Semiannual water column monitoring report

February - June 2001

Massachusetts Water Resources Authority

Environmental Quality Department Report ENQUAD 2002-10

Citation:

Libby PS, McLeod LA, Mongin CJ, Keller AA, Oviatt CA, Turner JT. 2002. Semiannual water column monitoring report: February – June 2001. Boston: Massachusetts Water Resources Authority. Report ENQUAD 2002-10. 559 p.

SEMIANNUAL WATER COLUMN MONITORING REPORT

February – June 2001

Submitted to

Massachusetts Water Resources Authority Environmental Quality Department 100 First Avenue Charleston Navy Yard Boston, MA 02129 (617) 242-6000

prepared by

Scott Libby¹ Lynn McLeod¹ Claudia Mongin¹ Aimee Keller² Candace Oviatt² Jeff Turner³

¹Battelle 397 Washington Street Duxbury, MA 02332

²University of Rhode Island Narragansett, RI 02882

³University of Massachusetts Dartmouth North Dartmouth, MA 02747

February 14, 2002

Report No. 2002-10

EXECUTIVE SUMMARY

The Massachusetts Water Resources Authority (MWRA) has collected water quality data in Massachusetts and Cape Cod Bays for the Harbor and Outfall Monitoring (HOM) Program since 1992. This monitoring is in support of the HOM Program mission to assess the potential environmental effects of the relocation of effluent discharge from Boston Harbor to Massachusetts Bay, which occurred on September 6, 2000. From 1992 to September 2000, the data were collected to establish baseline water quality conditions. The current outfall monitoring is expected to provide the means to detect significant departure from that baseline. The surveys have been designed to evaluate water quality on both a high-frequency basis for a limited area in the vicinity of the Outfall Site (nearfield) and a low-frequency basis over an extended area throughout Boston Harbor, Massachusetts Bay, and Cape Cod Bay (farfield). This semi-annual report summarizes water column monitoring results for the seven surveys conducted from February to June 2001.

Over the course of the HOM program, a general trend in water quality events has emerged from the data collected in Massachusetts and Cape Cod Bays. The trends are evident even though the timing and year-to-year manifestations of these events are variable. The winter to spring transition in Massachusetts and Cape Cod Bays is usually characterized by a series of physical, biological, and chemical events: seasonal stratification, the winter/spring phytoplankton bloom, and nutrient depletion. While this was generally the case in 2001, no major phytoplankton bloom was observed in Massachusetts Bay. There was, however, a winter/spring bloom of centric diatoms in Cape Cod Bay and a minor bloom of *Phaeocystis pouchetii* that was most prominent in northeastern Massachusetts Bay. With the lack of a major bloom, productivity and chlorophyll concentrations remained relatively low throughout this time period and surface waters across much of the region were not depleted with respect to nutrients until June.

Stratification was first observed in early April at Boston Harbor, offshore, and boundary stations. The development of stratification at these stations was driven by a decrease in surface salinity due to March/April runoff. In the nearfield, the water column also began to stratify by late March. However, stratification was confined to the deeper eastern nearfield stations. In early April, a localized mixing event was observed in the nearfield data. This may have been related to increased flow from the outfall discharge as a result of late March rain events. By late April, the water column had become weakly stratified across all of the nearfield area. Surface water temperatures had increased by >10°C throughout the bays by June, resulting in a strong density gradient throughout most of Cape Cod and Massachusetts Bays.

The nutrient data for February to June 2001 generally followed the "typical" progress of seasonal events in Massachusetts and Cape Cod Bays. Maximum nutrient concentrations were observed in early February when the water column was well mixed and biological uptake of nutrients was limited. The winter/spring 'diatom bloom' in Cape Cod Bay surface waters reduced nutrient concentrations in February. In contrast, the minor winter/spring *Phaeocystis* bloom in Massachusetts Bay in early April did not lead to reduced nutrient concentrations except at boundary station F26 and F27 where the *Phaeocystis* abundance was highest. Massachusetts Bay nutrient concentrations decreased from early February through April, but did not reach depleted levels until June.

Ammonium concentrations continue to be a good tracer of the effluent plume in Massachusetts Bay. High effluent flow rates caused by late March and June rain events appear to have influenced water quality measurements in the nearfield at these times. In early April, the nearfield was less stratified than surrounding waters and elevated NH_4 concentrations were present in surface waters. In June elevated NH_4 (and PO_4) concentrations were measured in the surface waters suggesting that the plume had reached the surface. Neither salinity nor density data displayed an anomalous signal in these waters.

Chlorophyll concentrations were lower in 2001 than historically observed. The nearfield mean areal chlorophyll for winter/spring 2001 of 69 mg m⁻² is well below the caution threshold of 182 mg m⁻². Chlorophyll concentrations peaked in early February and were highest in Cape Cod Bay coincident with the winter/spring diatom bloom. Chlorophyll concentrations increased and productivity peaked in the nearfield in early April, but there was no large increase in chlorophyll associated with the minor *Phaeocystis* bloom. The 2001 winter/spring peak production rates were considerably lower than winter-spring bloom maxima measured in 2000. Boston Harbor areal production peaked in June, but rates were lower than those measured during baseline monitoring.

DO concentrations in 2001 were within the range of values observed during previous years and followed the typical trends. Maximum concentrations occurred in February when the water column was well mixed. A slight increase in surface DO concentrations in April coincided with the peak in productivity. DO concentrations reached minima for this time period in June in most of Massachusetts and Cape Cod Bays. However, bottom water DO concentrations in June 2001 were higher than those measured during the two previous years. An increase in bottom water DO concentrations at the boundary stations from April to June is attributed to an influx of waters from the Gulf of Maine. The lack of a major winter/spring bloom in Massachusetts Bay and this regional influence of the Gulf of Maine led to the relatively high bottom water DO concentrations in June. The lowest bottom water DO concentrations over this February to June period were found in Cape Cod Bay, which is not strongly influenced by the Gulf of Maine and had a winter/spring diatom bloom in February.

Whole-water phytoplankton assemblages were dominated by unidentified microflagellates and several species of centric diatoms except during the April *Phaeocystis* bloom. This is typical for the first half of the year in terms of taxonomic composition. The *Phaeocystis pouchetii* bloom in April 2001 was much less abundant than the bloom of this species during the same period the previous year. The 2001 *Phaeocystis* bloom was also a departure from the 3-year cycle for these blooms that had been observed during the baseline period. There were no blooms of harmful or nuisance phytoplankton species in Massachusetts and Cape Cod Bays during this time period, other than the April bloom of *Phaeocystis pouchetii*. While the dinoflagellate *Alexandrium tamarense* and the diatom of *Pseudo-nitzschia pungens* were recorded, they were present in very low abundance (≤ 35 cells L⁻¹). The typical increase in zooplankton abundance from February through June was not observed in the spring of 2001, and zooplankton counts were considerably lower than observed for the same period the previous year. Moreover, the relatively low abundance of zooplankton may have been due to bottom-up control because phytoplankton was relatively sparse. Zooplankton assemblages during the first half of 2001 were comprised of taxa recorded for the same time of year in previous years.

TABLE OF CONTENTS

EXE	CUTIV	E SUMMARY	i
1.0	INTR	ODUCTION	1_1
1.0	<u>11</u>	Program Overview	1-1
	$\frac{1.1}{1.2}$	Organization of the Semiannual Penert	1-1
	1.2	Organization of the Semiannual Report	1-2
2.0	MET	HODS	2-1
	2.1	Data Collection	2-1
	2.2	Sampling Schema	2-2
	<u>2.3</u>	Operations Summary	2-3
3.0	DAT	A SUMMARY DESENTATION	2 1
<u>3.0</u>	$\frac{DA1}{21}$	Defined Geographic Areas	
	$\frac{3.1}{3.2}$	Sensor Data	
	33	<u>Sensor Data</u>	
	$\frac{3.3}{3.4}$	Biological Water Column Parameters	3_2
	$\frac{3.7}{3.5}$	Plankton	3-3
	3.6	Additional Data	3-3
	<u>510</u>		
<u>4.0</u>	RESU	ILTS OF WATER COLUMN MEASUREMENTS	
	<u>4.1</u>	<u>Physical Characteristics</u>	
		4.1.1 <u>Temperature/Salinity/Density</u>	4-1
		4.1.1.1 Horizontal Distribution	
		4.1.1.2 Vertical Distribution	
	4.2	<u>4.1.2</u> Iransmissometer Results	
	<u>4.2</u>	<u>Biological Characteristics</u>	
		4.2.1 <u>Nutrents</u> 4.2.1.1 Horizontal Distribution	
		4.2.1.1 <u>Horizontal Distribution</u>	
		4.2.2 Chlorophyll a	4-10
		4.2.2 <u>Childephylic</u> 4.2.2.1 Horizontal Distribution	4-11
		4222 Vertical Distribution	4-12
		4.2.3 Dissolved Oxygen	
		4.2.3.1 Regional Trends of Dissolved Oxygen	
		4.2.3.2 Nearfield Trends of Dissolved Oxygen	
	4.3	Contingency Plan Thresholds	4-15
	4.4	Summary of Water Column Results	4-16
5.0	DDOI		5 1
<u>5.0</u>	$\frac{PROI}{5}$	DUCTIVITY, RESPIRATION AND PLANKTON RESULTS	
	<u>3.1</u>	5.1.1 A real Production	
		5.1.2 Chlorophyll specific Areal Production	
		5.1.2 <u>Children at Specified Depths</u>	
	52	<u>Bespiration</u>	
	<u>J.2</u>	5.2.1 Water Column Respiration	
		5.2.2 Carbon-Specific Respiration	
	53	Plankton Results	
	<u></u>	5.3.1 Phytoplankton.	
		5.3.1.1 Seasonal Trends in Total Phytoplankton Abundance	
		5.3.1.2 Nearfield Phytoplankton Community Structure	5-7

