaction term is significant, conclusions drawn from the main effects are of little value since they can mask important interactions. Therefore, when the interaction term is significant, the interaction term takes precedence over the main effects in the interpretation of the results, and conclusions based on the main effects are not indicated in the lower portions of the BACI tables. Keep in mind that an impact from the relocation of the outfall can only be indicated by a significant interaction term, but a significant interaction term does not necessarily indicate an impact from the outfall relocation.

The BACI results for flounder fillet can be found in Tables 5-1 and B-9, Figures 5-1 and 5-2, and Figures B-45 to B-48. Table 5-1 summarizes only the before/after comparisons from these models. None of the interaction terms were significant when comparing either the 1995–2000 or the 1998–2000 pre-periods to post-diversion flounder tissue. This indicates that changes in concentrations observed at the outfall were not significantly different between before and after relocation of the outfall (see 4,4,'-DDE in Figure 5-1) or that any change observed was not significantly different than the change observed at the control site (see mercury in Figure 5-2).

	Before/After Main Effect	Interaction	Before vs. Aft	er Assessment	Outfall Effect	Explanation
	Main Effect	1 et m	(before = 1)	998 - 2000)	Likely:	
Flounder Fillet			ECCB	US		
Mercury	Signif.	Not Signif.	After > Before	After > Before	No	both increased after
PCBs	Not Signif.	Not Signif.			No	no increase after
Chlordane	Signif.	Not Signif.	Before > After	Before > After	No	no increase after
4,4'-DDE	Not Signif.	Not Signif.			No	no increase after
Flounder Liver			ECCB	OS		
Cadmium	Not Signif.	Not Signif.			No	no increase after
Copper	Signif.	Not Signif.	Before > After	Before > After	No	no increase after
Lead	Not Signif.	Not Signif.			No	no increase after
Mercury	Signif.	Not Signif.	Before > After	Before > After	No	no increase after
PCBs	Signif.	Not Signif.	After > Before	After > Before	No	both increased after
HMW PAHs	Not Signif.	Not Signif.			No	no increase after
LMW PAHs (7)	Not Signif.	Not Signif.			No	no increase after
Total PAHs (19)	Not Signif.	Not Signif.			No	no increase after
Chlordane	Not Signif.	Not Signif.			No	no increase after
4,4'-DDE	Not Signif.	Not Signif.			No	no increase after

Table 5-1.Summary of Before/After Conclusions from the BACI Analysis of Concentrations
in Flounder Fillet and Liver Tissue at the Outfall Site.

Note: Significance was determined using a 0.05 level (95 percent confidence)

-- indicates no significant difference between before and after periods

BACI - Before-After-Control-Impact statistical analysis

ECCB - East Cape Cod Bay

OS - Outfall location

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

Chlordane: Sum of *cis*-chlordane and *trans*-nonachlor

LMW PAH (7): Sum of 7 low-molecular-weight compounds (acenaphthene, acenaphthylene,

anthracene, biphenyl, fluorene, naphthalene, phenanthrene)

HMW PAH (12): Sum of 12 high-molecular-weight compounds (benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[e]pyrene, benzo[ghi]perylene, benzo[k]fluoranthene, chrysene,

dibenz[a,h]anthracene, fluoranthene, indeno[1,2,3-cd]pyrene, perylene, and pyrene)

Total PAH (19): Sum of LMW PAH and HMW PAH

Figure 5-1. Comparison of 4,4'-DDE concentrations measured in flounder fillet between control and impact locations before and after relocation of the outfall

Figure 5-2. Comparison of mercury concentrations measured in flounder fillet between control and impact locations before and after relocation of the outfall

Flounder liver results can be found in Tables 5-1 and B-10, Figures 5-3 and 5-4, and Figures B-49 to B-58. Table 5-1 presents only the before/after comparisons whereas Table B-10 presents the complete results for the BACI models. None of the parameters for either comparison period had a significant interaction term except mercury when using the 1995–2000 before period. While mercury concentrations stayed the same between periods at the Outfall Site, they decreased in flounder livers from Cape Cod Bay (Figure 5-3). This is not strong evidence for an outfall effect because of the lack of significant change in concentration at the Outfall Site. Most other parameters were either lower or the same at both sites after relocation of the outfall. When using the 1998–2000 period definition, only PCBs were significantly higher after the diversion but this was observed at both sites (Figure 5-4).

Thus, none of the results suggest that concentrations of contaminants in winter flounder increased as a result of the relocation of the outfall.

Figure 5-3. Comparison of mercury concentrations measured in flounder liver between control and impact locations before and after relocation of the outfall

Figure 5-4. Comparison of PCB concentrations measured in flounder liver between control and impact locations before and after relocation of the outfall

5.3 **RESULTS OF THE ANOVA**

This section addresses the question of whether current contaminant levels in flounder fillet and liver are different among the Outfall Site, Deer Island Flats in Boston Harbor, and the East Cape Cod Bay reference site. Results of the ANOVA analyses for flounder tissue are presented in Table 5-2 for fillet and Table 5-3 for liver. Appendix B includes these results along with figures presenting the measured concentrations in flounder fillet and liver for each of the years compared in these analyses (Tables B-11 and B-12 and Figures B-59 through B-72).

		2001		200	2	200	3	2006	
		OS	DIF	OS	DIF	OS	DIF	OS	DIF
Mercury									
		P-value =	0.0057	P-value =	0.0330	<i>P</i> -value =	0.0034	P-value =	0.0039
	DIF					OS			
	ECCB	OS	DIF	OS		OS		OS	
РСВ									
		<i>P</i> -value =	< 0.0001	<i>P</i> -value =	0.0011	<i>P</i> -value =	0.0008	<i>P</i> -value =	0.0001
	DIF	DIF						DIF	
	ECCB	OS	DIF	OS	DIF	OS	DIF	OS	DIF
Chlordane									
		<i>P</i> -value =	0.0001	<i>P</i> -value =	< 0.0001	<i>P</i> -value =	0.0037	P-value =	0.0011
	DIF	DIF		DIF		DIF		DIF	
	ECCB		DIF	OS	DIF		DIF		DIF
4,4'-DDE									
		<i>P</i> -value =	0.0001	<i>P</i> -value =	0.0123	<i>P</i> -value =	0.0088	<i>P</i> -value =	0.0002
	DIF	DIF						DIF	
	ECCB		DIF		DIF		DIF	OS	DIF

Table 5-2. Summary of Comparisons between Locations by Year for Flounder Fillet.

Note: *P*-value is from the ANOVA model. Tukey's multiple comparison test was used to test for pariwise differences between locations at an overall 95 percent confidence level.

Location abreviation indicates location has significantly higher concentration.

- indicates no significant difference in concentration between locations --

DIF - Deer Island Flats

ECCB - East Cape Cod Bay

OS - outfall location PCB - polychlorinated biphenyl

Chlordane: Sum of cis-chlordane and trans-nonachlor

		200)1	2002			2003			2006	
		OS	DIF	OS	DIF	-	OS	DIF	_	OS	DIF
Cadmium											
		<i>P</i> -value =	0.2683	P-value =	0.7645		P-value =	0.1964		<i>P</i> -value =	0.5250
	DIF										
	ECCB										
Connon									_		
Copper		D voluo –	0.2519	D voluo -	0 1600		D volue –	0.0122		D voluo -	0 1000
	DIE		0.3318	I - value =	0.1099	1	I - value = OS	0.0122	Í		0.1009
	ECCP						05				
	ECCD					l			L		
Lead											
		P-value =	0.0023	<i>P</i> -value =	0.0380		P-value =	0.4579		<i>P</i> -value =	0.0103
	DIF	OS								OS	
	ECCB	OS		OS						OS	
Mercury											
mercury		<i>P</i> -value =	0.0114	<i>P</i> -value =	0.0034		<i>P</i> -value =	0.0055		<i>P</i> -value =	0.0684
	DIF		0.0111		0.0051			0.0055	1		0.0001
	ECCB	OS	DIF	OS			OS				
	LCCD	05	DII	05		L	00		L		
РСВ											
		P-value =	< 0.0001	P-value =	0.0026		P-value =	0.0001	i	P-value =	0.0001
	DIF									DIF	
	ECCB	OS	DIF	OS	DIF		OS	DIF		OS	DIF
HMW PAH											
		<i>P</i> -value =	0.0004	<i>P</i> -value =	0.1736		<i>P</i> -value =	0.0130		<i>P</i> -value =	0.0328
	DIF										
	ECCB	OS	DIF					DIF		OS	
	(10)					L			L		
LMW PAH ((12)	D volue -	0.0012	D volue -	0.2006		D volue -	0.0565		D volue -	0.9452
	DIE	P-value =	0.0012	P-value =	0.2990	I	P-value =	0.0363	1	P-value =	0.8432
			DIE				DIF				
	LCCD	05				l			L		
Total PAH (2	24)										
		<i>P</i> -value =	0.0031	<i>P</i> -value =	0.2247		P-value =	0.0228	ī	<i>P</i> -value =	0.8596
	DIF	DIF					DIF				
	ECCB	OS	DIF								
Chlordane											
cinoraune		P-value =	< 0.0001	P-value =	0.0006		P-value =	0.0002			
	DIF	DIF		DIF			DIF			nd	
	ECCB	OS	DIF	OS	DIF		OS	DIF		nd	nd
						L			L		
4,4'-DDE		ר. ת	0.0001	ר. ת	0.0200		ר. ת	0.0020			
	DIE	P-value =	0.0001	P-value =	0.0290	I	P-value =	0.0020	I	. 1	
	DIF		DIE		DIE			DIE		nd	1
	ECCB	OS	DIF		DIF		OS	DIF		nd	nd

Table 5-3. Summary of Comparisons between Locations by Year for Flounder Liver.

Note: *P*-value is from the ANOVA model. Tukey's multiple comparison test was used to test for pariwise differences between locations at an overall 95 percent confidence level. Location abreviation indicates location has significantly higher concentration.

	-	indicates no significant difference in concentration between locations
DIF	-	Deer Island Flats
ECCB	-	East Cape Cod Bay
nd	-	no data available
OS	-	outfall location
PAH	-	polycyclic aromatic hydrocarbon
PCB	-	polychlorinated biphenyl
Chlorda	ne:	Sum of <i>cis</i> -chlordane and <i>trans</i> -nonachlor
LMW P	AH	(12): Sum of 12 low molecular weight compounds (acenaphthene, acenaphthylene,
anthr	ace	ne, biphenyl, fluorene, naphthalene, phenanthrene, 1-methylnaphthalene, 1-
meth	ylp	henanthrene, 2,3,5-triethylnaphthalene, 2,6-dimethylnaphthalene, and 2-methylnaphthalene)
HMW P	AH	: Sum of 12 high molecular weight compounds (benz[a]anthracene, benzo[a]pyrene,
benz	o[b]	fluoranthene, benzo[e]pyrene, benzo[ghi]perylene, benzo[k]fluoranthene, chrysene,
diber	ız[a	,h]anthracene, fluoranthene, indeno[1,2,3-cd]pyrene, perylene, and pyrene)
Total PA	λH	(24): Sum of LMW PAH and HMW PAH
PCB: S	um	of congeners 138 and 153

Results of the ANOVAs for flounder fillet concentrations can be found in Tables 5-2 and B-11, Figures 5-5 and 5-6, and Figures B-59 to B-62. The post-diversion results from Table 5-2 are consistent with historical data. Organic contaminants in flounder fillet collected at Deer Island Flats have tended to have higher concentrations than those collected at the outfall, which had higher concentrations than those collected in Cape Cod Bay (see chlordane in Figure 5-5). However, mercury levels in flounder fillet tissue collected from the Outfall Site have tended to be higher concentrations than those collected at Deer Island and Cape Cod Bay (Figure 5-6).

Results for flounder liver can be found in Tables 5-3 and B-12, Figures 5-7 and 5-8, and Figures B-63 to B-72. Differences in metals concentrations between sites have shown a variable pattern with a tendency for concentrations at the Outfall Site to be significantly higher than the other two sites (Table 5-3 and Figure 5-7 for lead). PCBs, 4,4'-DDE, and chlordane in flounder livers also tended to be highest in Deer Island flounder and lowest in those collected in Cape Cod Bay (Table 5-3 and chlordane in Figure 5-8). Apparent elevations of PAHs in flounder liver in 2006 (Figures B-68 to B-70) are the result of elevated detection limits, which were approximately ten times higher in 2006 analyses for PAHs than in previous years.

Total chlordane is the sum of cis-chlordane and trans-nonachlor

Figure 5-5. Chlordane concentrations in flounder fillet tissue after the outfall went on-line

Figure 5-6. Mercury concentrations in flounder fillet tissue after the outfall went on-line

 \triangle East Cape Cod Bay (ECCB)

Figure 5-7. Lead concentrations in flounder liver tissue after the outfall went on-line

Figure 5-8. Chlordane concentrations in flounder liver tissue after the outfall went on-line

6.0 COMPARISON TO THRESHOLDS

This section addresses the question of whether the current levels of contaminants in edible fish and shellfish tissues near the outfall represent a risk to human health or the environment.

6.1 COMPARISON TO FDA LEVELS AND EPA RISK-BASED CONCENTRATIONS FOR HUMAN HEALTH

Concentrations of contaminants in fish and shellfish can be compared to the FDA action levels, tolerances, and guidance levels (U.S. FDA 2005), as well as EPA human health risk assessment risk-based concentrations (RBCs) (U.S. EPA 2007). The intent and application of these guidelines are distinct from one another. The FDA action levels and tolerances represent limits at or above which FDA will take legal action to remove products from the market. The EPA RBCs are different from the FDA values, in that they do not constitute regulation or guidance, and should not be viewed as a substitute for a site-specific risk assessment. RBCs are based on exposure scenarios that incorporate various assumptions, including assumptions related to the rate of consumption of fish or shellfish. The RBCs are used primarily to screen out chemicals as contaminants of concern in an initial risk assessment evaluation.

Both the RBCs and the FDA levels are applicable to edible tissues, but are not applicable to tissues that humans do not consume (e.g., flounder liver). The RBCs are not applied to lobster hepatopancreas because the RBCs are based on conservative estimates of the rates of consumption of fish or shellfish, which would likely overestimate the amount and frequency with which people consume hepatopancreas. Average 2006 concentrations of most contaminants for which thresholds are available were below available FDA levels and EPA RBCs in edible tissues (i.e., flounder fillet and lobster meat) at all locations (Table 6-1). This included lead, mercury, chlordane, and 4,4'-DDE. Concentrations of total PCBs (calculated as the sum of 20 congeners) were below the FDA action limit, but exceeded the EPA RBC in all tissues and at all locations. Although this analysis was conducted using one half the detection limit for compounds that were not detected, concentrations of PCBs would still substantially exceed the RBC if only detected values were considered. As noted above, exceedance of the RBC is not an indication of risk to human health, but indicates only that PCBs would not be screened out by comparison to RBCs. Note also that because sample locations in Boston Harbor receive input from a variety of point and non-point sources that are unrelated to the outfall (Hunt et al. 2006), observed concentrations of PCBs in tissues at these locations may be related to a variety of sources.

6.2 COMPARISON OF MUSSELS TO EPA EQUILIBRIUM PARTITIONING BENCHMARKS FOR THE PROTECTION OF BENTHIC ORGANISMS

EPA recently published equilibrium partitioning sediment benchmarks (ESBs) that can be used to estimate the toxicity of PAHs to benthic (e.g., bottom-dwelling) organisms (U.S. EPA 2003). To develop the ESBs, EPA used a data set on the narcotic toxicity of PAHs in water-only exposures to estimate a final chronic value (FCV) of 2.24 μ mol PAH/g lipid. The FCV is expected to be protective of 95% of the species tested (Di Toro and McGrath 2000; Di Toro et al. 2000). The ESB approach calculates a toxic unit for each PAH as the concentration of the PAH divided by the FCV for that PAH. If the sum of the toxic units for "total PAHs" is less than or equal to 1.0, the concentration of

the PAH mixture is acceptable for the protection of benthic organisms from chronic effects. U.S. EPA (2003) defines "total PAHs" as comprising, at a minimum, the 34 PAHs that were measured in the EPA Environmental Monitoring and Assessment Program (U.S. EPA 1996). This definition is used because few databases are available that have measured a greater number of PAHs, and because the use of fewer PAHs could underestimate the total toxicity of the PAH mixture. Because the metabolic ability of mussels is low in comparison to other organisms (e.g., fish and crustaceans), mussels accumulate PAHs fairly rapidly, but eliminate them relatively slowly. Lobsters are not included in this comparison because rates of metabolism of PAHs in this species are considerably higher than in mussels and tissue concentrations are expected to be considerably lower. The concentration of PAHs in mussel tissues can be compared to the ESBs, to determine whether levels of PAHs are acceptable for the protection of these organisms. The sum of toxic units is well below 1.0 for mussel tissue samples from all locations measured in 2006, indicating that chronic narcotic effects in mussel tissues from PAHs are unlikely (Table 6-2).
	FDA	U.S. EPA	CCI	B or ECC	CB	D	IF or DIL	,		OS		IH	LNB
	Action	Region III	Mussel	Lobster	Flounder	Mussel	Lobster	Flounder	Mussel	Lobster	Flounder	Mussel	Mussel
Analyte	Limits	RBCs	Soft Tissue	Meat	Fillet	Soft Tissue	Meat	Fillet	Soft Tissue	Meat	Fillet	Soft Tissue	Soft Tissue
Lead	1.5 ^a		0.28			0.40			0.27			0.37	0.27
Mercury	1.0	0.14	0.014	0.053	0.039	0.011	0.081	0.055	0.012	0.067	0.080	0.011	0.012
Total PCBs	2,000	1.6	11	12	14	31	31	58	9.5	17	33	34	11
Chlordane	300	9.0	0.44	0.63	0.22	0.63	0.65	0.92	0.74	0.056	0.32	0.69	0.56
4,4'-DDE	5,000	9.3	1.7	1.0	1.1	1.8	2.2	4.3	1.1	1.4	1.9	1.9	1.0

Table 6-1. Comparison of 2006 Tissue Concentrations with Threshold Levels.

Note: U.S. FDA levels can be found at http://www.cfsan.fda.gov/~ear/nss3-42d.html.

U.S. EPA Region 3 RBCs can be found at: http://www.epa.gov/reg3hscd/risk/human/index.htm.

All results are reported on a wet weight basis.

Metals results are reported in $\mu g/g$, all other analytes are reported in ng/g.

Boxed values indicate exceedance of a threshold.

Undetected results were included as half the detection limit.

Mercury concentrations for fish and shellfish is methylmercury.

FDA action level for mercury in fish and shellfish is 1 ppm methylmercury in edible portion.

- CCB Cape Cod Bay
- DIF Deer Island Flats
- DIL Deer Island Light
- ECCB East Cape Cod Bay
- EPA U.S. Environmental Protection Agency
- FDA U.S. Food and Drug Administration
- IH Boston Inner Harbor
- LNB Large Navigation Buoy
- OS Outfall location
- PCB polychlorinated biphenyl
- RBC risk-based concentration

Total PCBs: Sum of 20 congeners (8,18,28,44,52,66,77,101,105,118,126,128,138,153,170,180,187,195,206, and 209) Total Chlordane: Sum of *cis*-chlordane and *trans*-nonachlor

^a Lead FDA action limit value of 1.5 ppm is for Crustacea; there is also a 1.7 ppm FDA guidance value for Molluscan/Shellfish.

June 2008

Table 6-2.	Calculation of the Sum of Toxic Units for 34 PAHs Measured in Mussel Tiss	ue.