			5.3.1.3	Regional Phytoplankton Assemblages	
			5.3.1.4	Nuisance Algae	
		5.3.2	Zooplan	kton	
			5.3.2.1	Seasonal Trends in Total Zooplankton Abundance	
			5.3.2.2	Nearfield Zooplankton Community Structure	
			5.3.2.3	Regional Zooplankton Assemblages	
	5.4	Summ	ary of Bi	ological Results	
60	SUM	MARY	OF MAI	OR WATER COLUMN EVENTS	6-1
0.0	<u>50111</u>	<u>1011 11 11 1</u>			
7.0	REFE	ERENC	<u>ES</u>		7-1

LIST OF TABLES

Table 1-1.	Water Quality Surveys for WF011-WN017 February to June 2001	1-1
Table 2-1.	Station Types and Numbers (Five Depths Collected Unless Otherwise Noted)	2-2
Table 2-2.	Nearfield Water Column Sampling Plan (3 Pages)	2-4
Table 2-3.	Farfield Water Column Sampling Plan (3 Pages)	2-7
Table 3-1.	Method Detection Limits	3-4
Table 3-2.	Combined Farfield/Nearfield Survey WF011 (Feb 01) Data Summary	3-5
Table 3-3.	Combined Farfield/Nearfield Survey WF012 (Feb-Mar 01) Data Summary	3-9
Table 3-4.	Nearfield Survey WN013 (Mar 01) Data Summary	3-11
Table 3-5.	Combined Farfield/Nearfield Survey WF014 (Apr 01) Data Summary	3-12
Table 3-6.	Nearfield Survey WN015 (May 01) Data Summary	3-15
Table 3-7.	Nearfield Survey WN016 (May 01) Data Summary	3-16
Table 3-8.	Combined Farfield/Nearfield Survey WF017 (Jun 01) Data Summary	3-18
Table 4-1.	Contingency plan threshold values for water quality parameters.	4-16
Table 5-1.	Nearfield and farfield averages and ranges of abundance (10 ⁶ cells/l) of whole-water	
	phytoplankton	5-7
Table 5-2.	Nearfield and farfield average and ranges of abundance (cells/l) for >20 µm-screened	
	dinoflagellates	5-7
Table 5-3.	Nearfield and farfield average and ranges of abundance (10 ³ animals/m ³) for	
	zooplankton	5-10

LIST OF FIGURES

Figure 1-1.	Locations of MWRA Offshore Outfall, Nearfield Stations and USGS Mooring	1-3
Figure 1-2.	Locations of Farfield Stations and Regional Station Groupings	1-4
Figure 1-3.	Locations of Stations and Selected Transects	1-5
Figure 3-1.	USGS Temperature and Salinity Mooring Data Compared with Station N21	
Figure 3-2.	MWRA and Battelle In Situ Wetstar Fluorescence Data (MWRA Data Acquired at	
	~13 m on USGS Mooring and Battelle Data Acquired at 12.5 to 13.5 m at	
	Station N21)	3-21
Figure 4-1.	Time-Series of Average Surface and Bottom Water Density (σ_t) in the Nearfield	4-18
Figure 4-2.	Nearfield Depth vs. Time Contour Plots of Sigma-T for Stations N01, N21, and N07	
Figure 4-3.	Temperature Surface Contour Plot for Farfield Survey WF011 (Feb 01)	
Figure 4-4.	Salinity Surface Contour Plot for Farfield Survey WF011 (Feb 01)	4-21
Figure 4-5.	Temperature Surface Contour Plot for Farfield Survey WF014 (Apr 01)	4-22
Figure 4-6.	Salinity Surface Contour Plot for Farfield Survey WF014 (Apr 01)	4-23

Figure 4-7.	Precipitation at Logan Airport and River Discharges for the Charles and
	Merrimack Rivers
Figure 4-8.	Temperature Surface Contour Plot for Farfield Survey WF017 (Jun 01)4-25
Figure 4-9.	Salinity Surface Contour Plot for Farfield Survey WF017 (Jun 01)
Figure 4-10.	Temperature/Salinity Distribution for All Depths during WF011 (Feb 01)
-	and WF012 (Feb/Mar 01) Surveys
Figure 4-11.	Temperature/Salinity Distribution for All Depths during WF014 (Apr 01) and
	WF017 (Jun 01) Surveys
Figure 4-12.	Time-Series of Average Surface and Bottom Water Density (σ_T) in the Farfield
Figure 4-13.	Time-Series of Average Surface and Bottom Water Salinity (PSU) in the Farfield4-30
Figure 4-14.	Time-Series of Average Surface and Bottom Temperature (°C) in the Farfield
Figure 4-15.	Sigma-T. Salinity, and Temperature Vertical Contour Plots along Boston-Nearfield
	Transect for Earfield Survey WE012 (Feb/Mar 01) 4-32
Figure 4-16	Sigma-T Salinity and Temperature Vertical Contour Plots along Boston-Nearfield
<u>I iguie i io.</u>	Transect for Farfield Survey WF014 (Apr 01) 4-33
Figure 4-17	Sigma-T Salinity and Temperature Vertical Contour Plots along Boston-Nearfield
	Transect for Earfield Survey WE017 (Jun 01) 4-34
Figure 4-18	Time-Series of Average Surface and Bottom Salinity (PSU) in the Nearfield 4-35
Figure 4-19	Time-Series of Average Surface and Bottom Temperature (°C) in the Nearfield 4-36
Figure $4-20$	Beam Attenuation Surface Contour Plot for Earfield Survey WE011 (Feb 01)
Figure $4-20$.	Beam Attenuation Surface Contour Plot for Farfield Survey WF014 (Apr 01)
$\frac{11gure}{122} 4.22$	Beam Attenuation Surface Contour Plot for Earfield Survey WE017 (Jun 01)
Figure 4 23	Beam Attenuation Vertical Contour Plots along the Boston Nearfield Transact
<u>Inguie 4-25.</u>	for Surveys WE011 WE014 and WE017 440
Figure 4 24	Nitrate Surface Contour Plot for Earfield Survey WE011 (Eeb 01)
Figure 4-24.	Ammonium Surface Contour Plot for Farfield Survey WF012 (Feb/Mar 01)
$\frac{\text{Figure 4-23.}}{\text{Figure 4-26}}$	Alimonium Surface Contour Plot for Forfield Survey WF012 (Pe0/Wai 01)
Figure 4-20.	Nitrate Surface Contour Plot for Farfield Survey WE017 (Jup 01)
$\frac{\text{Figure 4-27.}}{\text{Figure 4-28}}$	Ammonium distribution in the nearfield by depth for (a) March 1, 2001 and
<u>Figure 4-26.</u>	(b) April 4, 2001 Plots displayed from surface to bottom
Figure 4 20	(b) April 4, 2001. Flots displayed from surface to bottom.
<u>Inguie 4-29.</u>	(b) June 25, 2001. Plots displayed from surface to bottom
Figure 4 30	(b) Julie 25, 2001. Flots displayed from sufface to bottom
<u>Figure 4-50.</u>	Transact for Earfield Survey WE014 (Apr 01)
Figure 4 31	Nitrate Plus Nitrite and Phosphate Vertical Contour Plots along the Boston Nearfield
<u>Figure 4-51.</u>	Transact for Forfield Survey WE017 (Jun 01)
Figure 4.32	<u>Ammonium Vertical Contour Plots along the Boston Nearfield Transact for</u>
<u>Figure 4-32.</u>	Earfield Surveys WE012, WE014, and WE017
Figure 4-33	DIN vs. Salinity for All Depths during Earfield Surveys WE011 (Eeb 01) and
<u>11guie 4-55.</u>	$\frac{DH(Vs. \text{ samily for An Depuis during f arried surveys wrott (rebot) and}{WE012 (Eab/Mar 01)} $
Figure 4 34	DIN vs. Salinity for All Depths during Earfield Surveys WE014 (Apr 01) and
<u>Inguic 4-34.</u>	WE017 (Jup 01) // 51
Figure 4 35	<u>Wr017 (Juli 01)</u>
Figure 4-35.	Ammonium Vertical Contour Plots along the Nearfield Transact for Surveys
<u>14gult 4-30.</u>	WE014 WN015 WN016 and WE017 4 52
Figure 4 27	<u>W1014, W1015, W1010, allu WF017</u>
Figure 4-37.	Fluorescence Surface Contour Plot for Farfield Survey WE012 (Feb/Mar 01) 455
Figure 4-30.	<u>Fruorescence Surface Contour Flot for Farneld Survey WF012 (Fe0/Wild 01)</u>
Figure 4 40	Seawin's Chlorophyll image for Southwestern Gulf of Maine for February 10, 20014-30
Figure 4 41	Eluorescence Vertical Contour Plots along Three Transacts for Earfield Survey
<u>1 igult 4-41.</u>	WF011 (Feb 01) 4-58

Figure 4-42.	Fluorescence Vertical Contour Plots along the Boston-Nearfield Transect for	
	Farfield Surveys WF012, WF014, and WF017	4-59
Figure 4-43.	Time-Series of Bottom, Mid-Depth, and Surface Survey Mean Chlorophyll	
	Concentration in the Nearfield	4-60
Figure 4-44.	Time-Series of Bottom Water Average DO Concentration and	
	Percentage Saturation in the Farfield	4-61
Figure 4-45.	Bottom Water Dissolved Oxygen Contour Plot for Farfield Survey WF017 (Jun 01).	4-62
Figure 4-46.	Time-Series of Bottom and Surface Average DO Concentration and	
	Percentage Saturation in the Nearfield	4-63
Figure 5-1.	An example photosynthesis irradiance curve from station N04 collected	
	February 2001	5-13
Figure 5-2.	Time series of areal production (mg C m ⁻² d ⁻¹) for stations N04, N18 and F23	5-14
Figure 5-3.	Time series of chlorophyll-specific areal production (mg C mg Chl a ⁻¹ d ⁻¹) for	
	stations N04, N18 and F23	5-15
Figure 5-4.	<u>Time-series of contoured daily production (mgCm⁻³d⁻¹) over depth at station N04</u>	5-16
Figure 5-5.	Time-series of contoured daily production (mgCm ⁻³ d ⁻¹) over depth at station N18	5-17
Figure 5-6.	Time-series of contoured chlorophyll a concentration ($\mu g L^{-1}$) over	
	depth at station N04	5-18
Figure 5-7.	Time-series of contoured chlorophyll a concentration ($\mu g L^{-1}$) over	
-	depth at station N18	5-19
Figure 5-8.	Time-series of contoured chlorophyll-specific production (mgCmgChla ⁻¹ d ⁻¹) over	
-	depth at station N04	5-20
Figure 5-9.	Time-series of contoured chlorophyll-specific production (mgCmgChla ⁻¹ d ⁻¹) over	
	depth at station N18	5-21
Figure 5-10.	Time-series plots of respiration (μ MO ₂ hr ⁻¹)stations N18 and N04	5-22
Figure 5-11.	Time-series plots of respiration $(\mu MO_2 hr^{-1})$ stations F23 and F19	5-23
Figure 5-12.	Time-series plots of POC (uMC) at stations N18 and N04	5-24
Figure 5-13	Time-series plots of POC (uMC) at stations E23 and E19	5-25
Figure 5-14	Time-series plots of carbon-specific respiration (μ MO- μ MC ⁻¹ hr ⁻¹) at stations N18	
<u>1 iguie 5-14.</u>	and N04	5-26
Figure 5-15	Time-series plots of carbon-specific respiration (μ MO μ MO ⁻¹ hr ⁻¹) at stations F23	
<u>Ingule 5-15.</u>	and E10	5 27
Figure 5 16	And F12.	5-27
Figure 5 17	Phytoplankton Abundance by Major Taxonomic Group, Nearfield Mid Denth	
<u>Figure 5-17.</u>	Samples	5 20
Figure 5 18	<u>Samples</u> Phytoplankton Abundance by Major Taxonomic Group WE011 Farfield Survey	
<u>Ingule 3-18.</u>	$\frac{1}{1} \frac{1}{1} \frac{1}$	5 30
Figure 5 10	$\frac{\text{Results (February 7 - 12)}}{\text{Phytoplankton Abundance by Major Tayonomic Group - WE012 Farfield Survey}}$	
<u>Figure 5-19.</u>	Pasults (Fabruary 27 March 2)	5 31
Eigura 5 20	<u>Results (February 27 – Match 2)</u>	
<u>Figure 5-20.</u>	$\frac{1}{2} \frac{1}{2} \frac{1}$	5 32
Figure 5 21	<u>Results (April 4 – 9)</u>	
<u>Ingule 3-21.</u>	$\frac{11}{1000} 1000000000000000000000000000000000000$	5 33
Figure 5 22	$\frac{1}{2} \frac{1}{2} \frac{1}$	
Figure 5 22	Zooplankton abundance by major taxonomic group during (a) WE011 and	
<u>14guie 3-23.</u>	(b) WE012 farfield surveys	5 25
Figure 5 24	Tooplankton abundance by major taxonomic group during (a) WE014 and	
<u>1 iguit J-24.</u>	(b) WE017 farfield surveys	5 26
	(0) y 101 / 10111010 SULVEYS	

LIST OF APPENDICES

Appendix A – Productivity Methods	A-1
Appendix B – Surface Contour Plots – Farfield Surveys	B-1
Appendix C – Transect Plots	C-1
Appendix D – Nutrient Scatter Plots for Each Survey	D-1
Appendix E – Photosynthesis – Irradiance (P-I) Curves	E-1
Appendix F – Abundance of Prevalent Phytoplankton Species in Whole Water Surface and	
Chlorophyll-A Maximum Samples	F-1
Appendix G – Abundance of Prevalent Phytoplankton Species in Screened Water Surface and	
Chlorophyll-A Maximum Samples	G-1
Appendix H – Abundance of Prevalent Species in Zooplankton Tow Samples	H-1
Appendix I – Satellite Images of Chlorophyll-A Concentrations and Temperature	I-1
Appendix J – Secchi Disk Data	J-1
Appendix K – Estimated Carbon Equivalence Data	K-1

1.0 INTRODUCTION

1.1 Program Overview

The Massachusetts Water Resources Authority (MWRA) has implemented a long-term Harbor and Outfall Monitoring (HOM) Program for Massachusetts and Cape Cod Bays. The objective of the HOM Program is to (1) test for compliance with NPDES permit requirements; (2) test whether the impact of the discharge on the environment is within the bounds projected by the SEIS; and (3) test whether change within the system exceeds the Contingency Plan thresholds. A detailed description of the monitoring and its rationale is provided in the Effluent Outfall Monitoring Plan developed for the baseline period and the post discharge monitoring plan (MWRA, 1997).

To monitor water quality conditions with respect to nutrients, water properties, phytoplankton and zooplankton, and water-column respiration and productivity, the MWRA conducts ambient water quality surveys in Massachusetts and Cape Cod Bays. The surveys have been designed to evaluate water quality on both a high-frequency basis for a limited area (nearfield) and a low-frequency basis for an extended area (farfield). The nearfield stations are located in the vicinity of the Massachusetts Bay outfall site (Figure 1-1) and the farfield stations are located throughout Boston Harbor, Massachusetts Bay, and Cape Cod Bay (Figure 1-2). The stations for the farfield surveys have been further separated into regional groupings according to geographic location to simplify regional data comparisons. This semiannual report summarizes water column monitoring results for the seven surveys conducted from February through June 2001 (Table 1-1).