Sample Location	SP	SP	CCB	CCB	DIL	DIL	IH	IH
Sample ID Number	FM061SP01	FM061SP02	FM063901	FM063902	FM0631M01	FM0631M02	FM063601	FM063602
Date	06/27/06	06/27/06	08/30/06	08/30/06	08/30/06	08/30/06	08/30/06	08/30/06
Polycyclic Aromatic Hydrocarbons (u	mol/g-lipid)							
Benz[a]anthracene	6.69E-05	5.96E-05	7.74E-05	5.57E-05	2.30E-04	2.85E-04	5.03E-03	3.85E-03
Benzo[a]pyrene	5.69E-05	7.46E-05	5.72E-05	5.04E-05	1.41E-04	2.44E-04	2.26E-03	1.35E-03
Benzo[b]fluoranthene	1.18E-04	1.16E-04	1.44E-04	9.95E-05	4.55E-04	4.50E-04	6.39E-03	4.72E-03
Benzo[e]pyrene	1.87E-04	2.11E-04	2.68E-04	2.42E-04	8.27E-04	8.50E-04	8.91E-03	8.27E-03
Benzo[ghi]perylene	8.99E-05	1.03E-04	1.05E-04	8.36E-05	2.82E-04	3.34E-04	1.72E-03	1.63E-03
Benzo[k]fluoranthene	1.16E-04	1.19E-04	1.23E-04	9.74E-05	3.74E-04	4.11E-04	5.41E-03	3.86E-03
Chrysene	1.79E-04	1.58E-04	1.64E-04	1.43E-04	5.68E-04	5.83E-04	8.84E-03	7.71E-03
Dibenz[a,h]anthracene	0.00E+00	0.00E+00	0.00E+00	1.56E-05	4.14E-05	4.54E-05	2.83E-04	1.95E-04
Fluoranthene	6.66E-04	6.22E-04	6.34E-04	5.65E-04	1.76E-03	1.94E-03	3.07E-02	3.15E-02
Indeno[1,2,3-cd]pyrene	6.65E-05	6.54E-05	4.71E-05	4.07E-05	1.45E-04	2.06E-04	1.08E-03	9.03E-04
Perylene	1.18E-04	1.08E-04	5.94E-05	5.04E-05	1.05E-04	1.20E-04	8.44E-04	6.75E-04
Pyrene	5.51E-04	6.41E-04	6.98E-04	5.70E-04	1.66E-03	1.61E-03	1.84E-02	1.76E-02
Acenaphthene	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.34E-03	1.05E-03
Acenaphthylene	9.09E-05	8.44E-05	1.59E-04	9.82E-05	1.96E-04	1.96E-04	9.86E-04	9.72E-04
Anthracene	6.18E-05	7.43E-05	6.51E-05	5.23E-05	2.18E-04	2.18E-04	1.19E-03	1.21E-03
Fluorene	1.36E-04	1.16E-04	8.68E-05	5.29E-05	0.00E+00	1.27E-04	3.59E-04	4.55E-04
Naphthalene	3.61E-04	4.67E-04	4.35E-04	3.26E-04	5.24E-04	4.47E-04	9.76E-04	1.24E-03
Phenanthrene	3.11E-04	3.65E-04	2.76E-04	2.26E-04	5.03E-04	4.85E-04	9.23E-04	7.88E-04
C1-Chrysenes	5.82E-05	5.77E-05	6.65E-05	4.15E-05	2.05E-04	2.20E-04	3.21E-03	2.27E-03
C1-Fluoranthenes/pyrenes	2.59E-04	2.89E-04	3.26E-04	2.77E-04	9.58E-04	1.01E-03	1.67E-02	1.49E-02
C2-Chrysenes	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.70E-03	1.18E-03
C3-Chrysenes	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
C4-Chrysenes	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
C1-Fluorenes	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	9.74E-04	1.05E-03
C1-Naphthalenes	2.75E-04	3.43E-04	1.89E-04	1.43E-04	4.40E-04	4.11E-04	5.04E-04	4.21E-04
C1-Phenanthrenes/anthracenes	3.96E-04	5.29E-04	2.94E-04	2.40E-04	7.46E-04	6.73E-04	2.87E-03	2.65E-03
C2-Fluorenes	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.95E-03	5.00E-03
C2-Naphthalenes	5.21E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.90E-04	7.30E-04	0.00E+00
C2-Phenanthrenes/anthracenes	5.50E-04	7.15E-04	4.07E-04	3.13E-04	1.24E-03	1.06E-03	9.89E-03	8.24E-03
C3-Fluorenes	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.03E-02	1.02E-02
C3-Naphthalenes	6.28E-04	6.13E-04	0.00E+00	2.01E-04	6.74E-04	5.31E-04	1.78E-03	1.45E-03
C3-Phenanthrenes/anthracenes	3.49E-04	3.57E-04	3.40E-04	3.21E-04	1.11E-03	1.11E-03	1.19E-02	9.69E-03
C4-Naphthalenes	4.14E-04	5.12E-04	0.00E+00	1.08E-03	9.79E-04	9.18E-04	5.10E-03	4.79E-03
C4-Phenanthrenes/anthracenes	1.30E-04	1.65E-04	1.51E-04	9.82E-05	4.87E-04	5.11E-04	5.98E-03	4.32E-03
Total of 34 PAHs (umol/g-lipid)	0.007	0.007	0.005	0.005	0.015	0.015	0.172	0.154
Sum-Tox Units for 34 PAHs	0.003	0.003	0.002	0.002	0.007	0.007	0.077	0.069

Table 6-2. (cont.)

Sample Location	LNB	LNB	OS-M2	OS-M2	OS-M5	OS-M5
Sample ID Number	FM063B01	FM063B02	FM063M201	FM063M202	FM063M501	FM063M502
Date	08/30/06	08/30/06	08/30/06	08/30/06	08/30/06	08/30/06
Polycyclic Aromatic Hydrocarbons (umo	l/g-lipid)					
Benz[a]anthracene	1.70E-04	1.65E-04	3.75E-04	3.07E-04	3.97E-04	3.20E-04
Benzo[a]pyrene	1.19E-04	8.81E-05	1.83E-04	1.97E-04	2.87E-04	1.92E-04
Benzo[b]fluoranthene	2.67E-04	2.42E-04	4.93E-04	4.87E-04	5.68E-04	4.77E-04
Benzo[e]pyrene	5.54E-04	5.77E-04	9.83E-04	8.89E-04	9.81E-04	8.10E-04
Benzo[ghi]perylene	1.34E-04	1.58E-04	1.84E-04	2.02E-04	2.81E-04	1.85E-04
Benzo[k]fluoranthene	2.15E-04	2.19E-04	4.36E-04	3.88E-04	5.47E-04	3.62E-04
Chrysene	4.15E-04	4.34E-04	8.27E-04	7.63E-04	8.43E-04	6.22E-04
Dibenz[a,h]anthracene	2.06E-05	2.51E-05	2.68E-05	3.49E-05	4.81E-05	2.55E-05
Fluoranthene	6.81E-04	7.91E-04	1.24E-03	1.05E-03	1.05E-03	8.46E-04
Indeno[1,2,3-cd]pyrene	7.67E-05	7.29E-05	9.00E-05	1.10E-04	1.59E-04	1.04E-04
Perylene	5.98E-05	9.26E-05	1.29E-04	1.14E-04	1.59E-04	1.45E-04
Pyrene	1.30E-03	1.39E-03	2.51E-03	2.39E-03	2.12E-03	1.84E-03
Acenaphthene	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Acenaphthylene	1.29E-04	1.19E-04	1.57E-04	2.23E-04	2.52E-04	1.95E-04
Anthracene	7.84E-05	1.23E-04	1.43E-04	1.30E-04	1.32E-04	1.07E-04
Fluorene	8.18E-05	1.12E-04	1.16E-04	1.58E-04	0.00E+00	0.00E+00
Naphthalene	4.74E-04	6.53E-04	7.27E-04	8.53E-04	1.15E-03	1.20E-03
Phenanthrene	2.86E-04	3.34E-04	5.12E-04	4.34E-04	3.92E-04	3.15E-04
C1-Chrysenes	1.29E-04	1.32E-04	2.68E-04	2.61E-04	2.85E-04	2.42E-04
C1-Fluoranthenes/pyrenes	6.90E-04	8.06E-04	1.42E-03	1.25E-03	1.40E-03	1.20E-03
C2-Chrysenes	0.00E+00	0.00E+00	1.51E-04	0.00E+00	0.00E+00	1.32E-04
C3-Chrysenes	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
C4-Chrysenes	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
C1-Fluorenes	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
C1-Naphthalenes	3.54E-04	4.49E-04	5.14E-04	4.39E-04	8.23E-04	7.52E-04
C1-Phenanthrenes/anthracenes	4.09E-04	5.44E-04	7.63E-04	7.00E-04	6.22E-04	5.12E-04
C2-Fluorenes	0.00E+00	0.00E + 00	1.45E-03	0.00E+00	0.00E+00	1.02E-03
C2-Naphthalenes	0.00E+00	0.00E + 00	0.00E+00	0.00E+00	0.00E + 00	3.20E-04
C2-Phenanthrenes/anthracenes	1.17E-03	1.15E-03	2.36E-03	2.22E-03	1.92E-03	1.67E-03
C3-Fluorenes	0.00E+00	0.00E + 00	3.31E-03	0.00E+00	0.00E+00	2.81E-03
C3-Naphthalenes	4.15E-04	3.34E-04	6.70E-04	7.41E-04	5.77E-04	4.97E-04
C3-Phenanthrenes/anthracenes	9.63E-04	1.06E-03	2.25E-03	2.23E-03	1.86E-03	1.59E-03
C4-Naphthalenes	1.35E-03	1.76E-03	1.97E-03	2.04E-03	1.79E-03	1.72E-03
C4-Phenanthrenes/anthracenes	3.29E-04	4.39E-04	8.41E-04	8.30E-04	6.80E-04	6.70E-04
Total of 34 PAHs (umol/g-lipid)	0.011	0.012	0.025	0.019	0.019	0.021
Sum-Tox Units for 34 PAHs	0.005	0.005	0.011	0.009	0.009	0.009

7.0 SUMMARY AND RECOMMENDATIONS FOR CHANGES TO THE MONITORING PROGRAM

As described in a recent review of issues related to toxic contaminants in Boston Harbor and Massachusetts Bay (Hunt et al. 2006), reductions in source loadings and improvements to wastewater facilities have measurably reduced contaminant loadings to the system. Improvements in treatment that have improved the quality of effluent and reduced loadings to surface water and sediment provide an important justification for reducing the extent of the HOM program. For example, starting in the late 1980s and early 1990s, MWRA began to more rigorously enforce regulations that limited industrial inputs of toxic contaminants to the treatment plant influent, ended the discharge of sewage sludge into the Harbor, and increased the capacity of the DITP to treat flows from combined sewers, lessening combined sewer overflows. By 1998, most sewage was receiving secondary treatment. In September 2000, the discharge of all effluent to Boston Harbor ended as the new outfall in Massachusetts Bay was opened. Additional improvements after 2000 include the continued enhancement of secondary treatment, reductions in corrosion and associated leaching of copper and lead from water supply pipes, and programs to reduce inputs of mercury from medical and dental facilities. In addition, federal regulation of toxic chemicals, such as PCBs and DDT, has resulted in reduced loadings of those contaminants to the system. The latest MWRA effluent monitoring data indicate that loads of many contaminants to Massachusetts Bay are less than projected based on the mid-1990s pilot data (Hunt et al. 2006). For example, recent MWRA data show that individual loadings of cadmium, silver, and mercury are as much as 50% lower than projected in EPA's SEIS for the treatment plant (Hunt et al. 2006).

Corresponding declines in contaminant concentrations in surficial sediments in Boston Harbor and Massachusetts Bay have been observed. A comparison of the average concentrations of selected contaminants in outer Boston Harbor and Dorchester Bay from 1994 and 2002 showed substantial deceases in total PAHs, total PCBs, mercury, cadmium, and silver (Hunt et al. 2006). Of the contaminants measured in the sediments, only lead and copper levels do not appear to have decreased substantially during this 8-year period.

Continued detailed monitoring of effluent contaminants by MWRA will provide the information necessary to access changes of exposure of aquatic plants and animals to many MWRA-derived effluent constituents. General justifications for the reduction or elimination of the fish and shellfish monitoring program include:

- Improvements in treatment and efforts to reduce loadings of contaminants to the system have improved the quality of the effluent and reduced loadings of contaminants to surface water and sediment
- Continued extensive monitoring of the effluent will provide sufficient information on the flux of contaminants to the environment and potential changes in exposure to fish, shellfish, and other aquatic organisms.

7.1 MUSSELS

Although concentrations of lead, PCBs, HMW PAH, total PAHs, chlordane, and 4,4'-DDE showed significant post-discharge increases at the Outfall Site after statistical comparisons with the control

station, tissue concentrations are below most thresholds for the protection of human health and aquatic organisms. As reported in the 2006 Annual Fish and Shellfish report (Nestler et al. 2007), current concentrations are below the FDA action limits and MWRA threshold levels. In addition, 2006 concentrations of PAHs in mussels at all locations were below EPA benchmarks for the protection of aquatic organisms, and concentrations of lead, mercury, chlordane, and 4,4'-DDE were below EPA screening-level RBCs. Although concentrations of PCBs exceed the EPA screening-level RBC at all locations, post-discharge increases observed at Deer Island Light, as well as at the Outfall Site and Large Navigation Buoy, suggest that factors other than the transfer of effluent discharge may be responsible for the changes. Additionally, 2006 concentrations of PCBs were higher in mussels deployed in Cape Cod Bay than those deployed at the Outfall Site. These results provide important justifications for the elimination of the monitoring program for mussels.

In summary, the mussels deployed at the Outfall Site are placed at the edge of the zone of initial dilution, within 100 m from the actual discharge points. Mussels are deployed during the summer when stratification is strongest and effluent dilution least. Even under this worst-case scenario, tissue concentrations in mussels are only modestly higher now than before the effluent relocation. The elevated levels are well below any FDA or EPA screening levels. Only PCBs exceed the EPA screening-level RBC, but it was at all stations for all tissue types. Provided MWRA continues to regularly monitor the effluent and levels of treatment continue at current high levels, monitoring of contaminants in mussels at the outfall is likely to be redundant.

7.2 LOBSTER

Results indicate that concentrations of contaminants in lobsters caught at the Outfall Site did not increase as a result of the relocation of the outfall. Concentrations of all contaminants were below FDA action limits and MWRA thresholds, and concentrations of most contaminants were below EPA screening-level RBCs. Concentrations of PCBs at all locations exceeded the EPA screening-level RBC, but current concentrations of PCBs in lobsters from the Outfall Site are not significantly different from concentrations at Cape Cod Bay, indicating a broader regional distribution of PCBs. As discussed in Section 4.4, the collection of lobsters from the Outfall Site is unreliable until September to November; at which time lobstermen begin setting traps in the area as the lobster migrate out of inshore waters. Measuring contaminants in mainly migratory lobsters reduces the suitability of using lobsters as a sentinel tool for outfall impacts. For the above reasons, we recommend the elimination of the lobster-monitoring program.

7.3 WINTER FLOUNDER

Similar to the findings for lobster, there was no apparent increase in tissue concentrations in flounder collected at the Outfall Site after effluent diversion. Concentrations of all contaminants in flounder were below FDA action limits and MWRA thresholds, and concentrations of most contaminants were below EPA screening-level RBCs. Therefore, we see no reason to continue measuring contaminants in flounder tissue. However, since the histological analysis of flounder livers is intended to detect any deleterious results of chemical exposure, MWRA may want to continue this analysis of livers from fish collected at the Outfall Site.

8.0 CONCLUSIONS

This report concludes that the following lines of evidence provide support for the elimination of the monitoring program for contaminants in fish and shellfish:

- Improvements in treatment and efforts to reduce inputs of contaminants to the system have improved the quality of the effluent and reduced loadings of contaminants to surface water and sediment.
- Continued extensive monitoring of the effluent will provide sufficient information on the flux of contaminants to the environment and future potential changes in exposure to mussels and other aquatic organisms.
- Results indicate that significant increases in some concentrations of contaminants in mussels at the Outfall Site after relocation are likely related to the relocation of the outfall. However, 2006 concentrations of most contaminants are below thresholds for the protection of human health and the environment. Although 2006 concentrations of PCBs exceeded a conservative screening-level RBC, this occurred at all locations, and concentrations were significantly lower at the Outfall Site in comparison to Cape Cod Bay.
- Results indicate that concentrations of contaminants in lobsters at the Outfall Site did not
 increase as a result of the relocation of the outfall. Current concentrations of most
 contaminants are below thresholds for the protection of human health and the
 environment. As was observed for mussels, current concentrations of PCBs in lobsters
 exceeded a conservative screening-level RBC at all locations, but concentrations of PCBs
 are not significantly different at the Outfall Site as compared to Cape Cod Bay.
- Results indicate that concentrations of contaminants in winter flounder did not increase as a result of the relocation of the outfall. Current concentrations of most contaminants in flounder are below thresholds for the protection of human health and the environment. As in other tissues, current concentrations of PCBs in flounder exceed a conservative screening-level RBC at all locations. Current PCB concentrations in flounder are significantly higher at the Outfall Site than at Cape Cod Bay.

9.0 **REFERENCES**

- Bend, J.R., M.P. James, P.J. Little and G.L. Foureman. 1981. In vitro and in vivo metabolism benzo[a]pyrene by selected marine crustacean species. In: Phyletic approaches to cancer. Dawe, C.J. et al., (eds). Japan Scientific Society Press, Tokyo.
- Bologna, P.A.X. and R.S. Steneck. 1993. Kelp beds as habitat for American lobster *Homarus americanus*. Mar. Ecol. Prog. Ser. 100:127–134.
- Bowlby, H.D., J.M. Hanson, and J.A. Hutchings. 2007. Resident and dispersal behavior among individuals within a population of American lobster *Homarus americanus*. Mar. Ecol. Prog. Ser. 331:207–218.
- Campbell, A. and A.B. Stasko. 1985. Movements of tagged American lobsters, *Homarus americanus*, off southwestern Nova Scotia. Can. J. Fish. Aquat. Sci. 42:229–238.
- Campbell, A., and A.B. Stasko. 1986. Movements of lobsters, *Homarus americanus*, tagged in the Bay of Fundy, Canada. Can. J. Fish. Aquat. Sci. 92:393–404.
- Campbell, A., O.J. Noakes, and R.W. Elner. 1991. Temperature and Lobster, *Homarus americanus*, yield relationships. Can. J. Fish. Aquat. Sci. 48:2073–2082.
- Casterlin, M.E., and W.W. Reynolds. 1982. Thermoregulatory behavior and diel activity of yearling winter flounder, *Pseudopleuronectes americanus* (Walbaum). Environ. Biol. Fishes 7:177–180.
- Castro, K.M., J.S. Cobb, R.A. Wahle, and J. Catena. 2001. Habitat addition and stock enhancement for American lobsters, *Homarus americanus*. Mar. Freshwat. Res. 52:1253–1261.
- Chase M.E., S.H. Jones, P. Hennigar, et al. 2001. Gulfwatch: Monitoring spatial and temporal patterns of trace metal and organic contaminants in the Gulf of Maine (1991–1997) with the blue mussel, *Mytilus edulis L*. Marine Pollut. Bull. 42:491–505.
- Comeau, M., and F. Savoie. 2002. Movement of American lobster (*Homarus amercianus*) in the southwestern Gulf of St. Lawrence. Fish. Bull. 100:181–192.
- Cooper, R.A., and J.R. Uzmann. 1971. Migrations and growth of deep-sea lobsters, *Homarus americanus*. Science 171:288–290.
- Crawford, R.E., and C.G. Carey. 1985. Retention of winter flounder larvae within a Rhode Island salt pond. Estuaries 8(2b):217–227.
- DiGuilio, R.T. W.H. Benson, B.M. Saunders, and P.A. Van Veld. 1995. Biochemical mechanisms: metabolism, adaptation, and toxicity. pp. 523–561. In: Fundamentals of Aquatic Toxicology. G.M. Rand (ed). Taylor & Francis, Washington, DC.
- Di Toro, D.M., and J.A. McGrath. 2000. Technical basis for narcotic chemicals and polycyclic aromatic hydrocarbon criteria. II. Mixtures and sediments. Environ. Toxicol. Chem. 19:1971–1982.
- Di Toro, D.M., J.A. McGrath, and D.J. Hansen. 2000. Technical basis for narcotic chemicals and polycyclic aromatic hydrocarbon criteria. I. Water and tissue. Environ. Toxicol. Chem. 19:1951–1970.