Survey #	Type of Survey	Survey Dates
WF011	Nearfield/Farfield	February 7 – 9, 12
WF012	Nearfield/Farfield	February 27 - March 2
WN013	Nearfield	March 26
WF014	Nearfield/Farfield	April 4-6, 9
WN015	Nearfield	April 26
WN016	Nearfield	May 18
WF017	Nearfield/Farfield	June 19 – 21, 25

Table 1-1.	Water Ouality	Surveys for	WF011-WN017	February t	o June 2001
I UDIC I II	The Yunity	Sul veybioi		1 con dury t	

The bay outfall became operational on September 6, 2000. The seven surveys conducted during this semiannual period are the first winter-spring surveys conducted after discharge of secondary treated effluent from the outfall began. The data evaluated and discussed in this report focus on characterization of spatial and temporal trends for February to June 2001. Preliminary comparison against baseline data are discussed and appropriate threshold values presented. A detailed evaluation of 2001 versus the baseline period (1992-2000) will be presented in the 2001 annual water column report.

Initial data summaries, along with specific field information, are available in individual survey reports submitted immediately following each survey. In addition, nutrient data reports (including calibration information, sensor and water chemistry data), plankton data reports, and productivity and respiration data reports are each submitted four times annually. Raw data summarized within this or any of the other reports are available from MWRA in hard copy and electronic formats.

1.2 Organization of the Semiannual Report

The scope of the semiannual report is focused primarily towards providing an initial compilation of the water column data collected during the reporting period. Secondarily, integrated physical and biological results are discussed for key water column events and potential areas for expanded discussion in the annual water column report are recommended. The report first provides a summary of the survey and laboratory methods (Section 2). The bulk of the report, as discussed in further detail below, presents results of water column data from the first seven surveys of 2001 (Sections 3-5). Finally, the major findings of the semiannual period are summarized in Section 6.

Section 3 includes data summary tables that present the major numeric results of water column surveys in the semiannual period by survey. A description of data selection, integration information, and summary statistics are included with that section.

Sections 4 (Results of Water Column Measurements) and 5 (Productivity, Respiration, and Plankton Results) include preliminary interpretation of the data with selected graphic representations of the horizontal and vertical distribution of water column parameters in both the farfield and nearfield. The horizontal distribution of physical parameters is presented through regional contour plots. The vertical distribution of water column parameters is presented using time-series plots of averaged surface and bottom water column parameters and along vertical transects in the survey area (Figure 1-3). The time-series plots utilize average values of the surface water sample (the "A" depth, as described in Section 3), and the bottom water collection depth (the "E" depth). Examining data trends along four farfield transects (Boston-Nearfield, Cohassett, Marshfield and Nearfield-Marshfield), and one nearfield transect, allows three-dimensional presentation of water column conditions during each survey. One offshore transect (Boundary) enables analysis of results in the outer most boundary of the survey area during farfield surveys.

Results of water column physical, nutrient, chlorophyll, and dissolved oxygen data are provided in Section 4. Survey results were organized according to the physical characteristics of the water column during the semiannual period. The timing of water column vertical stratification, and the physical and biological status of the water column during stratification, significantly affects the temporal response of the water quality parameters, which provide a major focus for assessing effects of the outfall. This report describes the horizontal and vertical characterization of the water column during pre-stratification stage (WF011 – WN013), the early stratification stage (WF014 – WN016), and once seasonal stratification was established (WF017). Time-series data are commonly provided for the entire semiannual period for clarity and context of the data presentation.

Productivity, respiration, and plankton measurements, along with corresponding discussion of chlorophyll and dissolved oxygen results, are provided in Section 5. Discussion of the biological processes and trends during the semiannual period is included in this section. A summary of the major water column events and unusual features of the semiannual period is presented in Section 6. References are provided in Section 7.

Figure 1-1. Locations of MWRA Offshore Outfall, Nearfield Stations and USGS Mooring

Figure 1-2. Locations of Farfield Stations and Regional Station Groupings

Figure 1-3. Locations of Stations and Selected Transects

2.0 METHODS

This section describes general methods of data collection and sampling for the first seven water column monitoring surveys of 2001. Section 2.1 describes data collection methods, including survey dates, sampling platforms, and analyses performed. Section 2.2 describes the sampling schema undertaken, and Section 2.3 details specific operations for the first 2001 semi-annual period. Specific details of field sampling and analytical procedures, laboratory sample processing and analysis, sample handling and custody, calibration and preventative maintenance, documentation, data evaluation, and data quality procedures are discussed in the Water Quality Monitoring CW/QAPP (Albro *et al.*, 2002). Details on productivity sampling procedures and analytical methods are also available in Appendix A.

2.1 Data Collection

The farfield and nearfield water quality surveys for 2001 represent a continuation of the water quality monitoring conducted from 1992 - 2000. On September 6, 2000, the offshore outfall went online and began discharging effluent. The baseline monitoring period includes surveys from February 1992 to September 1, 2000. The last 5 fall 2000 surveys represented the beginning of the outfall discharge monitoring period, which continued in 2001. The data collected during outfall discharge monitoring are evaluated internally and against baseline data. Data collection methods and schema have not changed from the baseline to the outfall discharge water quality monitoring periods.

Water quality data for this report were collected from the sampling platforms R/V Aquamonitor and F/V Isabel S. Continuous vertical profiles of the water column and discrete water samples were collected using a CTD/Go-Flo Bottle Rosette system. This system includes a deck unit to control the system, display *in situ* data, and store the data, and an underwater unit comprised of several environmental sensors, including conductivity, temperature, depth, dissolved oxygen, transmissometry, irradiance, and fluorescence. These measurements were obtained at each station by deploying the CTD; in general, one cast was made at each station. Water column profile data were collected during the downcast, and water samples were collected during the upcast by closing the Go-Flo bottles at selected depths, as discussed below.

Water samples were collected at five depths at each station, except at stations F30, F31, F32, and F33. Stations F30 and F31 are shallow and require only three depths while only zooplankton samples are collected at F32 and F33. These depths were selected during CTD deployment based on positions relative to the pycnocline or subsurface chlorophyll maximum. The bottom depth (within 5 meters of the sea floor) and the surface depth (within 3 meters of the water surface) of each cast remained constant and the mid-bottom, middle and mid-surface depths were selected to represent any variability in the water column. In general, the selected middle depth corresponded with the chlorophyll maximum and or pycnocline. When the chlorophyll maximum occurred significantly below or above the middle depth, the mid-bottom or mid-surface sampling event was substituted with the mid-depth sampling event and the "mid-depth" sample was collected within the maximum. In essence, the "mid-depth" sample in these instances was not collected from the middle depth, but shallower or deeper in the water column in order to capture the chlorophyll maximum layer. These nomenclature semantics result from a combination of field logistics and scientific relevance. In the field, the switching of the "mid-depth" sample with the mid-surface or mid-bottom was transparent to everyone except the NAVSAM operator who observed the subsurface chlorophyll structure and marked the events. The samples were processed in a consistent manner and a more comprehensive set of analyses was conducted for the surface, mid-depth/chlorophyll maximum, and bottom samples.

Samples from each depth at each station were collected by subsampling from the Go-Flo bottles into the appropriate sample container. Analyses performed on the water samples are summarized in Table 2-1. Samples for dissolved inorganic nutrients (DIN), dissolved organic carbon (DOC), total dissolved nitrogen (TDN) and phosphorus (TDP), particulate organic carbon (POC) and nitrogen (PON), biogenic silica, particulate phosphorus (PP), chlorophyll a and phaeopigments, total suspended solids (TSS), urea, and phytoplankton (screened and rapid assessment) were filtered and preserved immediately after obtaining water from the appropriate Go-Flo bottles. Whole water phytoplankton samples (unfiltered) were obtained directly from the Go-Flo bottles and immediately preserved. Zooplankton samples were obtained by deploying a zooplankton net overboard and making an oblique tow of the upper two-thirds of the water column but with a maximum tow depth of 30 meters. Productivity samples were collected from the Go-Flo bottles, stored on ice and transferred to University of Rhode Island (URI) employees. Incubation was started no more that six hours after initial water collection at URI's laboratory. Respiration samples were collected from the Go-Flo bottles at four stations (F19, F23, N04, and N18). Incubations of the dark bottles were started within 30 minutes of sample collection. The dark bottle samples were maintained at a temperature within 2°C of the collection temperature for five to seven days until analysis.

2.2 Sampling Schema

A synopsis of the sampling schema for the analyses described above is outlined in Tables 2-1, 2-2, and 2-3. Station designations were assigned according to the type of analyses performed at that station (see Table 2-1). Productivity and respiration analyses were also conducted at certain stations and represented by the letters P and R, respectively. Table 2-1 lists the different analyses performed at each station. Tables 2-2 (nearfield stations) and 2-3 (farfield stations) provide the station name and type, and show the analyses performed at each depth. Station N16 is considered both a nearfield station (where it is designated as type A) and a farfield station (where it is designated a type D). Stations F32 and F33 are occupied during the first three farfield surveys of each year and collect zooplankton samples and hydrocast data only (designated as type Z).

Station Type	Α	D	E	F	G ¹	Р	R ⁴	Z
Number of Stations	6	10	24	2	2	3	1	2
Analysis Type	1							
Dissolved inorganic nutrients	•	•	•	•	•	•		
$(NH_4, NO_3, NO_2, PO_4, and SiO_4)$								
Other nutrients (DOC, TDN, TDP, PC, PN, PP,	•	•			•	•		
Biogenic Si) ¹								
Chlorophyll ¹	•	•			•	•		
Total suspended solids ¹	•	•			•	•		
Dissolved oxygen	•	•		•	•	•		
Phytoplankton, urea ²		•			•	•		
Zooplankton ³		•			•	•		•
Respiration ¹						•	•	
Productivity, DIN						•		

Table 2-1.	Station Types and Numbers (Five Depths Collected
	Unless Otherwise Noted)

¹Samples collected at three depths (bottom, mid-depth, and surface)

²Samples collected at two depths (mid-depth and surface)

³Vertical tow samples collected

⁴Respiration samples collected at type A station F19

2.3 Operations Summary

Field operations for water column sampling and analysis during the first semi-annual period were conducted as described above. Deviations from the CW/QAPP for surveys WF011, WF012, WN013, WF014, WN015, WN016, and WF017 had no effect on the data or data interpretation. For additional information about a specific survey, the individual survey reports may be consulted.

ttionID			· · · · · ·	_											[r			Nearfield Water Column Sampling Plan													
Sta Der	Deptn (m	Station Type	Depths	Total Volume at Deptr (L)	Number of 9-L GoFlos	Dissolved Inorganic Nutrients	Dissolved Organic Carbon	Total Dissolved Nitrogen and Phosphorous	Particulate Organic Carbon and Nitrogen	Particulate Phosphorous	Biogenic silica	Chlorophyll a	Total Suspended Solids	Dissolved Oxygen	Rapid Analysis Phytoplankton	Whole Water Phytoplankton	Screened Water Phytoplankton	Zooplankton	Urea	Respiration	Photosynthesis by carbon-14	Dissolved Inorganic Carbon													
	\neg		Pro	tocol (Code	IN	OC	NP	PC	PP	BS	СН	TS	DO	RP	ww	SW	ZO	UR	RE	AP	IC													
				Volum	e (L)	1	0.1	0.1	1	0.6	0.3	0.5	1	1	4	1	4	1	0.1	1	1	1													
		1	1_Bottom	8.5	2	1	1	1	2	2	2	1	2	1	-																				
			2_Mid-Bottom	2.5	1	1						1		1																					
N01 3	30	Α	3_Mid-Depth	10	2	2	1	1	2	2	2	2	2	1																					
			4_Mid-Surface	2.5	1	1						1	-	1																					
			5_Surface	8.5	2	1	1	1	2	2	2	1	2	1																					
			1_Bottom	1	1	1	-																												
			2_Mid-Bottom	1	1	1																													
N02 4	40	Е	3_Mid-Depth	1	1	1																													
			4_Mid-Surface	1	1	1																													
			5_Surface	1	1	1																													
			1_Bottom	1	1	1																													
			2_Mid-Bottom	1	1	1																													
N03 4	44	E	3_Mid-Depth	1	1	1																													
			4_Mid-Surface	1	1	1																													
			5_Surface	1	1	1	-						_							-															
			1_Bottom	15.5	2	1	1	1	2	2	2	1	2							6	1	1													
			2_Mid-Bottom	4.5	1	1	-			-	-	1	-	1					_	-	1	1													
N04 5	50	D+	3_Mid-Depth	22.1	2	2	1	1	2	2	2	2	2			1	1		1	6	1	1													
		R+	4_Mid-Surface	4.5	1	1	_	_				1		1	1		_				1	1													
		Р	5_Surface	20.6	2	1	1	1	2	2	2	1	2			1	1	4	1	6	1	1													
	_	_	o_inet low															-																	
			1_Bottom	1	1	1																													
	55	F	2_Mid Dopth	1																															
	55	E	4 Mid-Surface	1	1	1																													
			5 Surface	1	1	1	-		_																										
	_		1 Pottom	1	1	1																													
	_	-	2 Mid-Bottom	1	1	1	-		_																										
N06 5	52	F	3 Mid-Depth	1	1	1	-																												
	52		4 Mid-Surface	1	1	1																													
			5 Surface	1	1	1	-	-	-	-			-																						
	-	-	1 Bottom	10.5	2	1	1	1	2	2	2	1	2	3						_															
	_		2 Mid-Bottom	2.5	1	1	-	-		~	~	1	-	1																					
N07 5	52	A	3 Mid-Depth	10	2	2	1	1	2	2	2	2	2	1																					
			4_Mid-Surface	2.5	1	1						1		1																					
			5_Surface	10.5	2	1	1	1	2	2	2	1	2	3																					
┢━━╋			1 Bottom	1_	1	1											_																		
			2 Mid-Bottom	1	1	1																													
N08 3	35	E	3 Mid-Depth	1	1	1											_																		
			4 Mid-Surface	1	1	1																													

 Table 2-2.
 Nearfield Water Column Sampling Plan (3 Pages)

	į		u.	Nea	rfi	eld	Wa	ater	Со	lun	nn	Sa	mp	olin	g F	Plar)					
StationID	Depth (m)	Station Type	Depths	Total Volume at Depth (L)	Number of 9-L GoFlos	Dissolved Inorganic Nutrients	Dissolved Organic Carhon	Total Dissolved Nitrogen and	Particulate Organic Carbon and Nitrogen	Particulate Phosphorous	Biogenic silica	Chlorophyll a	Total Suspended Solids	Dissolved Oxygen	Rapid Analysis Phytoplankton	Whole Water Phytoplankton	Screened Water Phytoplankton	Zooplankton	Urea	Respiration	Photosynthesis by carbon-14	Dissolved Inorganic Carbon
			Pro	otocol (Code	IN	OC	NP	PC	PP	BS	СН	TS	DO	RP	WW	SW	ZO	UR	RE	AP	IC
_		1	5_Surface	1	1	1																
			1_Bottom	1	1	1																
NIOO	22		2_Mid-Bottom	1	1	1																
INU9	32	-	A Mid-Surface	1	1	1																
			5 Surface	1	1	1																
			1 Bottom	8.5	2	1	1	1	2	2	2	1	2	1	-						_	
-			2 Mid-Bottom	2.5	1	1						1		1								
N10	25	Α	3_Mid-Depth	10	2	2	1	1	2	2	2	2	2	1								
			4_Mid-Surface	2.5	1	1	(and the second	_			1.4	1		1	1							
			5_Surface	8.5	2	1	1	1	2	2	2	1	2	1								
			1_Bottom	1	1	1	-															
			2_Mid-Bottom	1	1	1																
N11	32	E	3_Mid-Depth	1	1	1																
			4_Mid-Surface	1	1	1																
_			5_Surface		1	1			<u> </u>													
			1_Bottom	1	1	1			-													
N12	26	-	2_Mid-Depth	1	1	1			-													
IN IZ	20		4 Mid-Surface	1	1	1			-													
			5 Surface	1	1	1																
			1 Bottom	1	1	1																
			2_Mid-Bottom	1	1	1																
N13	32	E	3_Mid-Depth	1	1	1																
			4_Mid-Surface	1	1	1																
			5_Surface	1	1	1																
			1_Bottom	1	1	1																
			2_Mid-Bottom	1	1	1																
N14	34	E	3_Mid-Depth	1	1				<u> </u>													
			4_INIG-Surface	1	1	1																
-			1 Bottom	1	1	1			-													
-			2 Mid-Bottom	1	1	1			-													
N15	42	E	3 Mid-Depth	1	1	1																
			4_Mid-Surface	1	1	1																
			5_Surface	1	1	1	-							-								
			1_Bottom	8.5	2	1	1	1	2	2	2	1	2	1								
			2_Mid-Bottom	2.5	1	1						1		1								
N16	40	Α	3_Mid-Depth	10.2	2	2	2	2	2	2	2	2	2	1								
			4_Mid-Surface	2.5	1	1					1	1	1	1								
			5_Surface	8.5	2	1	1	1	2	2	2	1	2	1								
			1_Bottom	1	1	1																
NI47			2_Mid-Bottom	1	1	1																
IN17	36	E	3_Mid-Depth		1	4																