- Dow, R.L. 1977. Relationship of sea surface temperature to American and European lobster landings. J. Int. Council Explor. Sea 37(2):186–191.
- Drinkwater, K.E., M.J. Tremblay, and M. Comeau. 2006. The influence of wind and temperature on the catch rate of the American lobster (*Homarus americanus*) during spring fisheries off eastern Canada. Fish. Oceanog. 15:150–165.
- Eisler, R. 1981. Trace metal concentrations in marine organisms. Pergamon Press, New York.
- Fogarty, M.J. 1988. Time series models of the Maine lobster fishery: The effect of temperature. Can. J. Fish. Aquat. Sci. 45:1145–1153.
- Haakonsen, H.O., and A.O. Anoruo. 1994. Tagging and migration of the American lobster, *Homarus americanus*. Rev. Fish. Sci. 2:79–93.
- Harding, G.C., K.F. Drinkwater, and W. P. Vass. 1983. Factors influencing the size of American lobster (*Homarus americanus*) stocks along the Atlantic coast of Nova Scotia, Gulf of St. Lawrence, and Gulf of Maine: A new synthesis. Can. J. Fish. Aquat. Sci. 40:168–184.
- Hellou, J. 1996. Polycyclic aromatic hydrocarbons in marine mammals, finfish, and mollusks. pp. 229-250. In: Environmental Contaminants in Wildlife: Interpreting Tissue Concentrations. W.N. Beyer, G.H. Heinz, and A.W Redmon-Norwood (eds.). CRC Press. Boca Raton, FL.
- Howe, A.B., and P.G. Coates. 1975. Winter flounder movements, growth and mortality off Massachusetts. Trans. Am. Fish. Soc. 104:13–29.
- Hunt, C.D., S.L. Abramson, L.F. Lefkovitz, et al. 2002. Evaluation of 2001 mussel tissue contaminant threshold exceedance. Report 2002-05. Massachusetts Water Resources Authority, Boston.
- Hunt, C.D., M. Hall, S.L. Pala, and D.T. Dahlen. 2006. A review and summary of toxic contaminants in Boston Harbor and Massachusetts Bay: 1990 to 2005. Report 2006-23. Massachusetts Water Resources Authority, Boston.
- Incze, L.S., N. Wolff, and R.A. Wahle. 2003. Can scientific observations of early life stages be scaled up to the level of a fished population? A case study using *Homarus americanus*. Fish. Res. 65:33–46.
- James, M.O. 1989. Biotransformation and disposition of PAH in aquatic invertebrates. pp. 69–92.
 In: Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment.
 U. Varanasi (ed). CRC Press, Boca Raton, FL.
- Klein-MacPhee, G. 2002. Righteye flounders, Family Pleuronectidae. pp. 560–587. In: Bigelow and Schroeder's Fishes of the Gulf of Maine. Third Edition. B.B. Collette and G. Klein-MacPhee (eds). Smithsonian Institution Press, Washington, DC.
- Koeller, P. 1998. Influence of temperature and effort on lobster catches at different temporal and spatial scales and the implications for stock assessments. Fish. Bull. 97:62–70.
- Krouse, J.S. 1981. Movement, growth, and mortality of American lobsters, *Homarus americanus*, tagged along the coast of Maine. NOAA Technical Report NMFS SSRF-747. National Oceanic and Atmospheric Administration.
- Lawton, P., and K.L. Lavalli. 1995. Postlarval, juvenile, adolescent, and adult ecology. pp. 47–88.In: Biology of the Lobster *Homarus americanus*. J.R. Factor (ed). Academic Press, Boston.

- Lefkowitz, L.F., J.M. Neff, R. Lizotte, M. Hall. 2001. Comparison of two analytical methods for rmeasurement of chlorinated pesticides and PCB congeners in biological tissue – Trends in Boston Harbor lobster tissue. Boston: Massachusetts Water Resources. Report ENQUAD 01-02. 51 p. plus appendices.
- Lobell, M.J. 1939. A biological survey of the salt waters of Long Island, 1938. Report on certain fishes. Winter flounder (*Pseudopleuronectes americanus*). Suppl. 28th Ann. Rep., NY Cons. Dep., Pt. I:63–96.
- MacKenzie, C., and J.R. Moring. 1985. Species profiles: Life histories and environmental requirements of coastal fishes and invertebrates (North Atlantic)—American lobster. FWS Biological Report 82(11.33). ACOE No. TR EL-82-4. U.S. Fish and Wildlife Service and U.S. Army Corps of Engineers.
- Mix, M.C. 1984. Polycyclic aromatic hydrocarbons in the aquatic environment: occurrence and biological monitoring. In: Reviews in Environmental Toxicology, Volume 50. E. Hodgson (ed). Elsevier/North Holland, Amsterdam.
- Mix, M.C., and R.L. Schaffer. 1983. Concentrations of unsubstituted polynuclear aromatic hydrocarbons in Bay mussels (*Mytilis edulis*) from Oregon, USA. Mar. Environ. Res. 9:193–209.
- MWRA. 1991. Massachusetts Water Resources Authority effluent outfall monitoring plan: Phase I baseline studies. Report ENQUAD ms-02. Massachusetts Water Resources Authority, Boston, MA.
- MWRA. 1997. Massachusetts Water Resources Authority effluent outfall monitoring plan: Phase II post discharge monitoring. Report ENQUAD ms-44. Massachusetts Water Resources Authority, Boston, MA.
- MWRA. 2001. Massachusetts Water Resources Authority contingency plan revision 1. Report 1-ms-071. Massachusetts Water Resources Authority, Boston, MA.
- MWRA. 2004. Massachusetts Water Resources Authority effluent outfall monitoring plan. Revision 1. March 2004. Report 0-ms-092. Massachusetts Water Resources Authority, Boston, MA.
- Nestler, E.C., A. Pembroke, M.J. Moore, and S. Chapnick. 2007. 2006 Annual fish and shellfish report. Report 2007-06. Massachusetts Water Resources Authority, Boston, MA.
- Newell, R.I.E. 1989. Species profiles: Life histories and environmental requirements of coastal fishes and invertebrates (North and Mid-Atlantic)—blue mussel. FWS Biol. Rep. 82(11.102). Corps TR EL—82-4. U.S. Fish and Wildlife Service and U.S. Army Corps of Engineers.
- O'Connor, T.P. 1998. Mussel watch results from 1986 to 1996. Mar. Pollut. Bull. 37:14–19.
- O'Connor, T.P., and G.G. Lauenstein. 2006. Trends in chemical concentrations in mussels and oysters collected along the US coast: Update to 2003. Mar. Environ. Res. 62:261–285.
- Palma, A.T., R.A. Wahle, and R.S. Steneck. 1998. Different early post-settlement strategies between American lobsters *Homarus americanus* and rock crabs *Cancer irroratus* in the Gulf of Maine. Mar. Ecol. Prog. Ser. 162:215–225.

- Pereira, J.J., R. Goldberg, J.J. Ziskowski, P.L. Berrien, W.W. Morse, and D.L. Johnson. 1999.
 Essential fish habitat source document: Winter flounder, *Pseudopleuronectes americanus*, life history and habitat characteristics. NOAA Technical Memorandum NMFS-NE-138.
 U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northeast Fisheries Science Center.
- Perlmutter, A. 1947. The blackback flounder and its fishery in New England and New York. Bull. Bingham Oceanog. Collec. 11:1–92.
- Rainbow, P.S. 1996. Heavy metals in aquatic invertebrates. pp. 405–425. In: Environmental Contaminants in Wildlife: Interpreting Tissue Concentrations. W.N. Beyer, G.H. Heinz, and A.W Redmon-Norwood (eds). CRC Press. Boca Raton, FL.
- Roesijadi, G. and W.E. Robinson. 1994. Metal regulation in aquatic animals: Mechanisms of uptake, accumulation and release. pp. 387–420. In: Aquatic Toxicology: Molecular, Biochemical, and Cellular Perspectives. D.C. Malins and G.K. Ostrander (eds). CRC Press, Boca Raton, FL.
- Saila, S.B. 1961. A study of winter flounder movements. Limnol. Oceanog. 6:292–298.
- Saila, S.B., E. Lorda, J.D. Miller, R.A. Sher, and W.H. Howell. 1997. Equivalent adult estimates for losses of fish eggs, larvae, and juveniles at Seabrook Station with use of fuzzy logic to represent parameter uncertainty. N. Am. J. Fish. Manage. 17:811–825.
- Scott, W.B., and M.G. Scott. 1988. Atlantic fishes of Canada. Can. Bull. Fish. Aquat. Sci. 219:731.
- Smith, E.P. 2002. BACI design. Volume 1. In: Encyclopedia of Environmetrics. A.H. El-Shaarawi and W.W. Piegorsch (eds). John Wiley & Sons, Ltd., Chichester, England.
- Sogard, S.M., K.W. Able, and S.M. Hagan. 2001. Long-term assessment of settlement and growth of juvenile winter flounder (*Pseudopleuronectes americanus*) in New Jersey estuaries. J. Sea Res. 45:189–204.
- Spanier, E., T.P. McKenzie, J.S. Cobb, and M. Clancy. 1998. Behavior of juvenile American lobsters, *Homarus americanus*, under predation risk. Mar. Biol. 130:396–406.
- Stegeman, J.J. and M.E. Hahn. 1994. Biochemistry and molecular biology of monooxygenases: Current perspectives on forms, functions, and regulation of Cytochrome P450 in aquatic species. pp. 87-206. In: Aquatic Toxicology: Molecular, biochemical, and cellular perspectives. D.C. Malins and G.K. Ostrander (eds.). CRC Press, Boca Raton, FL.
- Stegeman, J.J., and J.J. Lech. 1991. Cytochrome P-450 monooxygenase systems in aquatic species carcinogen metabolism and biomarkers for carcinogen and pollutant exposure. Environ. Health Perspect. 90:101–109.
- Steneck, R.S. 2006. Possible demographic consequences of intraspecific shelter competition among American lobsters. J. Crustacean Biol. 26:628–638.
- U.S. EPA. 1996. EMAP-estuaries Virginian Province data 1990–1993. Available at: http://www.epa.gov/emap. U.S. Environmental Protection Agency.
- U.S. EPA. 1998. Boston Harbor wastewater conveyance system. Supplemental environmental impact statement (SEIS). U.S. Environmental Protection Agency, Region I, Boston, MA.

- U.S. EPA. 2003. Procedures for the derivation of equilibrium partitioning sediment benchmarks (ESBs) for the protection of benthic organisms: PAH mixtures. EPA-600-R-02-013. U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC.
- U.S. EPA. 2007. Human health risk assessment risk-based concentrations. Available at: http://www.epa.gov/reg3hscd/risk/human/index.htm. U.S. Environmental Protection Agency.
- U.S. FDA. 2005. National Shellfish Sanitation Program. Guide for the control of molluscan shellfish. Available at: http://www.cfsan.fda.gov/~ear/nss3-42d.html. U.S. Food and Drug Administration.
- Varanasi, U., J.E. Stein, and M. Nishimoto. 1989. Biotransformation and disposition of polycyclic aromatic hydrocarbons (PAH) in fish. pp. 93–149. In: Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment. U. Varanasi (ed). CRC Press, Boca Raton, FL.
- Varanasi, U., and J.E. Stein. 1991. Disposition of xenobiotic chemicals in marine organisms. Env. Health Perspect. 90:93–100.
- Watson, III, W.H., A. Vetrovs, and W.H. Howell. 1999. Lobster movements in an estuary. Mar. Biol. 134:65–75.
- Weiner, J.G., and D.J. Spry. 1996. Toxicological significance of mercury in freshwater fish. pp. 297–339. In: Environmental Contaminants in Wildlife: Interpreting Tissue Concentrations. W.N. Beyer, G.H. Heinz, and A.W Redmon-Norwood (eds). CRC Press. Boca Raton, FL.
- Werme, C., and C.D. Hunt. 2006. 2005 Outfall monitoring overview. Report 2006-18. Massachusetts Water Resources Authority, Boston, MA.
- Wisneski, C., L.F. Lefkovitz, M.J. Moore, and E. Schaub. 2004. 2003 Annual fish and shellfish report. Report 2004-11. Massachusetts Water Resources Authority, Boston, MA

Appendix A

Data

Table A-1. Concentrations measured in mussel soft tissue

						LMW(7)-	LMW(12)-		Total(19)-	Total(24)-		
Station	Sample ID	Date	Lead	Mercury	PCBs	PAH	PAH	HMW-PAH	PAH	PAH	4,4'-DDE	Chlordane
CCB	FM9833GVX30	09/01/98			23	11	16	25	36	40	7.1	6.1
CCB	FM9833GVX31	09/01/98			25	21	26	24	45	50	7.7	8.3
CCB	FM9833GVX32	09/01/98			23	15	19	26	42	46	6.5	6.8
CCB	FM9833GVX33	09/01/98			23	17	22	29	46	50	7.6	8.6
CCB	FM9833GVX34	09/01/98			22	14	17	18	32	36	7.3	7.5
CCB	FM9833GVX35	09/01/98			25	18	22	21	39	43	8.3	11
CCB	FM9833GVX36	09/01/98			19	11	15	16	27	31	6.2	7.8
CCB	FM9833GVX37	09/01/98			28	14	18	18	33	36	8.5	10
CCB	FM9833SVW92	09/01/98	1.3	0.050								
CCB	FM9833SVW93	09/01/98	2.7	0.080								
CCB	FM9833SVW94	09/01/98	1.7	0.070								
CCB	FM9833SVW95	09/01/98	2.0	0.080								
CCB	FM9833SVW96	09/01/98	1.7	0.050								
CCB	FM9833SVW97	09/01/98	1.8	0.070								
CCB	FM9833SVW98	09/01/98	2.2	0.090								
CCB	FM9833SVW99	09/01/98	2.2	0.070								
CCB	FM9933GXD92	09/02/99			19	18	25	16	35	41	7.6	6.7
CCB	FM9933GXD93	09/02/99			25	25	35	18	43	53	9.8	8.9
CCB	FM9933GXD94	09/02/99			23	28	37	23	51	60	9.0	7.6
CCB	FM9933GXD95	09/02/99			19	24	32	15	40	47	7.8	6.8
CCB	FM9933GXD96	09/02/99			23	22	29	21	43	50	9.3	7.0
CCB	FM9933GXD97	09/02/99			21	27	36	19	46	54	8.4	7.5
CCB	FM9933GXD98	09/02/99			21	31	40	19	51	59	7.9	7.0
CCB	FM9933GXD99	09/02/99			23	29	38	23	51	60	9.3	7.9
CCB	FM9933SXE19	09/02/99	1.5	0.056								
CCB	FM9933SXE20	09/02/99	1.1	0.049								
CCB	FM9933SXE21	09/02/99	1.3	0.054								
CCB	FM9933SXE22	09/02/99	1.2	0.059								
CCB	FM9933SXE23	09/02/99	1.8	0.058								
CCB	FM9933SXE24	09/02/99	1.2	0.048								
CCB	FM9933SXE25	09/02/99	1.2	0.051								
CCB	FM9933SXE26	09/02/99	0.94	0.046								
CCB	FM011ZH80	08/28/01	3.1	0.16	30	16	20	51	66	71	9.4	4.4
CCB	FM011ZH81	08/28/01	1.4	0.091	33	24	30	70	94	100	9.8	5.0
CCB	FM011ZH82	08/28/01	1.8	0.12	29	17	21	60	77	81	8.7	4.2
CCB	FM011ZH83	08/28/01	1.6	0.11	31	26	30	66	92	96	10	5.3
CCB	FM011ZH84	08/28/01	1.3	0.073	32	26	31	63	89	94	10	4.9
CCB	FM011ZH85	08/28/01	1.7	0.080	33	17	22	58	76	80	10	5.4
CCB	FM011ZH86	08/28/01	1.7	0.092	33	17	20	56	73	77	11	5.7

Table A-1. (cont.)

						LMW(7)-	LMW(12)-		Total(19)-	Total(24)-		
Station	Sample ID	Date	Lead	Mercury	PCBs	PAH	PAH	HMW-PAH	PÀHÍ	PÀHÍ	4,4'-DDE	Chlordane
CCB	FM011ZH87	08/28/01	1.5	0.076	18	17	21	61	78	82	7.0	3.7
CCB	FM021V8143	08/27/02	1.6	0.12	20	5.7	6.4	19	24	25	5.6	4.9
CCB	FM021V8144	08/27/02	1.6	0.13	16	5.1	5.9	10	15	16	5.0	4.1
CCB	FM021V8145	08/27/02	1.5	0.11	15	5.0	5.7	12	17	18	4.1	3.6
CCB	FM021V8146	08/27/02	1.4	0.12	15	5.1	5.8	14	19	20	4.1	3.6
CCB	FM031T6988	08/26/03	1.5	0.11	18	8.1	12	29	37	41	5.7	3.7
CCB	FM031T6989	08/26/03	1.5	0.12	19	12	16	31	43	47	6.5	3.9
CCB	FM031T6990	08/26/03	1.3	0.12	19	9.8	14	33	42	46	6.2	3.8
CCB	FM031T6991	08/26/03	1.4	0.11	18	10	14	30	40	44	6.3	4.0
CCB	FM063901	08/30/06	1.7	0.090	24	12	17	38	50	55	13	3.2
CCB	FM063902	08/30/06	1.4	0.080	21	12	17	42	55	60	11	2.9 U
CCB	FM063903	08/30/06	2.0	0.080	20						8.9	2.3 U
CCB	FM063904	08/30/06	1.9	0.10	23						8.5	2.9 U
DIL	M9511D1H7TC1	08/11/95	8.3		58	62		380	440		17	11
DIL	M9511D1H7TC2	08/11/95	11		61	75		470	550		18	12
DIL	M9511D1H7TC3	08/11/95	5.9		59	68		370	440		17	12
DIL	M9511D1H7TC4	08/11/95	8.5		59	77		410	480		18	12
DIL	M9511D1H7TC5	08/11/95	8.5		64	75		450	520		17	11
DIL	M9511D1H8TC1	08/11/95		0.0091								
DIL	M9511D1H8TC2	08/11/95		0.025								
DIL	M9511D1H8TC3	08/11/95		0.070								
DIL	M9511D1H8TC4	08/11/95		0.12								
DIL	M9511D1H8TC5	08/11/95		0.084								
DIL	M9611D1H7TC1	08/27/96			86	96	160	570	660	720	23	27
DIL	M9611D1H7TC2	08/27/96			110	140	210	730	870	940	37	41
DIL	M9611D1H7TC3	08/27/96			85	120	190	670	790	870	28	33
DIL	M9611D1H7TC4	08/27/96			100	120	210	720	850	930	33	40
DIL	M9611D1H7TC5	08/27/96			100	270	390	1,300	1,600	1,700	36	44
DIL	M9611D1H8TC1	08/27/96	6.3	0.19								
DIL	M9611D1H8TC2	08/27/96	8.4	0.21								
DIL	M9611D1H8TC3	08/27/96	6.1	0.14								
DIL	M9611D1H8TC4	08/27/96	5.2	0.13								
DIL	M9611D1H8TC5	08/27/96	5.3	0.11								
DIL	M9711D1H7TC1	08/26/97			94	53	86	260	310	340	24	21
DIL	M9711D1H7TC2	08/26/97			90	53	85	240	300	330	26	21
DIL	M9711D1H7TC3	08/26/97			87	52	81	240	290	320	20	16
DIL	M9711D1H7TC4	08/26/97			97	57	87	250	310	340	26	20
DIL	M9711D1H7TC5	08/26/97			95	65	99	320	380	410	28	22
DIL	M9711D1H8TC1	08/26/97	7.0	0.11								

Table A-1. (cont.)

						LMW(7)-	LMW(12)-		Total(19)-	Total(24)-		
Station	Sample ID	Date	Lead	Mercury	PCBs	PAH	PAH	HMW-PAH	PAH	PAH	4,4'-DDE	Chlordane
DIL	M9711D1H8TC2	08/26/97	8.4	0.086							,	
DIL	M9711D1H8TC3	08/26/97	9.4	0.064								
DIL	M9711D1H8TC4	08/26/97	7.5	0.020								
DIL	M9711D1H8TC5	08/26/97	6.8	0.033								
DIL	FM9821GVX17	08/10/98			58	29	50	150	180	200	13	24
DIL	FM9821GVX18	08/10/98			54	33	58	160	190	220	12	23
DIL	FM9821GVX19	08/10/98			55	47	76	150	200	220	12	22
DIL	FM9821GVX20	08/10/98			58	36	62	160	200	220	13	24
DIL	FM9821GVX21	08/10/98			59	44	72	150	190	220	13	25
DIL	FM9821SVW79	08/10/98	2.7	0.090								
DIL	FM9821SVW80	08/10/98	3.2	0.10								
DIL	FM9821SVW81	08/10/98	3.8	0.11								
DIL	FM9821SVW82	08/10/98	1.7	0.080								
DIL	FM9821SVW83	08/10/98	6.0	0.11								
DIL	FM0031YE54	08/28/00	7.0	0.15								
DIL	FM0031YE55	08/28/00	6.6	0.18								
DIL	FM0031YE56	08/28/00	10	0.17								
DIL	FM0031YE57	08/28/00	4.2	0.14								
DIL	FM0031YE58	08/28/00	6.7	0.16								
DIL	FM0031YE77	08/28/00			56	83	130	430	510	560	11	11
DIL	FM0031YE78	08/28/00			80						17	16
DIL	FM0031YE79	08/28/00			62	97	150	400	500	550	13	14
DIL	FM0031YE80	08/28/00			65	58	90	300	360	390	13	14
DIL	FM0031YE81	08/28/00			63	69	110	330	400	440	13	14
DIL	FM011ZH67	08/27/01	3.4	0.12	92	25	40	220	250	260	13	9.0
DIL	FM011ZH68	08/27/01	3.0	0.12	92	27	40	210	240	250	13	8.4
DIL	FM011ZH69	08/27/01	3.0	0.12	90	23	36	210	230	240	12	8.0
DIL	FM011ZH70	08/27/01	3.5	0.13	92	32	44	220	250	270	12	8.7
DIL	FM011ZH71	08/27/01	4.5	0.14	120	22	34	190	210	220	14	9.3
DIL	FM021V8126	08/26/02	5.1	0.19	83	28	39	150	180	190	11	9.5
DIL	FM021V8127	08/26/02	4.6	0.18	80	25	35	140	170	180	9.9	8.6
DIL	FM021V8128	08/26/02	5.0	0.18	60	23	31	150	180	180	8.3	6.6
DIL	FM021V8129	08/26/02	5.6	0.17	63	29	40	160	180	200	7.8	6.5
DIL	FM021V8130	08/26/02	5.6	0.19	59	30	42	150	180	190	7.1	5.5
DIL	FM031T6971	08/26/03	2.5	0.12	66	15	27	130	140	150	10	8.6
DIL	FM031T6972	08/26/03	2.6	0.13	75	15	27	130	140	150	11	9.1
DIL	FM031T6973	08/26/03	2.7	0.13	75	16	27	130	140	150	11	9.6
DIL	FM031T6974	08/26/03	2.5	0.14	86	21	33	140	160	170	12	10
DIL	FM031T6975	08/26/03	2.6	0.14	100	22	36	170	190	200	14	12

Table A-1. (cont.)