				Nea	arfi	eld	Wa	ater	Co	lun	n	Sa	mp	olin	g F	Plar)					
StationID	Depth (m)	Station Type	Depths	Total Volume at Depth (L)	Number of 9-L GoFlos	Dissolved Inorganic Nutrients	Dissolved Organic Carbon	Total Dissolved Nitrogen and	Particulate Organic Carbon and Nitrogen	Particulate Phosphorous	Biogenic silica	Chlorophyll a	Total Suspended Solids	Dissolved Oxygen	Rapid Analysis Phytoplankton	Whole Water Phytoplankton	Screened Water Phytoplankton	Zooplankton	Urea	Respiration	Photosynthesis by carbon-14	Dissolved Inorganic Carbon
			Pro	otocol (Code	IN	oc	NP	PC	PP	BS	СН	TS	DO	RP	WW	SW	ZO	UR	RE	AP	IC
			5_Surface	1	1	1																-
			1 Bottom	15.5	2	1	1	1	2	2	2	1	2							6	1	1
		D+	2 Mid-Bottom	4.5	1	1						1		1	-				-		1	1
N18	30	R+	3_Mid-Depth	26.1	3	1	1	1	2	2	2	2	2		1	1	1		1	6	1	2
		Р	4_Mid-Surface	4.5	1	1						1		1	1						1	1
			5_Surface	20.6	2	1	1	1	2	2	2	1	2	-	-	1	1	-	1	6	1	1
			6_Net Tow			100												1	1		_	
			1 Bottom	1	1	1											-	-				
			2 Mid-Bottom	1	1	1																
N19	24	Е	3_Mid-Depth	1	1	1																
			4_Mid-Surface	1	1	1																
			5_Surface	1	1	1								-								
			1_Bottom	8.5	2	1	1	1	2	2	2	1	2	1	-							
			2_Mid-Bottom	2.5	1	1		-	_			1	-	1								
N20	32	Α	3_Mid-Depth	10	2	2	1	1	2	2	2	2	2	1								
			4_Mid-Surface	2.5	1	1						1		1	1							
			5_Surface	8.5	2	1	1	1	2	2	2	1	2	1								
			1_Bottom	1	1	1	100		-					-								
			2_Mid-Bottom	1	1	1																
N21	34	E	3_Mid-Depth	1	1	1																
			4_Mid-Surface	1	1	1																
			5_Surface	1	1	1		-						-								
			1	Totals	3	111	22	22	42	42	42	42	42	33	1	4	4	2	4	36	10	11
Blank	s A	-		<u> </u>	-	1.1	1	1	1	1	1	1	1			-		-	-			

			F	arfi	eld	W	ate	r C	olu	mr	ו S	am	plir	ng	Pla	In						
StationID	Depth (m)	Station Type	Depths	Total Volume at Depth (L)	Number of 9-L GoFlos	Dissolved	Dissolved Organic Carbon	Total Dissolved Nitrogen and	Particulate Organic Carbon	Phosphorous	Biogenic silica	Chlorophyll a	Total Suspended Solids	Dissolved Oxygen	Secchi Disk Reading	Whole Water Phytoplankton	Screened Water Phytonlankton	Zooplankton	Urea	Respiration	Photosynthesis by carbon-14	Dissolved Inorganic Carbon
-			Pr	otocol	Code	IN	00	NP	PC	PP	BS	СН	TS	DO	SF	ww	SW	70	UR	RF	AP	IC
				Volun	ne (L)	1	0.1	0.1	1	0.3	0.3	0.5	1	1	0	1	4	1	0.1	1	1	10
			1_Bottom	7.9	2	1	1	1	2	2	2	1	2	3								
			2_Mid-Bottom	2.5	1	1						1		1								
F01	27	D	3_Mid-Depth	14	2	1	1	1	2	2	2	2	2	1		1	1		1			
			4_Mid-Surface	2.5	1	1						1		1								
			5_Surface	13	2		1	1	2	2	2	1	2	3	1	1	1	1	1			
			1 Bottom	79	2	1	1	1	2	2	2	1	2	1					-			_
			2 Mid-Bottom	2.5	1	1			2	2	2	1	2	1								_
F02	33	D	3_Mid-Depth	15	2	2	1	1	2	2	2	2	2	1		1	1		1			
			4_Mid-Surface	2.5	1	1						1	111	1								
			5_Surface	13	2	1	1	1	2	2	2	1	2	1	1	1	1	_	1			
			6_Net Tow		-	-												1	1			
			1_Bottom	1	1	1																
	47	_	2_Mid-Bottom	1	1	1																
F03	17	E	3_Mid-Depth	1	1																	
			4_MIC-Surface	1 1	1	1									1							
			1 Bottom	1	1	1									-							
			2 Mid-Bottom	1	1	1																_
F05	18	E	3 Mid-Depth	1	1	1																
			4_Mid-Surface	1	1	1									_							
			5_Surface	1	1	1	-	-							1							
			1_Bottom	7.9	2	1	1	1	2	2	2	1	2	3	1							
			2_Mid-Bottom	2.5	1	1						1		1								
F06	35	D	3_Mid-Depth	15	2	2	1	1	2	2	2	2	2	1		1	1		1			
-			4_Mid-Surface	2.5	1	1	4	4	2	2	2	1	2	1	4	4	4		4			
		-	5_Surface 6 Net Tow	15	2			-	2	2	2		2	3	-			1				
			1 Bottom	1	1	1																
			2 Mid-Bottom	1	1	1																
F07	54	E	3_Mid-Depth	1	1	1																
			4_Mid-Surface	1	1	1																
			5_Surface	1	1	1									1							
			1_Bottom	1	1	1																
			2_Mid-Bottom	1	1	1																
F10	30	E	3_Mid-Depth	1	1																	
-			4_MIC-Surface	1	1	1									4							
-			1 Bottom			1								1								
-			2 Mid-Bottom	2	1	1								1								
F12	90	F	3 Mid-Depth	2	1	1								1								
			4_Mid-Surface	2	1	1								1								
			5_Surface	4	1	1	-							1	1	1						
			1_Bottom	7.9	2	1	1	1	2	2	2	1	2	1	-							
			2_Mid-Bottom	2.5	1	1						1		1								
F13	25	D	3_Mid-Depth	15	2	2	1	1	2	2	2	2	2	1		1	1		1			
			4_Mid-Surface	2.5	1	1						1	1.	1								

 Table 2-3. Farfield Water Column Sampling Plan (3 Pages)

			Fa	arfi	eld	Wa	ate	r C	olu	mr	۱S	am	plir	ng	Pla	n						
StationID	Depth (m)	Station Type	Depths	Total Volume at Depth (L)	Number of 9-L GoFlos	Dissolved Inorganic Nutrients	Dissolved Organic Carbon	Total Dissolved Nitrogen and	Particulate Organic Carbon	Particulate Phosphorous	Biogenic silica	Chlorophyll a	Total Suspended Solids	Dissolved Oxygen	Secchi Disk Reading	Whole Water Phytoplankton	Screened Water Phytonlankton	Zooplankton	Urea	Respiration	Photosynthesis by carbon-14	Dissolved Inorganic Carbon
-			Pro 5_Surface 6 Net Tow	otocol 13	Code 2	IN 1	OC 1	NP 1	PC 2	PP 2	BS 2	CH 1	TS 2	DO 1	SE 1	WW 1	SW 1	Z0	UR 1	RE	AP	IC
F14	20	E	1_Bottom 2_Mid-Bottom 3_Mid-Depth	1 1 1 1	1 1 1 1	1 1 1 1																
	14 20 E 3_Mid-Depth 1 <																					
F15	39	E	3_MId-Depth 4_Mid-Surface 5_Surface 1_Bottom	1 1 1	1 1 1	1 1 1								1	1							
F16	4_Mid-Surface 1 <																					
F17	16 60 E 3_Mid-Depth 1 <																					
F18	24	E	5_Surface 1_Bottom 2_Mid-Bottom 3 Mid-Depth	1 1 1 1	1 1 1 1	1 1 1 1									1							
			4_Mid-Surface 5_Surface 1_Bottom	1 1 7 2	1 1 2	1 1 1	1	1	2	2	2	1	2	1	1					6		
F19	81	A +R	3_Mid-Depth 4_Mid-Surface 5_Surface	7 2 7	2 1 2	1 1 1	1	1	2	2	2	2 1 1	2	1	1					6		
F22	80	D	2_Mid-Bottom 3_Mid-Depth 4_Mid-Surface	7.9 2.5 14 2.5	2 1 2 1 2	1 1 1	1	1	2	2	2	1 2 1	2	3 1 1 1 2		1	1		1			
		D	6_Net Tow 1_Bottom 2_Mid-Bottom	13 18 8.5	2 3 1	1	1	1	2	2	2	1	2	3 1				1		6	1	1
F23	25	+R +P	3_Mid-Depth 4_Mid-Surface 5_Surface 6_Net Tow	24 7.5 23	3 1 3	1 1	1	1	2	2	2	2 1 1	2	1	1	1	1	1	1	6	1 1 1	1 1 1
F24	20	D	1_Bottom 2_Mid-Bottom 3_Mid-Depth 4_Mid-Surface	7.9 2.5 14 2.5	2 1 2 1	1 1 1 1	1	1	2	2	2	1 1 2 1	2	3 1 1 1		1	1		1			
			5_Surface 6_Net Tow 1_Bottom 2_Mid-Bottom	13 9.9 2.5	2 2 1	1	1	1	2	2	2	1	2	3 1 1	1	1	1	1	1			