						LMW(7)-	LMW(12)-		Total(19)-	Total(24)-		
Station	Sample ID	Date	Lead	Mercury	PCBs	PAH	PAH	HMW-PAH	PAH	PÀHÍ	4,4'-DDE	Chlordane
DIL	FM0631M01	08/30/06	2.4	0.080	76	17	25	99	120	120	16	5.5
DIL	FM0631M02	08/30/06	2.7	0.070	74	19	30	120	140	150	16	4.3
DIL	FM0631M03	08/30/06	3.4	0.090	73						18	4.3
DIL	FM0631M04	08/30/06	3.3	0.070	65						10	5.1
DIL	FM0631M05	08/30/06	3.4	0.11	72						11	5.1
IH	M9511D6H7TC1	08/11/95	6.9		160	130		1,300	1,400		41	22
IH	M9511D6H7TC2	08/11/95	8.1		150	130		1,300	1,400		40	21
IH	M9511D6H7TC3	08/11/95	8.7		160	140		1,300	1,400		46	24
IH	M9511D6H7TC4	08/11/95	8.8		160	130		1,200	1,300		42	20
IH	M9511D6H7TC5	08/11/95	10		140	130		1,200	1,300		33	17
IH	M9511D6H8TC1	08/11/95		0.23								
IH	M9511D6H8TC2	08/11/95		0.031								
IH	M9511D6H8TC3	08/11/95		0.058								
IH	M9511D6H8TC4	08/11/95		0.069								
IH	M9511D6H8TC5	08/11/95		0.011								
IH	M9611D6H7TC1	08/27/96			200	140	190	2,400	2,600	2,600	55	36
IH	M9611D6H7TC2	08/27/96			170	160	210	2,600	2,800	2,800	36	33
IH	M9611D6H7TC3	08/27/96			220	150	200	2,200	2,300	2,400	44	26
IH	M9611D6H7TC4	08/27/96			150	140	180	2,000	2,200	2,200	33	29
IH	M9611D6H7TC5	08/27/96			210	130	190	1,900	2,100	2,100	44	24
IH	M9611D6H8TC1	08/27/96	8.1	0.14								
IH	M9611D6H8TC2	08/27/96	11	0.099								
IH	M9611D6H8TC3	08/27/96	8.6	0.14								
IH	M9711D6H7TC1	08/26/97			300	100	120	1,200	1,300	1,400	52	36
IH	M9711D6H7TC2	08/26/97			240	100	130	1,100	1,200	1,200	50	24
IH	M9711D6H7TC3	08/26/97			270	120	150	1,300	1,400	1,400	37	25
IH	M9711D6H7TC4	08/26/97			250	160	190	1,700	1,800	1,800	40	29
IH	M9711D6H7TC5	08/26/97			310	130	150	1,500	1,600	1,600	52	29
IH	M9711D6H8TC1	08/26/97	5.1	0.39								
IH	M9711D6H8TC2	08/26/97	14	0.34								
IH	M9711D6H8TC3	08/26/97	8.3	0.23								
IH	M9711D6H8TC4	08/26/97	9.3	0.23								
IH	M9711D6H8TC5	08/26/97	13	0.41								
IH	FM9832GVX12	08/31/98			180	140	170	1,900	2,100	2,100	25	28
IH	FM9832GVX13	08/31/98			140	120	140	1,600	1,700	1,700	24	21
IH	FM9832GVX14	08/31/98			170	140	170	1,800	1,900	1,900	25	23
IH	FM9832GVX15	08/31/98			200	220	270	2,200	2,400	2,500	29	31
IH	FM9832GVX16	08/31/98			180	130	160	1,800	2,000	2,000	24	24
IH	FM9832SVW74	08/31/98	3.3	0.11								

Table A-1. (cont.)

						LMW(7)-	LMW(12)-		Total(19)-	Total(24)-		
Station	Sample ID	Date	Lead	Mercury	PCBs	PAH	PAH	HMW-PAH	PAH	PAH	4,4'-DDE	Chlordane
IH	FM9832SVW75	08/31/98	4.2	0.11							,	
IH	FM9832SVW76	08/31/98	4.4	0.11								
IH	FM9832SVW77	08/31/98	4.1	0.10								
IH	FM9832SVW78	08/31/98	4.5	0.12								
IH	FM9931GXD79	08/30/99			150	100	130	2,100	2,200	2,300	23	18
IH	FM9931GXD80	08/30/99			170	110	150	2,500	2,600	2,600	28	23
IH	FM9931GXD81	08/30/99			180	150	190	2,600	2,700	2,800	28	23
IH	FM9931GXD82	08/30/99			150	140	180	2,700	2,800	2,900	27	22
IH	FM9931GXD83	08/30/99			190	180	230	2,700	2,900	2,900	28	23
IH	FM9931SXE06	08/30/99	4.1	0.10								
IH	FM9931SXE07	08/30/99	5.4	0.10								
IH	FM9931SXE08	08/30/99	5.2	0.10								
IH	FM9931SXE09	08/30/99	3.6	0.084								
IH	FM9931SXE10	08/30/99	5.2	0.11								
IH	FM0036YE49	08/28/00	11	0.16								
IH	FM0036YE50	08/28/00	14	0.18								
IH	FM0036YE51	08/28/00	16	0.22								
IH	FM0036YE52	08/28/00	12	0.16								
IH	FM0036YE53	08/28/00	12	0.17								
IH	FM0036YE72	08/28/00			230	210	280	2,200	2,400	2,500	35	27
IH	FM0036YE73	08/28/00			200	180	250	1,900	2,100	2,100	28	21
IH	FM0036YE74	08/28/00			210	180	240	1,900	2,100	2,100	32	25
IH	FM0036YE75	08/28/00			240	200	280	2,300	2,500	2,600	38	33
IH	FM0036YE76	08/28/00			250	240	320	2,600	2,900	3,000	40	35
IH	FM011ZH62	08/27/01	10	0.19	160	93	120	1,200	1,300	1,400	18	12
IH	FM011ZH63	08/27/01	12	0.19	170	110	140	1,500	1,600	1,600	20	13
IH	FM011ZH64	08/27/01	7.4	0.15	160	62	85	1,200	1,300	1,300	21	13
IH	FM011ZH65	08/27/01	12	0.32	170	94	120	1,400	1,500	1,500	17	12
IH	FM011ZH66	08/27/01	8.8	0.16	150	83	110	1,100	1,200	1,200	17	10
IH	FM021V8121	08/26/02	8.2	0.20	120	47	66	550	590	610	16	12
IH	FM021V8122	08/26/02	9.0	0.21	99	76	110	1,600	1,600	1,700	13	11
IH	FM021V8123	08/26/02	7.2	0.17	100	61	84	700	760	780	15	13
IH	FM021V8124	08/26/02	7.5	0.18	110	59	74	680	740	750	16	12
IH	FM021V8125	08/26/02	8.3	0.21	120	56	74	700	760	770	17	14
IH	FM031T6966	08/26/03	11	0.16	200	110	220	2,100	2,200	2,300	30	31
IH	FM031T6967	08/26/03	8.2	0.15	160	79	150	1,600	1,700	1,700	25	23
IH	FM031T6968	08/26/03	9.1	0.18	170	83	160	1,800	1,800	1,900	25	27
IH	FM031T6969	08/26/03	9.0	0.15	210	92	200	1,900	2,000	2,100	31	32
IH	FM031T6970	08/26/03	8.2	0.13	160	65	140	1,400	1,400	1,500	23	21

Table A-1. (cont.)

						LMW(7)-	LMW(12)-		Total(19)-	Total(24)-		
Station	Sample ID	Date	Lead	Mercury	PCBs	PAH	PAH	HMW-PAH	PAH	PÀHÍ	4,4'-DDE	Chlordane
IH	FM063601	08/30/06	3.8	0.10	94	59	74	1,300	1,300	1,300	22	6.4
IH	FM063602	08/30/06	3.0	0.11	84	51	63	1,000	1,100	1,100	17	7.0
IH	FM063603	08/30/06	3.2	0.10	97						11	6.6
IH	FM063604	08/30/06	3.7	0.10	100						26	11
IH	FM063605	08/30/06	4.5	0.12	62						14	3.3
LNB	FM011ZP19	08/27/01			31	22	28	97	120	120	6.4	15
LNB	FM011ZP20	08/27/01			29	29	33	74	100	110	5.6	14
LNB	FM011ZP21	08/27/01			26	15	19	85	100	100	5.4	12
LNB	FM011ZP22	08/27/01			24	22	27	150	170	180	5.1	11
LNB	FM011ZP23	08/27/01			30	28	35	120	150	160	6.8	16
LNB	FM011ZP24	08/27/01			28	19	23	93	110	120	6.0	14
LNB	FM011ZP25	08/27/01			28	35	44	94	130	140	6.0	15
LNB	FM011ZP26	08/27/01			29	20	25	93	110	120	5.9	15
LNB	FM021V8139	08/26/02	1.7	0.14	23	12	22	100	110	120	6.3	13
LNB	FM021V8140	08/26/02	1.7	0.13	23	11	20	110	120	130	6.6	11
LNB	FM021V8141	08/26/02	1.8	0.14	22	12	23	110	120	130	6.2	10
LNB	FM021V8142	08/26/02	1.6	0.14	23	11	21	98	110	120	6.7	11
LNB	FM031T6984	08/26/03	1.3	0.11	33	12	23	120	130	140	6.7	12
LNB	FM031T6985	08/26/03	1.8	0.12	33	13	24	130	150	160	6.7	12
LNB	FM031T6986	08/26/03	1.3	0.11	32	14	24	140	160	170	6.7	11
LNB	FM031T6987	08/26/03	1.4	0.11	33	13	24	140	150	160	6.4	11
LNB	FM063B01	08/30/06	1.5	0.070	17	14	22	73	86	95	6.5	3.4
LNB	FM063B02	08/30/06	1.8	0.080	19	15	26	68	84	94	7.9 U	3.7
LNB	FM063B03	08/30/06	1.7	0.060	19						6.1	3.6
LNB	FM063B04	08/30/06	1.6	0.080	21						8.6	3.0 U
OSM	M9611D4H7TC1	08/27/96			34	33	53	50	83	100	11	5.9
OSM	M9611D4H7TC2	08/27/96			38	34	60	57	91	120	13	8.2
OSM	M9611D4H7TC3	08/27/96			41	39	64	63	100	130	13	7.5
OSM	M9611D4H7TC4	08/27/96			37	35	71	54	88	120	11	6.6
OSM	M9611D4H7TC5	08/27/96			34	34	70	57	91	130	12	6.7
OSM	M9611D4H8TC1	08/27/96	2.1	0.27								
OSM	M9611D4H8TC2	08/27/96	1.3	0.081								
OSM	M9611D4H8TC3	08/27/96	1.5	0.21								
OSM	M9611D4H8TC4	08/27/96	1.6	0.071								
OSM	M9611D4H8TC5	08/27/96	1.4	0.091								
OSM	M9711D4H7TC1	08/26/97			33	30	43	23	53	65	8.5	5.6
OSM	M9711D4H7TC2	08/26/97			33	25	40	25	49	65	8.7	6.2
OSM	M9711D4H7TC3	08/26/97			32	42	94	28	70	120	8.8	5.4
OSM	M9711D4H7TC4	08/26/97			31	33	52	28	61	80	9.5	6.2

Table A-1. (cont.)

						LMW(7)-	LMW(12)-		Total(19)-	Total(24)-		
Station	Sample ID	Date	Lead	Mercury	PCBs	PAH	PAH	HMW-PAH	PAH	PÀHÍ	4,4'-DDE	Chlordane
OSM	M9711D4H7TC5	08/26/97			35	26	40	24	50	65	11	7.0
OSM	M9711D4H8TC1	08/26/97	2.0	0.0052 U								
OSM	M9711D4H8TC2	08/26/97	1.8	0.0052 U								
OSM	M9711D4H8TC3	08/26/97	2.0	0.14								
OSM	M9711D4H8TC4	08/26/97	2.4	0.20								
OSM	M9711D4H8TC5	08/26/97	2.2	0.18								
OSM	FM9822GVX22	08/10/98			27	15	19	23	37	42	8.2	10
OSM	FM9822GVX23	08/10/98			27	14	19	20	33	38	7.8	10
OSM	FM9822GVX24	08/10/98			29	16	23	23	39	46	9.1	12
OSM	FM9822GVX25	08/10/98			33	16	20	23	39	43	9.6	12
OSM	FM9822GVX26	08/10/98			21	8.9	13	18	27	31	6.1	6.9
OSM	FM9822GVX27	08/10/98			28	16	20	22	38	42	8.6	8.7
OSM	FM9822GVX28	08/10/98			27	14	19	21	36	40	8.2	13
OSM	FM9822GVX29	08/10/98			24	13	19	22	36	42	7.3	8.1
OSM	FM9822SVW84	08/10/98	2.8	0.10								
OSM	FM9822SVW85	08/10/98	2.0	0.090								
OSM	FM9822SVW86	08/10/98	1.5	0.080								
OSM	FM9822SVW87	08/10/98	2.1	0.080								
OSM	FM9822SVW88	08/10/98	2.1	0.080								
OSM	FM9822SVW89	08/10/98	2.9	0.10								
OSM	FM9822SVW90	08/10/98	2.1	0.090								
OSM	FM9822SVW91	08/10/98	1.7	0.090								
OSM	FM9932GXD84	09/02/99			16	15	20	29	43	48	5.4	7.2
OSM	FM9932GXD85	09/02/99			15	16	21	28	43	49	5.0	6.3
OSM	FM9932GXD86	09/02/99			16	15	20	23	38	43	5.6	7.0
OSM	FM9932GXD87	09/02/99			15	17	23	25	42	48	4.7	8.4
OSM	FM9932GXD88	09/02/99			18	18	24	29	47	53	6.3	7.8
OSM	FM9932GXD89	09/02/99			15	17	22	25	42	47	4.9	6.8
OSM	FM9932GXD90	09/02/99			18	16	22	25	41	47	6.4	7.7
OSM	FM9932GXD91	09/02/99			16	16	22	26	42	48	5.3	6.5
OSM	FM9932SXE11	09/02/99	0.79	0.052								
OSM	FM9932SXE12	09/02/99	1.1	0.056								
OSM	FM9932SXE13	09/02/99	1.2	0.065								
OSM	FM9932SXE14	09/02/99	1.2	0.066								
OSM	FM9932SXE15	09/02/99	0.96	0.057								
OSM	FM9932SXE16	09/02/99	1.2	0.080								
OSM	FM9932SXE17	09/02/99	0.79	0.061								
OSM	FM9932SXE18	09/02/99	1.4	0.063								
OSM	FM0034YE59	08/28/00	1.2	0.13								

Table A-1. (cont.)

						LMW(7)-	LMW(12)-		Total(19)-	Total(24)-		
Station	Sample ID	Date	Lead	Mercury	PCBs	PAH	PAH	HMW-PAH	PAH	PAH	4,4'-DDE	Chlordane
OSM	FM0034YE60	08/28/00	0.83	0.10								
OSM	FM0034YE61	08/28/00	0.89	0.10								
OSM	FM0034YE62	08/28/00	0.97	0.11								
OSM	FM0034YE63	08/28/00	0.85	0.13								
OSM	FM0034YE64	08/28/00	0.89	0.10								
OSM	FM0034YE65	08/28/00	1.2	0.13								
OSM	FM0034YE66	08/28/00	0.74	0.10								
OSM	FM0034YE82	08/28/00			14	100	160	54	160	210	3.7	3.2
OSM	FM0034YE83	08/28/00			16	67	97	39	110	140	4.7	4.7
OSM	FM0034YE84	08/28/00			15	68	100	38	110	140	4.4	5.1
OSM	FM0034YE85	08/28/00			15	74	110	43	120	150	4.2	4.2
OSM	FM0034YE86	08/28/00			17	60	88	44	100	130	5.2	5.8
OSM	FM0034YE87	08/28/00			15	50	74	42	92	120	4.5	5.5
OSM	FM0034YE88	08/28/00			16	79	130	41	120	170	4.8	5.1
OSM	FM0034YE89	08/28/00			14	65	100	44	110	150	4.0	4.5
OS-M1	FM011ZP11	08/27/01	2.4	0.16								
OS-M1	FM011ZP12	08/27/01	1.6	0.14								
OS-M1	FM011ZP13	08/27/01	1.8	0.15								
OS-M1	FM011ZP14	08/27/01	1.6	0.12								
OS-M1	FM011ZP15	08/27/01	1.9	0.14								
OS-M1	FM011ZP16	08/27/01	2.1	0.15								
OS-M1	FM011ZP17	08/27/01	2.0	0.15								
OS-M1	FM011ZP18	08/27/01	1.6	0.13								
OS-M1	FM011ZP27	08/27/01			32	20	27	210	230	240	7.3	17
OS-M1	FM011ZP28	08/27/01			34	17	24	190	210	210	7.4	17
OS-M1	FM011ZP29	08/27/01			33	18	26	210	230	230	7.4	18
OS-M1	FM011ZP30	08/27/01			36	17	24	200	220	220	7.5	18
OS-M1	FM011ZP31	08/27/01			35	20	27	190	210	220	8.0	19
OS-M1	FM011ZP32	08/27/01			43	22	30	220	240	250	9.7	23
OS-M1	FM011ZP33	08/27/01			35	18	26	180	200	210	7.5	18
OS-M1	FM011ZP34	08/27/01			35	21	28	190	210	220	7.7	18
OS-M1	FM021V8131	08/26/02	2.6	0.17	26	21	47	240	260	290	8.5	21
OS-M1	FM021V8132	08/26/02	2.6	0.17	24	17	41	230	250	270	7.6	18
OS-M1	FM021V8133	08/26/02	2.4	0.17	26	19	45	270	280	310	8.0	20
OS-M1	FM021V8134	08/26/02	2.3	0.19	25	23	49	280	300	320	8.0	19
OS-M1	FM031T6976	08/26/03	2.0	0.13	33	18	36	290	310	330	6.7	15
OS-M1	FM031T6977	08/26/03	1.7	0.13	37	21	42	360	380	400	8.5	17
OS-M1	FM031T6978	08/26/03	1.7	0.14	36	22	38	330	350	370	8.3	18
OS-M1	FM031T6979	08/26/03	1.4	0.12	33	16	30	280	290	310	7.0	14

Table A-1. (cont.)

						LMW(7)-	LMW(12)-		Total(19)-	Total(24)-		
Station	Sample ID	Date	Lead	Mercury	PCBs	PAH	PAH	HMW-PAH	PAH	PAH	4,4'-DDE	Chlordane
OS-M2	FM021V8135	08/26/02	2.8	0.17	25	15	22	150	160	170	7.0	13
OS-M2	FM021V8136	08/26/02	2.7	0.18	30	12	18	160	180	180	8.5	14
OS-M2	FM063M201	08/30/06	1.7	0.070	16	24	39	150	170	180	10	7.8
OS-M2	FM063M202	08/30/06	1.8	0.070	16	20	30	110	130	140		5.8
OS-M2	FM063M203	08/30/06	2.2	0.090	15						8.6	
OS-M2	FM063M204	08/30/06	1.5	0.080	12						7.8	
OS-M3	FM021V8147	08/05/02	2.8	0.18	23	12	18	320	330	340	7.2	16
OS-M3	FM021V8148	08/05/02	2.8	0.18	22	12	17	200	210	210	6.9	14
OS-M3	FM021V8149	08/05/02	2.7	0.17	25	11	16	250	260	260	8.3	18
OS-M4	FM031T6980	08/26/03	1.8	0.14	32	18	32	290	310	320	7.8	15
OS-M4	FM031T6981	08/26/03	1.6	0.13	31	15	28	250	270	280	6.3	13
OS-M5	FM021V8137	08/26/02	2.5	0.18	28	16	67	190	200	260	7.3	13
OS-M5	FM021V8138	08/26/02	2.4	0.17	27	15	37	180	200	220	7.7	16
OS-M5	FM063M501	08/30/06	2.0	0.10	17	20	36	110	130	150	11	4.2
OS-M5	FM063M502	08/30/06	2.1	0.080	16	23	39	110	130	150	4.7	5.5
OS-M5	FM063M503	08/30/06	1.4	0.060	18						5.8	
OS-M5	FM063M504	08/30/06	2.4	0.090	17						6.5	
OS-M6	FM031T6982	08/26/03	1.7	0.13	28	16	30	260	270	290	6.6	15
OS-M6	FM031T6983	08/26/03	1.9	0.14	31	16	31	250	270	280	6.4	15

Note: Concentrations reported as pg/g for metals and ng/g for all other compounds, rounded to two significant figures.

CCB - Cape Cod Bay

DIL - Deer Island Light

IH - Boston inner harbor

LNB - large navigation buoy

Outfall location includes stations OSM, OS-M1, OS-M2, OS-M3, OS-M4, OS-M5, and OS-M6

PCB: Sum of congeners 138 and 153

LMW PAH (7): Sum of 7 low molecular weight compounds (acenaphthene, acenaphthylene, anthracene, biphenyl, fluorene, naphthalene, phenanthrene)

LMW PAH (12): Sum of 12 low molecular weight compounds (acenaphthene, acenaphthylene, anthracene, biphenyl, fluorene, naphthalene, phenanthrene, 1-methylnaphthalene, 1-methylphenanthrene, 2,3,5-triethylnaphthalene, 2,6-dimethylnaphthalene, and 2-methylnaphthalene)

HMW PAH: Sum of 12 high molecular weight compounds (benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[e]pyrene, benzo[ghi]perylene, benzo[k]fluoranthene, chrysene, dibenz[a,h]anthracene, fluoranthene, indeno[1,2,3-cd]pyrene, perylene, and pyrene)

Total PAH (19): Sum of LMW PAH (7) and HMW PAH

Total PAH (24): Sum of LMW PAH (12) and HMW PAH

Chlordane: Sum of cis-chlordane and trans-nonachlor

A				202		<u> </u>
Station	Sample ID	Date	Mercury	PCBs	4,4'-DDE	Chlordane
DIF	L95111000C1	07/25/95	0.80	35	10	1.2
DIF	L95111000C2	07/25/95	1.0	42	12	1.2 U
	10511100003	07/25/05	0.028	60	15	1 1
		01/23/93	0.020	00	10	1.1
DIF	L96111000C1	08/26/96	0.72	91	30	5.0
DIF	L96111000C2	08/26/96	0.91	120	18	4.5
DIF	L96111000C3	08/26/96	0.95	68	17	3.9
DIF	L97111000C1	08/01/97	1.6	220	83	8.2
DIF	L97111000C2	08/01/97	15	51	16	3.8
DIF	L97111000C3	08/01/97	13	81	24	6.6
	V78T11	00/01/01	0.71	46	10	5.0
DIF	VZOTIO	09/15/96	0.71	40	10	5.0
	VZS112	09/15/98	0.78	53	10	3.7
DIF	VZST13	09/15/98	0.81	39	8.8	3.6
DIF	FL9911C1	07/29/99	0.93	56	16	4.5
DIF	FL9911C2	07/29/99	0.78	66	18	4.7
DIF	FL9911C3	07/29/99	1.3	51	14	4.8
DIF	FL0011C1	08/11/00	0.62	69	6.5	3.0
	EL0011C2	09/11/00	0.02	10	4.0	1.0
	FL0011C2	00/11/00	0.90	10	4.0	1.9
	FL0011C3	08/11/00	0.64	26	4.7	2.2
DIF	FL0111-C1	07/10/01	0.85	25	5.4	1.7
DIF	FL0111-C2	07/10/01	0.95	41	9.1	3.4
DIF	FL0111-C3	07/10/01	0.82	19	4.8	1.3
DIF	FL0211C1	08/02/02	0.68	39	8.2	1.1
DIE	FL0211C2	08/02/02	0.83	37	7.8	1.5
	EL 021102	00/02/02	1.0	27	6.7	1.0
	FL0211C3	00/02/02	1.0	37	0.7	1.4
	FL0311C1	08/19/03	1.1	69	11	1.9
DIF	FL0311C2	08/19/03	0.99	63	12	1.9
DIF	FL0311C3	08/19/03	1.1	74	11	2.2
DIF	FL06110C1	07/25/06	0.50	57	14	3.8 U
DIF	FL06110C2	07/25/06	0.54	58	14	3.8 U
DIF	FL06110C3	07/25/06	0.42	51	11	4111
ECCB	10511500001	07/18/05	0.53	/3	18	0.73
ECCB	L95115000C1	07/10/95	0.55	43	10	0.73
ECCB	L95115000C2	07/18/95	0.63	29	12	1.2 0
ECCB	L95115000C3	07/18/95	0.44	26	8.8	0.60
ECCB	L96115000C1	08/06/96	1.1	32	13	1.9
ECCB	L96115000C2	08/06/96	1.0	26	10	1.6
ECCB	L96115000C3	08/06/96	0.74	29	13	1.5
FCCB	L97115000C1	07/23/97	11	32	14	21
ECCB	L97115000C2	07/23/07	1.0	30	11	13
LCOD	10711500002	07/23/37	0.95	20	10	1.0
ECCB	L9/110000C3	01/23/97	0.05	30	12	2.2
ECCB	VZS191	09/24/98	0.67	28	9.9	1.6
ECCB	VZST92	09/24/98	0.61	19	6.3	1.4
ECCB	VZST93	09/24/98	0.51	27	9.3	1.4
ECCB	FL9915C1	09/09/99	0.78	23	8.9	0.96
ECCB	FL9915C2	09/09/99	0.79	19	8.1	0.92
FCCB	FI 9915C3	09/09/99	0.57	26	11	1.0
ECCB	FL0015C1	07/10/00	0.47	17	11	0.03
LCCD		07/19/00	0.47	17	4.1	0.95
ECCB	FL0015C2	07/19/00	0.59	14	2.5	0.79
FCCB	FL0015C3	07/19/00	0.92	22	5.4	0.95
ECCB	FL0115-C1	09/07/01	0.45	18	6.4	0.45
ECCB	FL0115-C2	09/07/01	0.53	15	5.4	0.31
ECCB	FL0115-C3	09/07/01	0.62	19	6.6	0.53
ECCB	FL0215C1	08/14/02	0.72	86	28	0.69
FCCP	FL 0215C2	08/11/02	0.67	15	13	0.00
		00/14/02	0.07	10	4.3	0.42
		08/14/02	0.54	17	4.9	0.60
ECCB	FL0315C1	10/06/03	0.60	16	3.7	0.61
ECCB	FL0315C2	10/06/03	0.43	19	7.3	0.69

Table A-2. Concentrations measured in edible lobster meat

Table A-2. (cont.)

Station	Sample ID	Date	Mercury	PCBs	4,4'-DDE	Chlordane
ECCB	FL0315C3	10/06/03	0.55	14	4.2	0.84
ECCB	FL06150C1	09/07/06	0.33	26	6.6	4.0 <i>U</i>
ECCB	FL06150C2	09/07/06	0.35	13	5.4	3.8 U
ECCB	FL06150C3	09/07/06	0.28	29	6.4	3.5 U
OS	L95114000C1	07/25/95	0.67	40	12	1.3
OS	L95114000C2	07/25/95	1.0	44	13	0.75
OS	L95114000C3	07/25/95	1.6	51	14	1.4
OS	L96114000C1	08/26/96	1.4	59	17	4.3
OS	L96114000C2	08/26/96	1.2	48	14	3.9
OS	L96114000C3	08/26/96	0.65	53	15	3.2
OS	L97114000C1	08/01/97	1.3	37	9.8	1.2
OS	L97114000C2	08/01/97	1.1	80	31	3.2
OS	L97114000C3	08/01/97	0.99	55	17	4.0
OS	VZST41	09/07/98	0.87	34	9.1	3.9
OS	VZST42	09/07/98	1.0	22	5.7	1.6
OS	VZST43	09/07/98	1.1	29	7.8	2.6
OS	FL9914C1	11/12/99	1.4	34	7.5	1.4
OS	FL9914C2	11/12/99	0.87	26	7.2	1.6
OS	FL9914C3	11/12/99	0.88	29	7.4	2.0
OS	FL0014C1	08/24/00	1.0	30	5.6	1.3
OS	FL0014C2	08/24/00	1.0	29	5.2	1.0
OS	FL0014C3	08/24/00	0.73	21	3.5	1.2
OS	FL0114-C1	08/22/01	1.2	26	6.2	1.4
OS	FL0114-C2	08/22/01	0.84	22	5.2	0.90
OS	FL0114-C3	08/22/01	0.99	31	7.2	1.1
OS	FL0214C1	10/04/02	0.74	23	4.0	0.87
OS	FL0214C2	10/04/02	0.85	35	7.0	1.2
OS	FL0214C3	10/04/02	0.77	14	3.6	0.73
OS	FL0314C1	09/10/03	0.68	28	4.7	1.0
OS	FL0314C2	09/10/03	1.1	21	3.7	0.92
OS	FL0314C3	09/10/03	0.77	130	6.1	0.95
OS	FL06140C1	10/09/06	0.42	49	7.6	0.31 <i>U</i>
OS	FL06140C2	10/09/06	0.46	31	12	0.31 <i>U</i>
OS	FL06140C3	10/09/06	0.46		8.9	0.55

Note: Concentrations reported as pg/g for metals and ng/g for all other compounds, rounded to two significant figures.

DIF - Deer Island Flats ECCB - East Cape Cod Bay OS - outfall location

PCB: Sum of congeners 138 and 153 Chlordane: Sum of *cis*-chlordane and *trans*-nonachlor

Table A-3. Concentrations measured in lobster hepatopancreas

								LMW(7)-	LMW(12)-		Total(19)-	Total(24)-		
Station	Sample ID	Date	Cadmium	Copper	Lead	Mercury	PCBs	PAH	PAH	HMW-PAH	PAH	PAH	4,4'-DDE	Chlordane
DIF	L95111000C1	07/25/95	5.7	430	0.21	0.30	1,100	380		2,000	2,300		380	62
DIF	L95111000C2	07/25/95	5.4	220	0.22	0.33	1,600	200		1,200	1,400		470	16
DIF	L95111000C3	07/25/95	4.8	320	0.34	0.41	2,900	300		2,100	2,400		790	40
DIF	L96111000C1	08/26/96	3.7	650	0.51	0.25	3,200	240		4,400	4,600		1,200	230
DIF	L96111000C2	08/26/96	3.6	490	0.26	0.22	2,800	250		3,300	3,600		930	180
DIF	L96111000C3	08/26/96	2.7	310	0.27	0.14	2,200	310		9,000	9,300		920	180
DIF	L97111000C1	08/01/97	9.1	810	0.45	0.27	5,200	1,500		6,300	7,900		2,100	180
DIF	L97111000C2	08/01/97	5.9	440	0.29	0.53	1,800	81		1,100	1,100		20 U	100
DIF	L97111000C3	08/01/97	6.0	670	0.43	0.49	1,900	150		1,200	1,400		780	120
DIF	VZST11	09/15/98	2.6	600	0.15	0.24	3,800	250	380				910	230
DIF	VZST12	09/15/98	3.6	690	0.30	0.27	3,500	370	500				800	240
DIF	VZST13	09/15/98	5.8	540	0.24	0.27	3,300	240	360				860	230
DIF	FL9911C1	07/29/99	5.1	890	0.49	0.33	4,700	260	350	3,300	3,500	3,600	1,100	120
DIF	FL9911C2	07/29/99	3.9	870	0.58	0.30	4,300	170	270	3,300	3,400	3,500	1,200	120
DIF	FL9911C3	07/29/99	4.7	930	0.50	0.28	4,600	200	300	4,200	4,400	4,500	1,200	160
DIF	FL0011C1	08/11/00	7.3	520	0.29	0.24	4,400	350	550	7,000	7,400	7,600	520	130
DIF	FL0011C2	08/11/00	5.8	340	0.28	0.32	900	210	340	2,800	3,000	3,100	160	52
DIF	FL0011C3	08/11/00	6.2	510	0.33	0.23	2,300	620	830	7,800	8,400	8,600	650	70
DIF	FL0111-C1	07/10/01	6.6	420	0.28	0.19	2,600	270	390	6,700	7,000	7,100	560	79
DIF	FL0111-C2	07/10/01	10	970	0.48	0.32	5,600	230	350	3,800	4,000	4,100	1,000	100
DIF	FL0111-C3	07/10/01	7.4	530	0.41	0.25	2,300	390	560	5,800	6,200	6,300	590	93
DIF	FL0211C1	08/02/02	10	780	0.33	0.33	2,200	800	1,000	4,800	5,600	5,800	440	60
DIF	FL0211C2	08/02/02	16	1,100	0.52	0.41	2,100	640	760	3,300	4,000	4,100	400	50
DIF	FL0211C3	08/02/02	7.0	740	0.28	0.39	2,100	84	130	1,900	1,900	2,000	390	58
DIF	FL0311C1	08/19/03	8.9	600	0.30	0.35	5,100	75	120	2,500	2,500	2,600	950	74
DIF	FL0311C2	08/19/03	16	410	0.37	0.33	4,100	57	95	1,600	1,600	1,700	850	59
DIF	FL0311C3	08/19/03	9.8	670	0.22	0.44	6,500	76	110	1,700	1,800	1,800	1,000	68
DIF	FL06110C1	07/25/06	5.6	670	0.29	0.14	1,400	310	500	3,600	3,900	4,100	1,100	85
DIF	FL06110C2	07/25/06	5.4	550	0.24	0.18	3,300	1,100	1,300	10,000	11,000	11,000	1,600	150
DIF	FL06110C3	07/25/06	6.7	380	0.42	0.14	2,800	490	740	5,100	5,600	5,800	1,400	110
ECCB	L95115000C1	07/18/95	8.2	170	0.036	0.40	1,300	200		1,100	1,300		680	37
ECCB	L95115000C2	07/18/95	8.1	150	0.031	0.23	960	240		2,700	2,900		530	48
ECCB	L95115000C3	07/18/95	7.5	59	0.061	0.18	1,600	280		1,700	2,000		760	110
ECCB	L96115000C1	08/06/96	15	230	0.12	0.28	920	140		570	710		480	77
ECCB	L96115000C2	08/06/96	15	180	0.039	0.20	1,100	350		550	890		540	47
ECCB	L96115000C3	08/06/96	14	85	0.048	0.25	1,400	660		1,200	1,800		780	120
ECCB	L97115000C1	07/23/97	15	310	0.068	0.40	1,300						1,000	44
ECCB	L97115000C2	07/23/97	14	360	0.048	0.42	1,100						650	28
ECCB	L97115000C3	07/23/97	12	220	0.024 <i>U</i>	0.38	920						540	52
ECCB	VZST91	09/24/98	6.9	670	0.30	0.23	1,600	58	82				650	38
ECCB	VZST92	09/24/98	8.0	570	0.30	0.28	1,900	63	91				730	39

Table A-3. (cont.)

								LMW(7)-	LMW(12)-		Total(19)-	Total(24)-		
Station	Sample ID	Date	Cadmium	Copper	Lead	Mercury	PCBs	PAH	PAH	HMW-PAH	PAH	PAH	4,4'-DDE	Chlordane
ECCB	VZST93	09/24/98	7.8	480	0.32	0.22	1,700	62	91				670	46
ECCB	FL9915C1	09/09/99	15	340	0.31	0.29	1,500	84	120	650	740	770	470	24
ECCB	FL9915C2	09/09/99	11	560	0.23	0.35	1,500	94	130	750	840	880	550	34
ECCB	FL9915C3	09/09/99	11	540	0.21	0.31	1,800	87	120	580	670	700	570	25
ECCB	FL0015C1	07/19/00	6.9	380	0.45	0.20	700	76		790	870		300	24
ECCB	FL0015C2	07/19/00	8.1	250	0.31	0.20	560	67		610	680		210	31
ECCB	FL0015C3	07/19/00	13	630	0.34	0.30	1,500	70		550	620		630	28
ECCB	FL0115-C1	09/07/01	13	760	0.39	0.28	900	58	84				320	20
ECCB	FL0115-C2	09/07/01	13	320	0.35	0.22	1,100	66	94				410	16
ECCB	FL0115-C3	09/07/01	12	480	0.38	0.23	1,100	54	74	630	680	700	420	22
ECCB	FL0215C1	08/14/02	12	370	0.47	0.21	630	52	68	600	650	670	220	26
ECCB	FL0215C2	08/14/02	13	580	0.41	0.26	530	33	45	480	520	530	160	15
ECCB	FL0215C3	08/14/02	14	430	0.38	0.23	690	34	47	540	580	590	200	14
ECCB	FL0315C1	10/06/03	13	390	0.31	0.20	930	35	50	390	430	440	250	17
ECCB	FL0315C2	10/06/03	10	350	0.15	0.20	840	38	56	350	390	410	360	17
ECCB	FL0315C3	10/06/03	9.0	320	0.17	0.21	950	44	60	480	530	540	320	24
ECCB	FL06150C1	09/07/06	7.2	560	0.11	0.17	1,300	190	310	750	930	1,100	860	130
ECCB	FL06150C2	09/07/06	16	300	0.040	0.16	860	88	160	500	590	660	690	54
ECCB	FL06150C3	09/07/06	8.5	380	0.087	0.12	1,400	140	200	1,100	1,200	1,300	790	48
OS	L95114000C1	07/25/95	4.4	380	0.22	0.24	2,400	180		2,100	2,300		800	120
OS	L95114000C2	07/25/95	5.1	300	0.38	0.41	2,300	180		2,100	2,300		780	1.2 U
OS	L95114000C3	07/25/95	6.4	260	0.30	0.36	1,800	190		2,700	2,900		710	100
OS	L96114000C1	08/26/96	11	510	0.28	0.22	2,000	250		3,100	3,300		690	180
OS	L96114000C2	08/26/96	9.5	300	0.65	0.33	2,300	290		4,900	5,200		870	180
OS	L96114000C3	08/26/96	7.2	300	0.30	0.23	2,100	110		1,700	1,900		770	110
OS	L97114000C1	08/01/97	8.2	110	0.20	0.35	1,400	86		750	840		530	35
OS	L97114000C2	08/01/97	13	690	0.36	0.48	2,400	190		1,700	1,900		1,700	65
OS	L97114000C3	08/01/97	15	740	0.34	0.48	1,500	65		980	1,000		820	73
OS	VZST41	09/07/98	24	790	0.56	0.39	2,700	260	300				780	100
OS	VZST42	09/07/98	15	530	0.55	0.34	3,100	93	130				1,000	81
OS	VZST43	09/07/98	13	510	0.78	0.36	2,900	71	110				940	86
OS	FL9914C1	11/12/99	21	950	0.44	0.68	3,200	81	97	620	710	720	700	40
OS	FL9914C2	11/12/99	8.1	920	0.27	0.42	3,000	99	130	820	920	950	820	63
OS	FL9914C3	11/12/99	17	630	0.55	0.49	2,300	96	120	680	780	800	610	56
OS	FL0014C1	08/24/00	13	880	0.33	0.35	1,100	58	83	890	950	970	290	26
OS	FL0014C2	08/24/00	10	590	0.34	0.73	2,100	520	590	2,300	2,800	2,900	530	64
OS	FL0014C3	08/24/00	10	610	0.28	0.32	730	77	130	670	750	800	120	16
OS	FL0114-C1	08/22/01	15	650	0.34	0.26	1,100	68	120	550	620	670	250	23
OS	FL0114-C2	08/22/01	16	850	0.46	0.36	1,900	83	150				490	39
OS	FL0114-C3	08/22/01	15	830	0.45	0.33	2,000	74	140	910	990	1,100	480	36
OS	FL0214C1	10/04/02	10	690	0.22	0.28	1,200	100	140	770	870	910	240	43

Table A-3. (cont.)