			E E	arfi	eld	Wa	ate	r C	olu	mr	n Sa	am	plir	ng	Pla	n						
StationID	Depth (m)	Station Type	Depths	Total Volume at Depth (L)	Number of 9-L GoFlos	Dissolved Inorganic Nutrients	Dissolved Organic Carbon	Total Dissolved	Particulate Organic Carbon	Particulate Phosphorous	Biogenic silica	Chlorophyll a	Total Suspended Solids	Dissolved Oxygen	Secchi Disk Reading	Whole Water Phytoplankton	Screened Water Phytonlankton	Zooplankton	Urea	Respiration	Photosynthesis by carbon-14	Dissolved Inorganic Carbon
			Pro	otocol	Code	IN	OC	NP	PC	PP	BS	СН	TS	DO	SE	ww	SW	ZO	UR	RE	AP	IC
F25	15	D	3_Mid-Depth	15	2	2	1	1	2	2	2	2	2	1		1	1	-	1			
			4_Mid-Surface 5_Surface 6_Net Tow	2.5 15	1	1	1	1	2	2	2	1	2	1	1	1	1	1	1			
-	1_Bottom 7.9 2 1 1 2 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 <th1< th=""> 1 1 <th1<< td=""></th1<<></th1<>																					
	1_Bottom 7.9 2 1 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 <th1< td=""></th1<>																					
F26	56	D	3_Mid-Depth	15	2	1	1	1	2	2	2	2	2	1		1	1		1			
		_	4_Mid-Surface	2.5	1	1	1	1	2	2	2	1	2	1	1	1	1		1			
			6 Net Tow	13					2	2	2		2				100	1				
			1_Bottom	7.9	2	1	1	1	2	2	2	1	2	1	-							
			2_Mid-Bottom	2.5	1	1						1	1-1	1								
F27	108	D	3_Mid-Depth	15	2	2	1	1	2	2	2	2	2	1		1	1		1			
-			5 Surface	13	2	1	1	1	2	2	2	1	2	1	1	1	1	-	1			
			6_Net Tow	1.1	1000						-			-			-	1	1			
			1_Bottom	1	1	1												-				
			2_Mid-Bottom	1	1	1																
F28	33	E	3_Mid-Depth	1																		
			5 Surface	1	1	1									1							
			1_Bottom	2	1	1								1	100							
			2_Mid-Bottom	2	1	1								1								
F29	66	F	3_Mid-Depth	2	1	1								1	_							
			4_MId-Surface	2	1	1	-							1	1	-						
			1 Bottom	9.9	2	1	1	1	2	2	2	1	2	3								
			3_Mid-Depth	14	2	1	1	1	2	2	2	2	2	1		1	1		1			
F30	15	G	5_Surface	15	2	1	1	1	2	2	2	1	2	3	1	1	1		1			
			6_Net Tow															1				
			1_Bottom	9.9	2	1	1	1	2	2	2	1	2	3		1	1		1			
F31	15	G	5 Surface	15	2	1	1	1	2	2	2	1	2	3	1	1	1	-	1			
			6_Net Tow	1.00													1	1	1.000			
F32	30	Ζ	5_Surface											1	1	3						
500		-	6_Net Tow	1		_								_			1	1				_
F33	30	2	5_Surface			-								-	1			1				
-			1 Bottom	8.1	2	1	2	2	2	2	2	1	2	1			-					
			2_Mid-Bottom	2.5	1	1				_		1		1								
N16	40	D	3_Mid-Depth	15	2	2	2	2	2	2	2	2	2	1		1	1		1			
-			4_Mid-Surface	2.5	1	1	4	4	2	2	2	1	2	1	4	4	4		4			
			6 Net Tow	13	2				2	2	2		2					1				
12 1		1 = 1	-		otals	132	44	44	84	84	84	80	84	96	28	26	26	15	26	36	5	6
	_	1	Blanks B				14	11	1	1	1	1	1	1.11							he-s	
	1.0		Blanks C						1	1	1	1	1								1.7	
-	-	-	Blanks D	-				-	1	1	1	1	1	-			-					1
					1		a 1	1.1		A	14 in	11.5		-	1000	-	-	1.0		1.1		$1 \equiv 1_{+}$

3.0 DATA SUMMARY PRESENTATION

Data from each survey were compiled from the final HOM Program 2001 database and organized to facilitate regional comparisons between surveys, and to allow a quick evaluation of results for evaluating monitoring thresholds (Table 3-1 Method Detection Limits, Survey Data Tables 3-2 through 3-8). Each table provides summary data from one survey. A discussion of which parameters were selected, how the data were grouped and integrated, and the assumptions behind the calculation of statistical values (average, minimum, and maximum) is provided below. Individual data summarized in this report are available from MWRA either in hard copy or electronic format.

The spatial pattern of data summary follows the sample design over major geographic areas of interest in Massachusetts Bay, Cape Cod Bay, and Boston Harbor (Section 3.1). Compilation of data both horizontally by region and vertically over the entire water column was conducted to provide an efficient way of assessing the status of the regions during a particular survey. Maximum and minimum values are provided because of the need to assess extremes of pre-outfall conditions relative to criteria being developed for contingency planning purposes (MWRA, 2001).

Regional compilations of nutrient and biological water column data were conducted first by averaging individual laboratory replicates, followed by field duplicates, and then by station visit within a survey. Prior to regional compilation of the sensor data, the results were averaged by station visit. Significant figures for average values were selected based on precision of the specific data set. Detailed considerations for individual data sets are provided in the sections below.

3.1 Defined Geographic Areas

The primary partitioning of data is between the nearfield and farfield stations (Figures 1-1 and 1-2). Farfield data were additionally segmented into five geographic areas: stations in Boston Harbor (F23, F30, and F31), coastal stations (F05, F13, F14, F18, F24, F25), offshore stations (F06, F07, F10, F15, F16, F17, F19, and F22), boundary region stations (F12, F26, F27, F28, F29), and Cape Cod Bay stations (F01, F02, and F03; and F32 and F33 as appropriate). These regions are shown in Figure 1-2.

The data summary tables include data derived from all of the station data collected in each region. Average, maximum, and minimum values are reported from the cumulative horizontal and vertical dataset as described for each data type below.

3.2 Sensor Data

Six CTD profile parameters provided in the data summary tables include temperature, salinity, density (σ_i), fluorescence (chlorophyll a), transmissivity, and dissolved oxygen (DO) concentration. Statistical parameters (maximum, minimum, and average) were calculated from the sensor readings collected at five depths through the water column (defined as A-E). These depths were sampled on the upcast of the hydrographic profile. The five depth values, rather than the entire set of profile data, were selected to reduce the statistical weighting of deep-water data at the offshore and boundary stations. Generally, the samples were collected in an even depth-distributed pattern. The mid-depth sample (C) was typically located at the subsurface fluorescence (chlorophyll) peak in the water column, depending on the relative depth of the chlorophyll maximum. Details of the collection, calibration, and processing of CTD data are available in the Water Column Monitoring CW/QAPP (Albro *et al.*, 2002), and are summarized in Section 2.

Following standard oceanographic practice, patterns of variability in water density are described using the derived parameter sigma-t (σ_t), which is calculated by subtracting 1,000 kg/m³ from the recorded density. During this semi-annual period, density varied from 1020.1 to 1026.3, meaning σ_t varied from 20.1 to 26.3.

Fluorescence data were calibrated using concomitant extracted chlorophyll *a* data from discrete water samples collected at a subset of the stations (see CW/QAPP or Tables 2-1, 2-2, 2-3). The calibrated fluorescence sensor values were used for all discussions of chlorophyll in this report. The concentrations of phaeopigments are included in the summary data tables as part of the nutrient parameters.