								LMW(7)-	LMW(12)-		Total(19)-	Total(24)-		
Station	Sample ID	Date	Cadmium	Copper	Lead	Mercury	PCBs	PAH	PAH	HMW-PAH	PAH	PAH	4,4'-DDE	Chlordane
OS	FL0214C2	10/04/02	24	980	0.55	0.50	1,800	48	84	1,900	1,900	2,000	370	45
OS	FL0214C3	10/04/02	14	940	0.21	0.31	950	86	150	2,900	3,000	3,000	230	34
OS	FL0314C1	09/10/03	12	830	0.41	0.32	1,600	91	140	1,400	1,500	1,500	330	41
OS	FL0314C2	09/10/03	15	520	0.21	0.36	1,400	110	160	1,600	1,700	1,700	330	40
OS	FL0314C3	09/10/03	9.6	720	0.50	0.33	7,300	76	130	1,300	1,400	1,500	420	5.8
OS	FL06140C1	10/09/06	19	830	0.57	0.25	1,900	120	180	1,100	1,200	1,300	710	56
OS	FL06140C2	10/09/06	11	830	0.39	0.24	1,600	110	160	1,100	1,200	1,300	960	53
OS	FL06140C3	10/09/06	16	660	0.34	0.30	1,100	110	220	1,100	1,200	1,300	500	41

Note: Concentrations reported as pg/g for metals and ng/g for all other compounds, rounded to two significant figures

CCB - Cape Cod Bay

DIF - Deer Island Flats

OS - outfall location

PCB: Sum of congeners 138 and 153

LMW PAH (7): Sum of 7 low molecular weight compounds (acenaphthene, acenaphthylene, anthracene, biphenyl, fluorene, naphthalene, phenanthrene)

LMW PAH (12): Sum of 12 low molecular weight compounds (acenaphthene, acenaphthylene, anthracene, biphenyl, fluorene, naphthalene, phenanthrene, 1-methylnaphthalene, 1-methylphenanthrene, 2,3,5-triethylnaphthalene, 2,6-dimethylnaphthalene, and 2-methylnaphthalene)

HMW PAH: Sum of 12 high molecular weight compounds (benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[e]pyrene,

benzo[ghi]perylene, benzo[k]fluoranthene, chrysene, dibenz[a,h]anthracene, fluoranthene, indeno[1,2,3-cd]pyrene, perylene, and pyrene) Total PAH (19): Sum of LMW PAH (7) and HMW PAH

Total PAH (24): Sum of LMW PAH (12) and HMW PAH

Chlordane: Sum of cis-chlordane and trans-nonachlor

Station	Sample ID	Date	Mercury	PCBs	4,4'-DDE	Chlordane
DIF	P95111000C1	04/10/95	0.37	230	24	13
DIF	P95111000C2	04/10/95	0.42	130	18	11
DIF	P95111000C3	04/10/95	0.42	370	63	22
DIF	P96111000C1	04/15/96	0.42	130	24	11
DIF	P96111000C2	04/15/96	0.59	170	32	12
DIF	P96111000C3	04/15/96	0.36	110	24	12
DIF	P97111000C1	04/07/97	0.59	130	40	15
DIF	P97111000C2	04/07/97	0.33	180	46	15
DIF	P97111000C3	04/07/97	0.60	120	36	11
DIF	VQST11	04/21/98	0.26	140	22	15
DIF	VQST12	04/21/98	0.22	100	19	11
DIF	VQST13	04/21/98	0.23	120	25	15
DIF	FF99110C1	05/10/99	0.36	61	16	9.9
DIF	FF99110C2	05/10/99	0.33	57	20	10
DIF	FF99110C3	05/10/99	0.37	48	16	9.1
DIF	FF00110C1	04/11/00	0.35	79	13	8.3
DIF	FF00110C2	04/11/00	0.55	120	21	14
DIF	FF00110C3	04/11/00	0.28	88	17	7.8
DIF	FF01110C1	04/25/01	0.44	140	28	9.9
DIF	FF01110C2	04/25/01	0.32	110	22	9.2
DIF	FF01110C3	04/25/01	0.31	140	27	12
DIF	FF02110C1	04/23/02	0.42	88	16	6.1
DIF	FF02110C2	04/23/02	0.29	76	13	5.7
DIF	FF02110C3	04/23/02	0.38	91	12	6.3
DIF	FF03110C1	04/28/03	0.37	160	26	7.5
DIF	FF03110C2	04/28/03	0.42	180	29	12
DIF	FF03110C3	04/28/03	0.39	160	24	7.9
DIF	FF04110C1	04/28/04	0.35			
DIF	FF04110C2	04/28/04	0.33			
DIF	FF04110C3	04/28/04	0.43			
DIF	FF06110C1	04/25/06	0.38	160	33	6.0
DIF	FF06110C2	04/25/06	0.33	120	22	4.3
DIF	FF06110C3	04/25/06	0.26	130	21	5.9
ECCB	P95115000C1	04/12/95	0.092	51	28	5.0
ECCB	P95115000C2	04/12/95	0.092	59	26	4.4
ECCB	P95115000C3	04/12/95	0.13	47	23	4.5
ECCB	P96115000C1	04/29/96	0.44	41	13	1.9
ECCB	P96115000C2	04/29/96	0.41	27	7.7	1.8
ECCB	P96115000C3	04/29/96	0.35	26	7.9	1.0 <i>U</i>
ECCB	P97115000C1	05/13/97	0.23	24	6.1	1.8
ECCB	P97115000C2	05/13/97	0.18	34	17	2.5
ECCB	P97115000C3	05/13/97	0.17	31	11	1.7
ECCB	VQST51	04/29/98	0.14	19	6.1	1.3
ECCB	VQST52	04/29/98	0.093	16	5.0	1.2
ECCB	VQST53	04/29/98	0.17	19	5.6	1.1
ECCB	FF99150C1	04/19/99	0.22	32	12	3.3
ECCB	FF99150C2	04/19/99	0.21	23	8.6	1.6
ECCB	FF99150C3	04/19/99	0.25	29	10	2.1
ECCB	FF00150C1	04/14/00	0.24	20	6.8	1.9
ECCB	FF00150C2	04/14/00	0.19	20	71	2.0

Table A-4. Concentrations measured in flouder fillet

Table A-4. (cont.)
--------------	--------

Station	Sample ID	Date	Mercury	PCBs	4,4'-DDE	Chlordane
ECCB	FF00150C3	04/14/00	0.18	17	5.5	1.9
ECCB	FF01150C1	04/29/01	0.13	22	7.4	1.7
ECCB	FF01150C2	04/29/01	0.26	25	7.3	1.6
ECCB	FF01150C3	04/29/01	0.15	25	8.1	1.9
ECCB	FF02150C1	05/08/02	0.24	16	4.7	1.4
ECCB	FF02150C2	05/08/02	0.18	12	3.1	1.2
ECCB	FF02150C3	05/08/02	0.17	19	6.4	1.3
ECCB	FF03150C1	04/30/03	0.34	23	5.9	1.1
ECCB	FF03150C2	04/30/03	0.29	13	3.4	0.97
ECCB	FF03150C3	04/30/03	0.21	36	11	2.7
ECCB	FF04150C1	05/02/04	0.24			
ECCB	FF04150C2	05/02/04	0.16			
ECCB	FF04150C3	05/02/04	0.18			
ECCB	FF06150C1	04/27/06	0.24	31	7.0	1.1
ECCB	FF06150C2	04/27/06	0.21	32	5.6	0.84
ECCB	FF06150C3	04/27/06	0.22	27	6.0	1.7
OS	P95114000C1	04/11/95	0.39	100	18	5.3
OS	P95114000C2	04/11/95	0.31	92	16	5.3
OS	P95114000C3	04/11/95	0.24	100	25	6.7
OS	P96114000C1	04/18/96	0.81	79	16	4.4
OS	P96114000C2	04/18/96	0.53	130	26	4.3
OS	P96114000C3	04/18/96	0.30	61	11	3.3
OS	P97114000C1	04/07/97	0.66	100	25	7.0
OS	P97114000C2	04/07/97	0.17	63	12	5.0
OS	P97114000C3	04/07/97	0.0080 U	110	22	4.8
OS	VQST41	04/21/98	0.25	25	4.2	2.8
OS	VQST42	04/21/98	0.38	89	15	9.1
OS	VQST43	04/21/98	0.35	45	8.5	4.3
OS	FF99140C1	04/15/99	0.46	51	17	5.7
OS	FF99140C2	04/15/99	0.60	110	26	12
OS	FF99140C3	04/15/99	0.57	63	14	3.1
OS	FF00140C1	04/11/00	0.38	67	9.9	4.2
OS	FF00140C2	04/11/00	0.31	51	8.6	2.6
OS	FF00140C3	04/11/00	0.76	55	9.1	3.0
OS	FF01140C1	04/26/01	0.49	51	8.5	2.0
OS	FF01140C2	04/26/01	0.53	65	10	3.2
OS	FF01140C3	04/26/01	0.43	71	13	3.5
OS	FF02140C1	04/24/02	0.25	36	6.5	3.4
OS	FF02140C2	04/24/02	0.42	47	8.6	3.0
OS	FF02140C3	04/24/02	0.47	87	13	3.4
OS	FF03140C1	04/28/03	0.77	76	9.3	2.4
OS	FF03140C2	04/28/03	0.53	79	9.6	3.1
OS	FF03140C3	04/28/03	0.69	120	15	4.3
OS	FF04140C1	04/27/04	0.47			
OS	FF04140C2	04/27/04	0.53			
OS	FF04140C3	04/27/04	0.72			
OS	FF06140C1	04/25/06	0.49	95	9.0	1.6
OS	FF06140C2	04/25/06	0.37	61	12	2.3
OS	FF06140C3	04/25/06	0.49	84	11	1.5

Notes on following page.

Table A-4. (cont.)

Note:	Concentrations reported as pg/g for metals and ng/g for all other compounds, rounded to two significant figures.
	DIF - Deer Island Flats ECCB - East Cape Cod Bay OS - outfall location
	PCB: Sum of congeners 138 and 153 Chlordane: Sum of <i>cis</i> -chlordane and <i>trans</i> -nonachlor

Table A-5. Concentrations measured in flouder liver

								LMW(7)-	LMW(12)-		Total(19)-	Total(24)-		
Station	Sample ID	Date	Cadmium	Copper	Lead	Mercury	PCBs	PAH	PAH	HMW-PAH	PAH	PAH	4,4'-DDE	Chlordane
DIF	P95111000C1	04/10/95	0.45	22	0.62	0.22	3,900	160		10 <i>U</i>	220		570	310
DIF	P95111000C2	04/10/95	0.55	98	0.75	0.18	3,300	130		56	190		860	200
DIF	P95111000C3	04/10/95	0.32	48	1.2	0.34	4,100	120		53	170		700	340
DIF	P96111000C1	04/15/96	0.33	28	1.8	0.42	2,300	130		60	190		470	240
DIF	P96111000C2	04/15/96	1.0	81	2.4	0.70	1,600	190		70	260		340	130
DIF	P96111000C3	04/15/96	1.3	18	2.2	0.47	1,200	190		62	250		240	130
DIF	P97111000C1	04/07/97	1.0	58	1.8	0.43	1,700	87		66	150		410	210
DIF	P97111000C2	04/07/97	0.49	53	3.6	0.24	2,900	100		57	160		660	350
DIF	P97111000C3	04/07/97	5.2	53	3.8	0.36	1,600	80		55	130		340	170
DIF	VQST11	04/21/98	0.48	26	2.1	0.20	2,200	43	67	22	65	89	440	280
DIF	VQST12	04/21/98	0.83	43	2.6	0.29	1,300	36	59	19	55	78	220	120
DIF	VQST13	04/21/98	0.66	59	2.8	0.32	1,200	37	55	20	58	76	200	120
DIF	FF99110C1	05/10/99	0.48	38	3.0	0.22	1,300	95	120	20	110	140	350	200
DIF	FF99110C2	05/10/99	0.45	28	2.0	0.22	1,100	55	74	24	79	98	410	210
DIF	FF99110C3	05/10/99	0.84	35	2.3	0.23	1,100	89	110	6.7 U	110	130	420	240
DIF	FF00110C1	04/11/00	1.2	120	2.9	0.35	980	77	110	20	97	130	150	120
DIF	FF00110C2	04/11/00	2.9	120	3.3	0.61	1,000	64	90	22	86	110	170	130
DIF	FF00110C3	04/11/00	0.82	120	4.8	0.32	490	65	89	20	86	110	91	45
DIF	FF01110C1	04/25/01	1.4	38	3.6	0.34	1,400	77	98	42	120	140	220	90
DIF	FF01110C2	04/25/01	0.85	59	2.2	0.30	1,600	72	93	34	110	130	240	100
DIF	FF01110C3	04/25/01	2.4	59	3.0	0.42	1,200	67	86	32	99	120	170	82
DIF	FF02110C1	04/23/02	2.2	80	1.9	0.30	1,400	33	49	7.5	40	57	240	85
DIF	FF02110C2	04/23/02	0.80	39	2.8	0.24	770	28	42	13	41	55	120	49
DIF	FF02110C3	04/23/02	3.0	64	1.4	0.35	1,700	37	56	12	48	68	220	98
DIF	FF03110C1	04/28/03	1.3	60	3.4	0.36	2,900	26	46	18	44	64	300	87
DIF	FF03110C2	04/28/03	1.6	41	2.9	0.50	1,700	33	48	21	54	69	220	80
DIF	FF03110C3	04/28/03	1.4	33	2.5	0.42	2,800	28	49	21	49	70	270	87
DIF	FF04110C1	04/28/04				0.30								
DIF	FF04110C2	04/28/04				0.25								
DIF	FF04110C3	04/28/04				0.35								
DIF	FF06110C1	04/25/06	1.3	49	1.5	0.22	1,400	96	160	150	250	320		
DIF	FF06110C2	04/25/06	2.2	75	1.5	0.17	1,300	71 U	220	200	330	420		
DIF	FF06110C3	04/25/06	0.48	52	1.4	0.072	1,500	92	150	26 U	250	310		
ECCB	P95115000C1	04/12/95	0.68	65	7.5	0.25	870	73		10 <i>U</i>	130		120	73
ECCB	P95115000C2	04/12/95	0.64	72	3.8	0.40	360	67		10 <i>U</i>	130		180	26
ECCB	P95115000C3	04/12/95	0.67	57	4.3	0.25	330	65		10 <i>U</i>	130		130	20
ECCB	P96115000C1	04/29/96	1.4	74	0.66	0.35	410	200		74	270		92	26
ECCB	P96115000C2	04/29/96	1.2	50	1.4	0.48	360	160		65	230		94	15
ECCB	P96115000C3	04/29/96	0.71	72	5.7	0.48	360	140		71	210		110	21
ECCB	P97115000C1	05/13/97	2.4	110	0.88	0.24	300	45		49	95		100	24
ECCB	P97115000C2	05/13/97	2.2	95	0.66	0.19	430	45		51	97		170	34

Table A-5. (cont.)

								LMW(7)-	LMW(12)-		Total(19)-	Total(24)-		
Station	Sample ID	Date	Cadmium	Copper	Lead	Mercury	PCBs	PAH	PAH	HMW-PAH	PAH	PAH	4,4'-DDE	Chlordane
ECCB	P97115000C3	05/13/97	0.85	53	1.7	0.17	570	66		49	110		360	40
ECCB	VQST51	04/29/98	1.8	130	2.7	0.31	320	31	44	4.2 U	47	61	91	16
ECCB	VQST52	04/29/98	0.72	93	1.3	0.19	210	20	32	18	38	50	54	13
ECCB	VQST53	04/29/98	2.5	190	2.9	0.30	110	13	20				24	5
ECCB	FF99150C1	04/19/99	1.4	64	1.3	0.33	320	200	230	6.7 U	220	250	120	28
ECCB	FF99150C2	04/19/99	1.0	47	2.5	0.23	120	34	44	6.7 U	51	61	42	8
ECCB	FF99150C3	04/19/99	2.6	100	2.3	0.37	160	92	110	20	110	130	53	11
ECCB	FF00150C1	04/14/00	1.4	98	1.5	0.27	110	47	60	6.7 U	64	78	38	10
ECCB	FF00150C2	04/14/00	1.8	150	1.9	0.30	130	40	54	6.7 U	58	72	42	12
ECCB	FF00150C3	04/14/00	0.57	51	1.5	0.40	140	50	60	59	110	120	41	15
ECCB	FF01150C1	04/29/01	1.5	140	3.3	0.13	190	34	44	12	45	55	61	14
ECCB	FF01150C2	04/29/01	2.3	66	2.4	0.26	190	40	52	16	56	68	52	11
ECCB	FF01150C3	04/29/01	0.92	41	3.8	0.13	230	35	45	9.9	45	55	65	16
ECCB	FF02150C1	05/08/02	1.4	27	1.5	0.22	350	59	93	60	120	150	100	19
ECCB	FF02150C2	05/08/02	0.80	28	0.70	0.20	180	47	74	38	85	110	51	14
ECCB	FF02150C3	05/08/02	2.9	76	2.8	0.23	230	24	35	6.4	31	42	77	13
ECCB	FF03150C1	04/30/03	2.6	78	4.3	0.41	130	19	37	3.5 U	32	49	37	6.7
ECCB	FF03150C2	04/30/03	1.9	39	1.7	0.31	130	22	42	3.5 U	34	54	34	9.4
ECCB	FF03150C3	04/30/03	11	86	5.7	0.27	260	15	29	3.5 U	27	41	83	15
ECCB	FF04150C1	05/02/04				0.23								
ECCB	FF04150C2	05/02/04				0.14								
ECCB	FF04150C3	05/02/04				0.26								
ECCB	FF06150C1	04/27/06	2.2	40	2.0	0.12	220	93	160	27 U	250	320		
ECCB	FF06150C2	04/27/06	1.5	38	2.4	0.18	180	98	160	28 U	270	330		
ECCB	FF06150C3	04/27/06	1.4	27	1.1	0.15	150	56 U	170	28 U	56 U	340		
OS	P95114000C1	04/11/95	1.5	97	7.9	0.43	4,200	60		53	110		620	120
OS	P95114000C2	04/11/95	1.2	130	2.6	0.37	2,300	62		56	120		290	66
OS	P95114000C3	04/11/95	1.5	140	7.3	0.36	2,000	63		10 <i>U</i>	120		350	100
OS	P96114000C1	04/18/96	4.9	170	5.0	0.61	960	170		84	250		170	68
OS	P96114000C2	04/18/96	2.8	59	5.2	0.51	1,600	120		58	180		400	110
OS	P96114000C3	04/18/96	2.3	150	2.5	0.54	1,100	280		77	360		160	85
OS	P97114000C1	04/07/97	1.0	53	4.9	0.48	930	54		59	110		260	72
OS	P97114000C2	04/07/97	0.89	93	5.2	0.29	750	65		56	120		200	55
OS	P97114000C3	04/07/97	1.2	79	3.1	0.26	2,000	69		57	130		340	110
OS	VQST41	04/21/98	0.67	72	4.5	0.31	940	40	59	18	58	78	130	62
OS	VQST42	04/21/98	1.6	130	3.8	0.42	520	24	37	18	43	56	80	49
OS	VQST43	04/21/98	1.3	72	3.2	0.43	550	20	35	17	37	52	97	39
OS	FF99140C1	04/15/99	2.3	96	3.5	0.43	550	85	100	20	100	120	140	48
OS	FF99140C2	04/15/99	1.9	130	3.6	0.66	370	33	49	21	54	69	96	21
OS	FF99140C3	04/15/99	5.3	160	13	0.84	800	100	120	6.7 U	120	140	230	74
OS	FF00140C1	04/11/00	2.7	140	8.8	0.44	610	42	56	18	60	74	89	36

Table A-5. (cont.)

								LMW(7)-	LMW(12)-		Total(19)-	Total(24)-		
Station	Sample ID	Date	Cadmium	Copper	Lead	Mercury	PCBs	PAH	PAH	HMW-PAH	PAH	PAH	4,4'-DDE	Chlordane
OS	FF00140C2	04/11/00	1.4	140	7.6	0.27	590	84	100	22	110	120	99	32
OS	FF00140C3	04/11/00	3.9	270	8.0	1.2	450	210		20	230		74	24
OS	FF01140C1	04/26/01	1.9	62	8.2	0.57	1,100	58	69	33	91	100	150	34
OS	FF01140C2	04/26/01	2.1	160	7.3	0.50	1,000	59	70	31	90	100	140	38
OS	FF01140C3	04/26/01	7.4	84	6.8	0.35	1,100	40	52	30	69	82	190	52
OS	FF02140C1	04/24/02	1.6	69	4.5	0.36	990	29	42	7.1	36	49	120	34
OS	FF02140C2	04/24/02	3.1	94	4.5	0.41	670	33	45	7.8	40	53	100	37
OS	FF02140C3	04/24/02	1.9	80	5.9	0.43	1,100	24	33	6.6	30	40	140	33
OS	FF03140C1	04/28/03	3.6	150	3.0	0.70	1,200	12	18	14	25	32	120	24
OS	FF03140C2	04/28/03	1.8	130	4.9	0.62	1,400	19	39	3.5 U	31	51	110	30
OS	FF03140C3	04/28/03	2.8	120	7.3	0.62	1,800	13	16	3.5 U	25	28	170	35
OS	FF04140C1	04/27/04				0.37								
OS	FF04140C2	04/27/04				0.57								
OS	FF04140C3	04/27/04				0.54								
OS	FF06140C1	04/25/06	2.7	110	4.9	0.32	440	110	180	180	300	360		
OS	FF06140C2	04/25/06	0.97	42	3.5	0.25	880	88	150	150	230	290		
OS	FF06140C3	04/25/06	2.7	69	9.5	0.40	570	110	180	170	280	350		

Note: Concentrations reported as pg/g for metals and ng/g for all other compounds, rounded to two significant figures

DIF - Deer Island Flats ECCB - East Cape Cod Bay OS - outfall location

PCB: Sum of congeners 138 and 153

LMW PAH (7): Sum of 7 low molecular weight compounds (acenaphthene, acenaphthylene, anthracene, biphenyl, fluorene, naphthalene, phenanthrene)

LMW PAH (12): Sum of 12 low molecular weight compounds (acenaphthene, acenaphthylene, anthracene, biphenyl, fluorene, naphthalene, phenanthrene, 1-methylnaphthalene, 1-methylnaphthalene, 2,3,5-triethylnaphthalene, 2,6-dimethylnaphthalene, and 2-methylnaphthalene)

HMW PAH: Sum of 12 high molecular weight compounds (benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[e]pyrene,

benzo[ghi]perylene, benzo[k]fluoranthene, chrysene, dibenz[a,h]anthracene, fluoranthene, indeno[1,2,3-cd]pyrene, perylene, and pyrene) Total PAH (19): Sum of LMW PAH (7) and HMW PAH

Total PAH (24): Sum of LMW PAH (12) and HMW PAH

Chlordane: Sum of cis-chlordane and trans-nonachlor

Appendix B

Statistical Analyses

Figures

and impact locations before and after relocation of the outfall

Figure B-2. Comparison of mercury concentrations measured in mussel soft tissue between control and impact locations before and after relocation of the outfall

Figure B-4. Comparison of high molecular weight (HMW) PAH concentrations measured in mussel soft tissue between control and impact locations before and after relocation of the outfall

Figure B-6. Comparison of total PAH concentrations measured in mussel soft tissue between control and impact locations before and after relocation of the outfall

Figure B-8. Comparison of 4,4'-DDE concentrations measured in mussel soft tissue between control and impact locations before and after relocation of the outfall

and impact locations before and after relocation of the outfall

control and impact locations before and after relocation of the outfall

control and impact locations before and after relocation of the outfall

Figure B-26. Comparison of high molecular weight (HMW) PAH concentrations measured in lobster hepatopancreas between control and impact locations before and after relocation of the outfall

Figure B-27. Comparison of low molecular weight (LMW) PAH concentrations measured in lobster hepatopancreas between control and impact locations before and after relocation of the outfall

Figure B-28. Comparison of total PAH concentrations measured in lobster hepatopancreas between control and impact locations before and after relocation of the outfall

control and impact locations before and after relocation of the outfall

impact locations before and after relocation of the outfall

and impact locations before and after relocation of the outfall

impact locations before and after relocation of the outfall

liver between control and impact locations before and after relocation of the outfall

Figure B-55. Comparison of low molecular weight (LMW) PAH concentrations measured in flounder liver between control and impact locations before and after relocation of the outfall

Figure B-56. Comparison of total PAH concentrations measured in flounder liver between control and impact locations before and after relocation of the outfall

and impact locations before and after relocation of the outfall

Tables

Table B-1. Summary of BACI analysis of mussel soft tissue from the outfall and Cape Cod Bay locations

Before = 1998-2000

				_	PAHs		_	
	Lead	Mercury	PCBs	HMW	LMW (7)	Total (19)	Chlordane	4,4'-DDE
P-values for components of ANOVA model								
Before/After	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.6583	0.0002
Control/Impact	0.0486	<0.0001	0.0948	<0.0001	0.0383	<0.0001	<0.0001	0.0798
Interaction term	0.0054		0.0004	<0.0001	<0.0001	<0.0001	<0.0001	0.0207
Year within period	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Conclusions from multiple comparison test								
Before/After								
Main effect	NE	Aft > Bef	NE	NE	NE	NE	NE	NE
OS	Aft > Bef	NE	Aft > Bef	Aft > Bef	Bef > Aft	Aft > Bef	Aft > Bef	Aft > Bef
CCB	Aft > Bef	NE			Bef > Aft	Bef > Aft	Bef > Aft	
Control/Impact								
Main effect	NE	OS > CCB	NE	NE	NE	NE	NE	NE
Before		NE			CCB > OS			CCB > OS
After	OS > CCB	NE	OS > CCB	OS > CCB	OS > CCB	OS > CCB	OS > CCB	
OS-Before v. CCB-After	CCB > OS	NE			OS > CCB	OS > CCB	OS > CCB	CCB > OS
CCB-Before v. OS-After	OS > CCB	NE	OS > CCB	OS > CCB	CCB > OS	OS > CCB	OS > CCB	

Before = 1995-2000

				PAHs					
	Lead	Mercury	PCBs	HMW	LMW (7)	Total (19)	Chlordane	4,4'-DDE	
P-values for components of	ANOVA mode	el l							
Before/After	0.0001	<0.0001	0.1514	<0.0001	<0.0001	<0.0001	0.8316	0.1556	
Control/Impact	0.0448		0.0825	<0.0001	0.0330	<0.0001	<0.0001	0.0697	
Interaction term	0.0046		0.0002	<0.0001	<0.0001	<0.0001	<0.0001	0.0166	
Year within period	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	
Conclusions from multiple comparison test									
Before/After									
Main effect	NE	Aft > Bef	NE	NE	NE	NE	NE	NE	
OS	Aft > Bef	NE		Aft > Bef	Bef > Aft	Aft > Bef	Aft > Bef		
CCB		NE	Bef > Aft		Bef > Aft	Bef > Aft	Bef > Aft		
Control/Impact									
Main effect	NE		NE	NE	NE	NE	NE	NE	
Before		NE			CCB > OS			CCB > OS	
After	OS > CCB	NE	OS > CCB	OS > CCB	OS > CCB	OS > CCB	OS > CCB		
OS-Before v. CCB-After		NE			OS > CCB	OS > CCB	OS > CCB		
CCB-Before v. OS-After	OS > CCB	NE		OS > CCB	CCB > OS	OS > CCB	OS > CCB		

Note: Conclusions based on ANOVA followed by multiple comparison test at an overall 95 percent confidence level. If the interaction term is significant, conclusions are based on the interaction comparisons rather than the main effects *P*-values reported from the final ANOVA model.

-- - indicates no significant difference

NE - not evaluated due to significance of interaction term

BACI - Before-After-Control-Impact model

OS - Outfall location (includes stations OSM, OS-M1, OS-M2, OS-M3, OS-M4, OS-M5, and OS-M6) CCB - Cape Cod Bay

PCB - Sum of congeners 138 and 153

Chlordane - Sum of cis-chlordane and trans-nonachlor

LMW PAH (7) - Sum of 7 low molecular weight compounds (acenaphthene, acenaphthylene, anthracene,

biphenyl, fluorene, naphthalene, phenanthrene)

HMW PAH - Sum of 12 high molecular weight compounds (benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[e]pyrene, benzo[ghi]perylene, benzo[k]fluoranthene, chrysene, dibenz[a,h]anthracene, fluoranthene, indeno[1,2,3-cd]pyrene, perylene, and pyrene)

Total PAH (19) - Sum of LMW PAH and HMW PAH
Table B-2. Summary of BACI analysis of mussel soft tissue from Deer Island Light and Cape Cod Bay locations

Before = 1998-2000

					PAHs			
	Lead	Mercury	PCBs	HMW	LMW (7)	Total (19)	Chlordane	4,4'-DDE
P-values for components of	ANOVA mode	el						
Before/After	0.0134	<0.0001	0.0103	0.4646	<0.0001	0.0001	<0.0001	0.0073
Control/Impact	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Interaction term			<0.0001	0.0324			0.0213	
Year within period	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Conclusions from multiple co	omparison te	st						
Before/After								
Main effect	Bef > Aft	Aft > Bef	NE	NE	Bef > Aft	Bef > Aft	NE	Bef > Aft
DIL	NE	NE	Aft > Bef		NE	NE	Bef > Aft	NE
CCB	NE	NE			NE	NE	Bef > Aft	NE
Control/Impact								
Main effect	DIL > CCB	DIL > CCB	NE	NE	DIL > CCB	DIL > CCB	NE	DIL > CCB
Before	NE	NE	DIL > CCB	DIL > CCB	NE	NE	DIL > CCB	NE
After	NE	NE	DIL > CCB	DIL > CCB	NE	NE	DIL > CCB	NE
DIL-Before v. CCB-After	NE	NE	DIL > CCB	DIL > CCB	NE	NE	DIL > CCB	NE
CCB-Before v. DIL-After	NE	NE	DIL > CCB	DIL > CCB	NE	NE		NE
Before = 1995-2000								
					PAHs			
	Lead	Mercury	PCBs	HMW	LMW (7)	Total (19)	Chlordane	4,4'-DDE
P-values for components of	ANOVA mode	el						
Before/After	<0.0001	<0.0001	0.0323	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Control/Impact	<0.0001	0.0177	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Interaction term			<0.0001	0.0262			0.0162	
Year within period	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Conclusions from multiple co	mparison te	st						
Before/After								
Main effect	Bef > Aft	Aft > Bef	NE	NE	Bef > Aft	Bef > Aft	NE	Bef > Aft
DIL	NE	NE	Aft > Bef	Bef > Aft	NE	NE	Bef > Aft	NE
ССВ	NE	NE	Bef > Aft		NE	NE	Bef > Aft	NE
Control/Impact								
Main effect	DIL > CCB	DIL > CCB	NE	NE	DIL > CCB	DIL > CCB	NE	DIL > CCB

NE After NE DIL > CCB DIL > CCB NE NE DIL > CCB NE DIL > CCB DIL-Before v. CCB-After NE NE DIL > CCB DIL > CCB NE NE NE CCB-Before v. DIL-After DIL > CCB DIL > CCB NE NE NE NE NE ---

NE DIL > CCB DIL > CCB

DIL > CCB

NE

NE NE

Note: Conclusions based on ANOVA followed by multiple comparison test at an overall 95 percent confidence level. If the interaction term is significant, conclusions are based on the interaction comparisons rather than the main effects *P*-values reported from the final ANOVA model.

-- - indicates no significant difference

NE - not evaluated due to significance of interaction term

NE

BACI - Before-After-Control-Impact model DIL - Deer Island Light CCB - Cape Cod Bay

PCB - Sum of congeners 138 and 153

Chlordane - Sum of cis-chlordane and trans-nonachlor

LMW PAH (7) - Sum of 7 low molecular weight compounds (acenaphthene, acenaphthylene, anthracene,

biphenyl, fluorene, naphthalene, phenanthrene)

HMW PAH - Sum of 12 high molecular weight compounds (benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[e]pyrene, benzo[ghi]perylene, benzo[k]fluoranthene, chrysene, dibenz[a,h]anthracene, fluoranthene, indeno[1,2,3-cd]pyrene, perylene, and pyrene)

Total PAH (19) - Sum of LMW PAH and HMW PAH

Before

Table B-3. Summary of BACI analysis of mussel soft tissue from the Large Navigation Buoy and Cape Cod Bay locations

Before = 1998-2000

					PAHs				
	Lead	Mercury	PCBs	HMW	LMW (7)	Total (19)	Chlordane	4,4'-DDE	
P-values for components of A	NOVA mod	el							
Before/After	<0.0001	<0.0001	0.0001	<0.0001	<0.0001	0.0029	<0.0001	0.2421	
Control/Impact		0.0256	0.5128	<0.0001	0.4490	<0.0001	<0.0001	0.0001	
Interaction term		0.0051	0.0082	<0.0001	<0.0001	<0.0001	<0.0001		
Year within period	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	
Conclusions from multiple comparison test									
Before/After									
Main effect	Aft>Bef	NE	NE	NE	NE	NE	NE		
LNB	NE	Aft>Bef	Aft>Bef	Aft>Bef	Bef>Aft	Aft>Bef	Aft>Bef	NE	
CCB	NE	Aft>Bef			Bef>Aft	Bef>Aft	Bef>Aft	NE	
Control/Impact									
Main effect		NE	NE	NE	NE	NE	NE	CCB>LNB	
Before	NE	LNB>CCB			CCB>LNB			NE	
After	NE			LNB>CCB	LNB>CCB	LNB>CCB	LNB>CCB	NE	
LNB-Before v. CCB-After	NE	CCB>LNB	CCB>LNB		LNB>CCB	LNB>CCB	LNB>CCB	NE	
CCB-Before v. LNB-After	NE	LNB>CCB	LNB>CCB	LNB>CCB	CCB>LNB	LNB>CCB	LNB>CCB	NE	

Before = 1995-2000

					PAHs				
	Lead	Mercury	PCBs	HMW	LMW (7)	Total (19)	Chlordane	4,4'-DDE	
P-values for components of A	P-values for components of ANOVA model								
Before/After		0.0129	0.0422	<0.0001	<0.0001	0.1227	0.0002	0.0002	
Control/Impact			0.4936	<0.0001	0.4373	<0.0001	<0.0001	<0.0001	
Interaction term			0.0057	<0.0001	<0.0001	<0.0001	<0.0001		
Year within period	<0.0001	0.0024	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	
Conclusions from multiple comparison test									
Before/After									
Main effect		Aft>Bef	NE	NE	NE	NE	NE	Bef>Aft	
LNB	NE	NE		Aft>Bef	Bef>Aft	Aft>Bef	Aft>Bef	NE	
CCB	NE	NE	Bef>Aft		Bef>Aft	Bef>Aft	Bef>Aft	NE	
Control/Impact									
Main effect			NE	NE	NE	NE	NE	CCB>LNB	
Before	NE	NE			CCB>LNB			NE	
After	NE	NE	LNB>CCB	LNB>CCB	LNB>CCB	LNB>CCB	LNB>CCB	NE	
LNB-Before v. CCB-After	NE	NE			LNB>CCB	LNB>CCB	LNB>CCB	NE	
CCB-Before v. LNB-After	NE	NE		LNB>CCB	CCB>LNB	LNB>CCB	LNB>CCB	NE	

Note: Conclusions based on ANOVA followed by multiple comparison test at an overall 95 percent confidence level. If the interaction term is significant, conclusions are based on the interaction comparisons rather than the main effects *P*-values reported from the final ANOVA model.

-- - indicates no significant difference

NE - not evaluated due to significance of interaction term

BACI - Before-After-Control-Impact model

LNB - Large navigation buoy

CCB - Cape Cod Bay

PCB - Sum of congeners 138 and 153

Chlordane - Sum of cis-chlordane and trans-nonachlor

LMW PAH (7) - Sum of 7 low molecular weight compounds (acenaphthene, acenaphthylene, anthracene,

biphenyl, fluorene, naphthalene, phenanthrene)

HMW PAH - Sum of 12 high molecular weight compounds (benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[e]pyrene, benzo[ghi]perylene, benzo[k]fluoranthene, chrysene, dibenz[a,h]anthracene, fluoranthene, indeno[1,2,3-cd]pyrene, perylene, and pyrene)

Total PAH (19) - Sum of LMW PAH and HMW PAH

2001	2002	2003	2006
OS DIL CCB IH	OS DIL CCB IH	OS DIL CCB IH	OS DIL CCB IH
Lead P-value = <0.0001 DIL CCB DIL IH IH IH IH LNB nd nd nd nd	P-value = <0.0001 DIL OS DIL IH IH IH OS DIL IH	P-value = <0.0001 DIL DIL IH IH IH DIL IH	<i>P</i> -value = <0.0001 DIL DIL IH IH DIL IH
P-value - <0.0001	P-value - <0.0001	P-value - <0.0001	P-value - 0.0086
DIL			0.0000
CCB OS IH IH IH	OS DIL	OS IH IH IH	 IH
LNB nd nd nd	OS DIL LNB IH	OS DIL IH	IH
PCB P-value = <0.0001 DIL DIL CCB DIL IH IH IH IH	P-value = <0.0001 DIL OS DIL IH IH IH	P-value = <0.0001 DIL OS DIL IH IH IH	<i>P</i> -value = <0.0001 DIL CCB DIL IH IH
LNB <u>OS</u> DIL IH	DIL LNB IH	DIL LNB IH	DIL IH
<i>P</i> -value = <0.0001 DIL CCB OS DIL IH IH IH IH IH IH INB OS DIL LNB P-value = <0.0001 DIL DIL DIL CCB IH IH IH IH LMW PAH (12) P-value = <0.0001 DIL DIL IH IH IH IH IH INB DIL	<i>P</i> -value = <0.0001 OS DIL IH IH IH OS LNB IH <i>P</i> -value = <0.0001 OS DIL IH IH IH LNB IH	<i>P</i> -value = <0.0001 OS OS DIL IH IH IH OS LNB IH <i>P</i> -value = <0.0001 OS DIL IH IH IH OS LNB IH	<i>P</i> -value = <0.0001 OS DIL IH IH IH OS LNB IH <i>P</i> -value = 0.0001 OS DIL IH IH IH OS IH
Total PAH (24)			
P-value = <0.0001 DIL CCB OS DIL IH IH IH IH LNB OS DIL LNB IH	P-value = <0.0001 OS DIL IH IH IH OS LNB IH	P-value = <0.0001 OS OS DIL IH IH IH OS LNB IH	P-value = <0.0001 OS DIL IH IH IH OS LNB IH
Chlordane	Durshus 0.0004	Duchus 0.0001	Durahua 0.0000
P-value = <0.0001 DIL OS CCB OS DIL IH OS IH IH LNB OS LNB LNB	P-value = <0.0001 OS OS DIL OS IH IH OS LNB LNB	OS OS IH IH OS LNB IH	P-value = 0.0002 OS DIL IH IH
4,4'-DDE			
P-value = <0.0001 DIL DIL CCB CCB DIL IH IH IH IH LNB OS DIL CCB IH	P-value = <0.0001 OS DIL IH IH IH DIL LNB IH	P-value = <0.0001 DIL DIL IH IH IH DIL IH	P-value = 0.0001 DIL IH DIL IH

Table B-4. Summary of station comparisons by year for mussel soft tissue

Table B-4. (cont.)

Note: *P*-value is from the ANOVA model. Tukey's multiple comparison test was used to test for pariwise differences between locations at an overall 95 percent confidence level.

Location abreviation indicates location has significantly higher concentration.

-- - indicates no significant difference in concentration between locations

nd - no data available

OS - outfall location (includes stations OSM, OS-M1, OS-M2, OS-M3, OS-M4, OS-M5, and OS-M6)

DIL - Deer Island Light

CCB - Cape Cod Bay

IH - Boston inner harbor

LNB - Large navigation buoy

PCB - Sum of congeners 138 and 153

Chlordane - Sum of cis-chlordane and trans-nonachlor

LMW PAH (12) - Sum of 12 low molecular weight compounds (acenaphthene, acenaphthylene, anthracene, biphenyl, fluorene, naphthalene, phenanthrene, 1-methylnaphthalene, 1-methylphenanthrene, 2.2.5 triathylpaphthalene, 2.6. dimethylpaphthalene, and 2. methylpaphthalene)

2,3,5-triethylnaphthalene, 2,6-dimethylnaphthalene, and 2-methylnaphthalene)

HMW PAH - Sum of 12 high molecular weight compounds (benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[e]pyrene, benzo[ghi]perylene, benzo[k]fluoranthene, chrysene, dibenz[a,h]anthracene, fluoranthene, indeno[1,2,3-cd]pyrene, perylene, and pyrene)

Total PAH (24) - Sum of LMW PAH and HMW PAH

Table B-5. Summary of BACI analysis of edible lobster meat from the outfall and East Cape Cod Bay locations

	Mercury	PCBs	Chlordane	4,4'-DDE					
P-values for components of ANO	VA model								
Before/After	<0.0001		0.0010	0.0512					
Control/Impact	<0.0001	0.0003							
Interaction term									
Year within period	<0.0001			<0.0001					
Conclusions from multiple comparison test									
Before/After									
Main effect	Bef > Aft		Bef > Aft						
OS	NE	NE	NE	NE					
ECCB	NE	NE	NE	NE					
Control/Impact									
Main effect	OS > ECCB	OS > ECCB							
Before	NE	NE	NE	NE					
After	NE	NE	NE	NE					
OS-Before v. ECCB-After	NE	NE	NE	NE					
ECCB-Before v. OS-After	NE	NE	NE	NE					

Before = 1998-2000

Before = 1995-2000

	Mercury	PCBs	Chlordane	4,4'-DDE					
P-values for components of ANO	VA model								
Before/After	<0.0001	0.0009	<0.0001	<0.0001					
Control/Impact	<0.0001	<0.0001	0.1104						
Interaction term			0.0329						
Year within period	<0.0001	0.0014	0.0096	<0.0001					
Conclusions from multiple comparison test									
Before/After									
Main effect	Bef > Aft	Bef > Aft	NE	Bef > Aft					
OS	NE	NE	Bef > Aft	NE					
ECCB	NE	NE		NE					
Control/Impact									
Main effect	OS > ECCB	OS > ECCB	NE						
Before	NE	NE	OS > ECCB	NE					
After	NE	NE		NE					
OS-Before v. ECCB-After	NE	NE	OS > ECCB	NE					
ECCB-Before v. OS-After	NE	NE	ECCB > OS	NE					

Note: Conclusions based on ANOVA followed by multiple comparison test at an overall 95 percent confidence level.

If the interaction term is significant, conclusions are based on the interaction comparisons rather than the main effects

P-values reported from the final ANOVA model.

-- - indicates no significant difference

NE - not evaluated due to significance of interaction term

BACI - Before-After-Control-Impact model

OS - Outfall location

ECCB - East Cape Cod Bay

PCB - Sum of congeners 138 and 153 Chlordane - Sum of *cis*-chlordane and *trans*-nonachlor

Table B-6. Summary of BACI analysis of lobster hepatopancreas from the outfall and East Cape Cod Bay locations

Before = 1998-2000

							PAHs			
	Cadmium	Copper	Lead	Mercury	PCBs	HMW	LMW (7)	Total (19)	Chlordane	4,4'-DDE
P-values for components of Al	NOVA model									
Before/After			0.0972	<0.0001	0.0079		0.0784		0.0350	0.0024
Control/Impact	0.0022	<0.0001	0.0030	<0.0001	<0.0001	0.0001	0.0028	0.0001	0.0102	
Interaction term										
Year within period			0.0424	0.0027	0.0009		0.0295		0.0006	<0.0001
Conclusions from multiple con	nparison test									
Before/After										
Main effect				Bef > Aft	Bef > Aft				Bef > Aft	Bef > Aft
OS	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
ECCB	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
Control/Impact										
Main effect	OS > ECCB	OS > ECCB	OS > ECCB	OS > ECCB	OS > ECCB	OS > ECCB	OS > ECCB	OS > ECCB	OS > ECCB	
Before	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
After	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
OS-Before v. ECCB-After	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
ECCB-Before v. OS-After	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE

Before = 1995-2000

							PAHs			
	Cadmium	Copper	Lead	Mercury	PCBs	HMW	LMW (7)	Total (19)	Chlordane	4,4'-DDE
P-values for components of AN	IOVA model									
Before/After	0.0201	0.0001	0.0461	0.0001	0.0026	0.0351	0.0001	0.0116	0.0296	<0.0001
Control/Impact		<0.0001	<0.0001	<0.0001	<0.0001	<0.0001		<0.0001		
Interaction term			0.0405							
Year within period	0.0068	<0.0001	0.0001	0.0004	0.0003	0.0020	0.0002	0.0007	0.0414	<0.0001
Conclusions from multiple com	parison test									
Before/After										
Main effect	Aft > Bef	Aft > Bef	NE	Bef > Aft	Bef > Aft	Bef > Aft				
OS	NE	NE		NE	NE	NE	NE	NE	NE	NE
ECCB	NE	NE	Aft > Bef	NE	NE	NE	NE	NE	NE	NE
Control/Impact										
Main effect		OS > ECCB	NE	OS > ECCB	OS > ECCB	OS > ECCB		OS > ECCB		
Before	NE	NE	OS > ECCB	NE	NE	NE	NE	NE	NE	NE
After	NE	NE		NE	NE	NE	NE	NE	NE	NE
OS-Before v. ECCB-After	NE	NE		NE	NE	NE	NE	NE	NE	NE
ECCB-Before v. OS-After	NE	NE	OS > ECCB	NE	NE	NE	NE	NE	NE	NE

Table B-6. (cont.)

Note: Conclusions based on ANOVA followed by multiple comparison test at an overall 95 percent confidence level. If the interaction term is significant, conclusions are based on the interaction comparisons rather than the main effects *P*-values reported from the final ANOVA model.

-- - indicates no significant difference

NE - not evaluated due to significance of interaction term

BACI - Before-After-Control-Impact model

OS - Outfall location

ECCB - East Cape Cod Bay

PCB - Sum of congeners 138 and 153

Chlordane - Sum of cis-chlordane and *trans*-nonachlor

LMW PAH (7) - Sum of 7 low molecular weight compounds (acenaphthene, acenaphthylene, anthracene, biphenyl, fluorene, naphthalene, phenanthrene)

HMW PAH - Sum of 12 high molecular weight compounds (benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[e]pyrene,

benzo[ghi]perylene, benzo[k]fluoranthene, chrysene, dibenz[a,h]anthracene, fluoranthene, indeno[1,2,3-cd]pyrene, perylene, and pyrene)

Total PAH (19) - Sum of LMW PAH and HMW PAH

	20	01	20	02	2	003	20	006
	OS	DIF	OS	DIF	OS	DIF	OS	DIF
Mercury								
-	P-value =	0.0040	P-value =	0.1545	P-value :	= 0.0076	P-value =	0.0060
DIF								
ECCB	OS	DIF			OS	DIF	OS	DIF
	۹				1			
РСВ								
	P-value =	0.1370	P-value =	0.0238	P-value :	= 0.0548	P-value =	0.0359
DIF								
ECCB				DIF				DIF
Chlordane								
	P-value =	0.0048	P-value =	0.0102	P-value :	= 0.0001	P-value =	0.0013
DIF					DIF		DIF	
ECCB	OS	DIF		DIF	OS	DIF	ECCB	
4,4'-DDE								
	P-value =	0.9982	P-value =	0.0595	P-value :	= 0.0091	P-value =	0.0047
DIF					DIF			
ECCB						DIF	OS	DIF

Table B-7. Summary of station comparisons by year for edible lobster meat

Note: *P*-value is from the ANOVA model. Tukey's multiple comparison test was used to test for pariwise differences between locations at an overall 95 percent confidence level. Location abreviation indicates location has significantly higher concentration.

Location abreviation indicates location has significantly higher concentration

-- - indicates no significant difference in concentration between locations

OS - outfall location DIF - Deer Island Flats ECCB - East Cape Cod Bay

PCB - Sum of congeners 138 and 153 Chlordane - Sum of *cis*-chlordane and *trans*-nonachlor

2001	2002	2003	2006
OS DIF	OS DIF	OS DIF	OS DIF
Cadmium			
<i>P</i> -value = 0.0019	<i>P</i> -value = 0.4837	<i>P</i> -value = 0.8189	<i>P</i> -value = 0.0244
DIF OS			OS
ECCB ECCB			
Copper Database O 2002			
P-value = 0.3682	P-value = 0.0150	P-value = 0.0233	P-value = 0.0550
	03 DI	03	03
Lead			
<i>P</i> -value = 0.7932	P-value = 0.5357	<i>P</i> -value = 0.2521	<i>P</i> -value = 0.0028
DIF			
ECCB			OS DIF
			<u></u>
Mercury			
<i>P</i> -value = 0.2691	<i>P</i> -value = 0.0519	<i>P</i> -value = 0.0005	<i>P</i> -value = 0.0062
DIF			OS
ECCB		OS DIF	05
DCB			
РСВ <i>Р</i> -уациа – 0.0184	$P_{-value} = 0.0000$	$P_{-value} = 0.0224$	<i>P</i> -value – 0 1116
ECCB DIE	OS DIF	DIF	
			<u> </u>
HMW PAH			
<i>P</i> -value = 0.0097	<i>P</i> -value = 0.0115	<i>P</i> -value = 0.0001	<i>P</i> -value = 0.0013
DIF DIF			DIF
ECCB DIF	DIF	OS DIF	DIF
LMW PAH (12)			
	P-value = 0.0210	P-value = 0.0001	<i>P</i> -value = 0.0044
ECCB 05 DIF	DIF	US DIF	DIF
Total PAH (24)			
P-value = 0.0104	P-value = 0.0098	P-value = 0.0001	P-value = 0.0013
DIF DIF			DIF
ECCB DIF	DIF	OS DIF	DIF
Chlordane			
<i>P</i> -value = 0.0002	<i>P</i> -value = 0.0018	<i>P</i> -value = 0.1075	<i>P</i> -value = 0.0888
DIF DIF			
ECCB OS DIF	OS DIF		
$\mathbf{H}_{\mathbf{A}} = \mathbf{H}_{\mathbf{A}} = $	$P_{\rm A}$	$P_{\rm avalue} = 0.0001$	$P_{\rm avalue} = 0.0240$
FCCB			

Table B-8. Summary of station comparisons by year for lobster hepatopancreas

Table B-8. (cont.)

Note: P-value is from the ANOVA model. Tukey's multiple comparison test was used to test for pariwise differences between locations at an overall 95 percent confidence level. Location abreviation indicates location has significantly higher concentration. --- indicates no significant difference in concentration between locations OS - outfall location **DIF - Deer Island Flats** ECCB - East Cape Cod Bay PCB - Sum of congeners 138 and 153 Chlordane - Sum of cis-chlordane and trans-nonachlor LMW PAH (12) - Sum of 12 low molecular weight compounds (acenaphthene, acenaphthylene, anthracene, biphenyl, fluorene, naphthalene, phenanthrene, 1-methylnaphthalene, 1-methylphenanthrene, 2,3,5-triethylnaphthalene, 2,6-dimethylnaphthalene, and 2-methylnaphthalene) HMW PAH - Sum of 12 high molecular weight compounds (benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[e]pyrene, benzo[ghi]perylene, benzo[k]fluoranthene, chrysene, dibenz[a,h]anthracene, fluoranthene, indeno[1,2,3-cd]pyrene, perylene, and pyrene) Total PAH (24) - Sum of LMW PAH and HMW PAH

Table B-9. Summary of BACI analysis of flounder fillet from the outfall and East Cape Cod Bay locations

	Mercury	PCBs	Chlordane	4,4'-DDE					
P-values for components of AN	IOVA model								
Before/After	0.0478	0.1973	0.0041	0.1622					
Control/Impact	<0.0001	<0.0001	<0.0001	<0.0001					
Interaction term									
Year within period	0.0006	0.0096		0.0017					
Conclusions from multiple comparison test									
Before/After									
Main effect	Aft > Bef		Bef > Aft						
OS	NE	NE	NE	NE					
ECCB	NE	NE	NE	NE					
Control/Impact									
Main effect	OS > ECCB	OS > ECCB	OS > ECCB	OS > ECCB					
Before	NE	NE	NE	NE					
After	NE	NE	NE	NE					
OS-Before v. ECCB-After	NE	NE	NE	NE					
ECCB-Before v. OS-After	NE	NE	NE	NE					

Before = 1998-2000

Before = 1995-2000

	Mercury	PCBs	Chlordane	4,4'-DDE					
P-values for components of AN	OVA model								
Before/After	0.0850	0.0921	<0.0001	<0.0001					
Control/Impact	0.0001	<0.0001	<0.0001	<0.0001					
Interaction term									
Year within period	0.0413	<0.0001	0.0027	<0.0001					
Conclusions from multiple comparison test									
Before/After									
Main effect			Bef > Aft	Bef > Aft					
OS	NE	NE	NE	NE					
ECCB	NE	NE	NE	NE					
Control/Impact									
Main effect	OS > ECCB	OS > ECCB	OS > ECCB	OS > ECCB					
Before	NE	NE	NE	NE					
After	NE	NE	NE	NE					
OS-Before v. ECCB-After	NE	NE	NE	NE					
ECCB-Before v. OS-After	NE	NE	NE	NE					

Note: Conclusions based on ANOVA followed by multiple comparison test at an overall 95 percent confidence level.

If the interaction term is significant, conclusions are based on the interaction comparisons rather than the main effects

P-values reported from the final ANOVA model.

-- - indicates no significant difference

NE - not evaluated due to significance of interaction term

BACI - Before-After-Control-Impact model

OS - Outfall location

ECCB - East Cape Cod Bay

PCB - Sum of congeners 138 and 153 Chlordane - Sum of *cis* -chlordane and *trans* -nonachlor

Table B-10. Summary of BACI analysis of flounder liver from the outfall and East Cape Cod Bay locations

Before = 1998-2000

							PAHs		_	
	Cadmium	Copper	Lead	Mercury	PCBs	HMW	LMW (7)	Total (19)	Chlordane	4,4'-DDE
P-values for components of A	NOVA model									
Before/After		0.0023		0.0104	0.0041	0.4416	0.0918	0.4057		
Control/Impact		0.0021	<0.0001	<0.0001	<0.0001	0.0137			<0.0001	<0.0001
Interaction term										
Year within period				0.0028		0.0002	<0.0001	<0.0001		
Conclusions from multiple con	mparison test	t								
Before/After										
Main effect		Bef > Aft		Bef > Aft	Aft > Bef					
OS	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
ECCB	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
Control/Impact										
Main effect		OS > ECCB			OS > ECCB	OS > ECCB				
Before	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
After	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
OS-Before v. ECCB-After	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
ECCB-Before v. OS-After	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE

Before = 1995-2000

							PAHs		_	
	Cadmium	Copper	Lead	Mercury	PCBs	HMW	LMW (7)	Total (19)	Chlordane	4,4'-DDE
P-values for components of A	NOVA model									
Before/After	0.0142	0.0041		0.0067	0.1508	0.1103	<0.0001	0.0001	0.0001	0.0054
Control/Impact	0.0257	0.0003	<0.0001	<0.0001	<0.0001	0.0026			<0.0001	<0.0001
Interaction term				0.0096						
Year within period				<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Conclusions from multiple co	mparison test									
Before/After										
Main effect	Aft > Bef	Bef > Aft		NE			Bef > Aft	Bef > Aft	Bef > Aft	Bef > Aft
OS	NE	NE	NE		NE	NE	NE	NE	NE	NE
ECCB	NE	NE	NE	Bef > Aft	NE	NE	NE	NE	NE	NE
Control/Impact										
Main effect	OS > ECCB	OS > ECCB	OS > ECCB	NE	OS > ECCB	OS > ECCB			OS > ECCB	OS > ECCB
Before	NE	NE	NE	OS > ECCB	NE	NE	NE	NE	NE	NE
After	NE	NE	NE	OS > ECCB	NE	NE	NE	NE	NE	NE
OS-Before v. ECCB-After	NE	NE	NE	OS > ECCB	NE	NE	NE	NE	NE	NE
ECCB-Before v. OS-After	NE	NE	NE	OS > ECCB	NE	NE	NE	NE	NE	NE

Table B-10. (cont.)

 Note:
 Conclusions based on ANOVA followed by multiple comparison test at an overall 95 percent confidence level.

 If the interaction term is significant, conclusions are based on the interaction comparisons rather than the main effects

 P-values reported from the final ANOVA model.

 --- - indicates no significant difference

 NE - not evaluated due to significance of interaction term

 BACI - Before-After-Control-Impact model

 OS - Outfall location

 ECCB - East Cape Cod Bay

 PCB - Sum of congeners 138 and 153

 Chlordane - Sum of *cis*-chlordane and *trans*-nonachlor

 LMW PAH (7) - Sum of 7 low molecular weight compounds (acenaphthene, acenaphthylene, anthracene, biphenyl, fluorene, naphthalene, phenanthrene)

 HMW PAH - Sum of 12 high molecular weight compounds (benz[a]anthracene, fluoranthene, indeno[1,2,3-cd]pyrene, perylene, and pyrene)

Total PAH (19) - Sum of LMW PAH and HMW PAH

	2001		2002		2003		2006	
(DS	DIF	OS	DIF	OS	DIF	OS	DIF
Mercury								
P-va	alue = 0.0	057	P-value = 0	.0330	P-value =	0.0034	P-value =	0.0039
DIF					OS			
ECCB (DS	DIF	OS		OS		OS	
		L						
РСВ								
P-va	alue = <0.	0001	P-value = 0	.0011	P-value =	0.0008	P-value =	0.0001
DIF	DIF						DIF	
ECCB ()S	DIF	OS	DIF	OS	DIF	OS	DIF
			00	511	00		00	
Chlordane								
P-va	alue = 0 0	001	P-value = <	0.0001	P-value =	0 0037	P-value =	0 0011
)IF		DIF		DIF	0.0001		0.0011
ECCB		DIF	05	DIF		DIF		DIF
LOOD			00					
		001	Pavaluo - 0	0122		0 0088	Pavaluo –	0 0002
				.0125		0.0000		0.0002
	лг							
ECCB		UIF		DIF		DIF	05	DIF

Table B-11. Summary of station comparisons by year for flounder fillet

 Note:
 P-value is from the ANOVA model. Tukey's multiple comparison test was used to test for pariwise differences between locations at an overall 95 percent confidence level. Location abreviation indicates location has significantly higher concentration.

--- indicates no significant difference in concentration between locations

OS - Outfall location

DIF - Deer Island Flats

ECCB - East Cape Cod Bay

PCB - Sum of congeners 138 and 153 Chlordane - Sum of *cis* -chlordane and *trans* -nonachlor

	2001	2002	2003	2006
-		OS DIF		
Cadmium				
Caumum	<i>P</i> -value = 0.2683	<i>P</i> -value = 0.7645	<i>P</i> -value = 0.1964	<i>P</i> -value = 0.5250
DIF				
ECCB				
Copper				
oopper	<i>P</i> -value = 0.3518	<i>P</i> -value = 0 1699	P-value = 0.0122	<i>P</i> -value = 0 1009
DIF				
FCCB				
2000				
Lead				
	<i>P</i> -value = 0.0023	<i>P</i> -value = 0.0380	<i>P</i> -value = 0.4579	<i>P</i> -value = 0.0103
DIF	OS			OS
ECCB	OS	OS		OS
Moreury				
Mercury	<i>P</i> -value = 0.0114	P-value = 0.0034	P-value = 0.0055	<i>P</i> -value = 0.0684
DIF				
ECCB	OS DIF	OS	0S	
РСВ				
	<i>P</i> -value = <0.0001	<i>P</i> -value = 0.0026	<i>P</i> -value = 0.0001	<i>P</i> -value = 0.0001
DIF				DIF
ECCB	OS DIF	OS DIF	OS DIF	OS DIF
	$P_{\rm avalue} = 0.0004$	$P_{\rm avalue} = 0.1726$	$P_{\rm avalue} = 0.0120$	$P_{\rm avalue} = 0.0229$
DIE	<i>r</i> -value = 0.0004	<i>F</i> -value = 0.1750	P - value = 0.0130	F - value = 0.0320
FCCB			DIF	05
LOOD			Dii	00
LMW PAH (12)				
	<i>P</i> -value = 0.0012	<i>P</i> -value = 0.2996	<i>P</i> -value = 0.0565	<i>P</i> -value = 0.8452
DIF	DIF		DIF	
ECCB	OS DIF			
Total DAL (24)				
10tal FAR (24)	P-value - 0.0031	$P_{-value} = 0.2247$	P-value - 0.0228	P-value - 0.8506
DIE	DIF			
ECCB				
LOOD				
Chlordane				
	<i>P</i> -value = <0.0001	<i>P</i> -value = 0.0006	<i>P</i> -value = 0.0002	
DIF	DIF	DIF	DIF	nd
ECCB	OS DIF	OS DIF	OS DIF	nd nd
7,4 -DDE	<i>P</i> -value – 0.0001	P-value - 0.0200	<i>P</i> -value – 0.0020	
חובן				nd
FCCB		DIF		nd nd
2000				

Table B-12. Summary of station comparisons by year for flounder liver

Table B-12. (cont.)

- **Note:** *P*-value is from the ANOVA model. Tukey's multiple comparison test was used to test for pariwise differences between locations at an overall 95 percent confidence level.
 - Location abreviation indicates location has significantly higher concentration.
 - --- indicates no significant difference in concentration between locations
 - nd no data available

OS - Outfall location DIF - Deer Island Flats ECCB - East Cape Cod Bay

PCB - Sum of congeners 138 and 153

Chlordane - Sum of cis-chlordane and trans-nonachlor

- LMW PAH (12) Sum of 12 low molecular weight compounds (acenaphthene, acenaphthylene, anthracene, biphenyl, fluorene, naphthalene, phenanthrene, 1-methylnaphthalene, 1-methylphenanthrene,2,3,5-triethylnaphthalene, 2,6-dimethylnaphthalene, and 2-methylnaphthalene)
- HMW PAH Sum of 12 high molecular weight compounds (benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[e]pyrene, benzo[ghi]perylene, benzo[k]fluoranthene, chrysene, dibenz[a,h]anthracene, fluoranthene, indeno[1,2,3-cd]pyrene, perylene, and pyrene)

Total PAH (24) - Sum of LMW PAH and HMW PAH

Massachusetts Water Resources Authority Charlestown Navy Yard 100 First Avenue Boston, MA 02129 (617) 242-6000 http://www.mwra.state.ma.us