In addition to DO concentration, the derived percent saturation was also provided. Percent saturation was calculated prior to averaging station visits from the potential saturation value of the water (a function of the physical properties of the water) and the calibrated DO concentration (see CW/QAPP).

Finally, the derived beam attenuation coefficient from the transmissometer ("transmittance") was provided on the summary tables. Beam attenuation is calculated from the natural logarithm of the ratio of light transmission relative to the initial light incidence, over the transmissometer path length, and is provided in units of m^{-1} .

3.3 Nutrients

Analytical results for dissolved and particulate nutrient concentrations were extracted from the HOM database, and include: ammonia (NH₄), nitrite (NO₂), nitrate + nitrite (NO₃+NO₂), phosphate (PO₄), silicate (SiO₄), biogenic silica (BSI), dissolved and particulate organic carbon (DOC and POC), total dissolved and particulate organic nitrogen (TDN and PON), total dissolved and particulate phosphorous (TDP and PP), and urea. Total suspended solids (TSS) data are provided as a baseline for total particulate matter in the water column. Dissolved inorganic nutrients (NH₄, NO₂, NO₃+NO₂, PO₄, and SiO₄) were measured from water samples collected from each of the five (A-E) depths during CTD casts. The dissolved organic and particulate constituents were measured from water samples collected from the surface (A), mid-depth (C), and bottom (E) sampling depths (see Tables 2-1, 2-2, and 2-3 for specific sampling depths and stations).

3.4 Biological Water Column Parameters

Four productivity parameters have been presented in the data summary tables. Areal production, which is determined by integrating the measured productivity over the photic zone, and chlorophyll-specific areal production is included for the productivity stations (F23 representing the Harbor, and N04 and N18, representing the nearfield). Because areal production is already depth-integrated, averages were calculated only among productivity stations for the two regions sampled. The derived parameters α (gC[gChla]⁻¹h⁻¹[μ Em⁻²s⁻¹]⁻¹) and Pmax (gC[gChla]⁻¹h⁻¹) are also included. The productivity parameters are discussed in detail in Appendix A.

Respiration rates were averaged over the respiration stations (the same Harbor and nearfield stations as productivity, and additionally one offshore station [F19]), and over the three water column depths sampled (surface, mid- and bottom). The respiration samples were collected concurrently with the productivity samples. Detailed methods of sample collection, processing, and analysis are available in the CW/QAPP (Albro *et al.*, 2002).

3.5 Plankton

Plankton results were extracted from the HOM database and include whole water phytoplankton, screened phytoplankton, and zooplankton. Phytoplankton samples were collected for whole-water and screened measurements during the water column CTD casts at the surface (A) and mid-depth (C) sampling events. As discussed in Section 2.1, when a subsurface chlorophyll maximum is observed, the mid-depth sampling event is associated with this layer. The screened phytoplankton samples were filtered through 20-µm Nitrex mesh to retain and concentrate larger dinoflagellate species. Zooplankton samples were collected by oblique tows using a 102-µm mesh at all plankton stations. Detailed methods of sample collection, processing, and analysis are available in the CW/QAPP (Albro *et al.*, 2002).

Final plankton values were derived from each station by first averaging analytical replicates, then averaging station visits. Regional results were summarized for total phytoplankton, total centric diatoms, nuisance algae (*Alexandrium tamarense, Phaeocystis pouchetii*, and *Pseudo-nitzschia pungens*), and total zooplankton (Tables 3-2 through 3-8).

Results for total phytoplankton and centric diatoms reported in Tables 3-1 through 3-8 are restricted to whole water surface samples. Results of the nuisance species *Phaeocystis pouchetii* and *Pseudonitzschia pungens* include the maximum of both whole water and screened analyses, at both the surface and mid-depth. Although the size and shape of both taxa might allow them to pass through the Nitex screen, both have colonial forms that in low densities might be overlooked in the whole-water samples. For *Alexandrium tamarense*, only the screened samples were reported.

3.6 Additional Data

Two additional data sources were utilized during interpretation of HOM Program semi-annual water column data. Temperature and chlorophyll *a* satellite images collected near survey dates were preliminarily interpreted for evidence of surface water events, including intrusions of surface water masses from the Gulf of Maine and upwelling (Appendix I). U.S. Geological Service continuous temperature and salinity data were collected from a mooring located between nearfield stations N21 and N18 (Figure 1-1). Hourly temperature and salinity data from the mid-depth (~13 m below surface) and near-bottom (1 m above bottom) are plotted in Figure 3-1. Chlorophyll *a* data (as measured by *in situ* fluorescence) from the MWRA Wetlab sensor mounted at mid-depth (~13 m below surface) on the nearfield USGS mooring are plotted in Figure 3-2.

The 13m temperature and salinity data were first collected during the May 24th deployment (new SeaCat CTD) and will be included in future semiannual reports. Data from the 10-meter above bottom (~20m depth) array (usually presented herein) were lost due to instrument failure.

Analysis	MDL
Dissolved ammonia (NH ₄)	0.02 μM
Dissolved inorganic nitrate (NO ₃)	0.01 µM
Dissolved inorganic nitrite (NO ₂)	0.01 µM
Dissolved inorganic phosphorus (PO ₄)	0.01 µM
Dissolved inorganic silicate (SIO ₄)	0.02 μM
Dissolved organic carbon (DOC)	20 µM
Total dissolved nitrogen (TDN)	1.43 μM
Total dissolved phosphorus (TDP)	0.04 μM
Particulate carbon (POC)	5.27 μM
Particulate nitrogen (PON)	0.75 μM
Particulate phosphorus (PARTP)	0.04 μM
Biogenic silica (BIOSI)	0.32 μM
Urea	0.2 μM
Chlorophyll a and phaeophytin	0.036 µg L ⁻¹
Total suspended solids (TSS)	0.1 mg L^{-1}

Table 3-1. Method Detection Limits

		Semiannual
Δνα		Wat
1115	8	er
2.71	8	Co
32.2		lun
25.7		n
1.16		Mc
10.77		nit
98.6		lon.
1.82		gu
2.02		Re
0.27		ode
		Î.
0 <mark>.77</mark>		Fe
0.18		bru
5.56		Jar
0.67		y _
2.45	4	Ju
3.66		ine
141.7		20
0.20		01
18.16		\smile
2.93		

Coastal

Max

Min

Avg

Temperature °C 2.96 5.93 4.60 2.14 3.25 2.76 2.02 3.19 2 Salinity PSU 32.2 33.2 32.6 31.8 32.2 32.1 31.9 32.4 33.2 Beam Attenuation m ⁻¹ 0.58 1.17 0.80 1.02 1.51 1.28 1.02 1.38 1. DO Concentration mgL ⁻¹ 9.82 11.77 10.48 10.51 12.28 1.03 10.35 11.31 100 DO Saturation PCT 61.9 108.5 93.7 96.2 111.8 105.3 95.1 103.2 96 Fluorescence µgL ⁻¹ 0.67 3.78 3.48 1.49 11.26 6.30 0.33 3.54 2.2 Phacopigment µgL ⁻¹ 0.77 3.74 1.81 5.58 10.42 7.38 0.91 3.54 2.2 Nutrients NH4 µM 0.26 2.44 0.73	In Situ			-							
Salinity PSU 32.2 33.2 32.6 31.8 32.2 32.1 31.9 32.4 33.2 Sigma_T 25.6 26.3 25.8 25.4 25.7 25.6 25.5 25.8 22.5 Beam Attenuation m ¹ 0.58 1.17 0.08 10.2 1.51 1.22 1.02 1.33 1.1 DO Concentration mgL ¹ 9.82 11.77 10.48 10.51 12.38 11.4 10.03 11.31 10.02 Plorescence μ_{BL^1} 0.63 8.78 3.48 1.49 11.26 6.50 0.23 3.62 1.1 Chlorophyll a μ_{BL^1} 0.77 3.74 1.81 5.58 10.42 7.38 0.91 3.54 2.2 Phacopigment μ_{BL} 0.12 0.65 0.30 0.55 1.50 0.99 0.13 0.42 0.0 NO2 MM 0.02 0.46 0.12 0.15 0.18	Temperature	°C	2.96	5.93	4.60	2.14	3.25	2.76	2.02	3.19	2.71
Sigma_T 25.6 26.3 25.8 25.4 25.7 25.6 25.5 25.8 22 Beam Attenuation m ¹ 0.58 1.17 0.08 1.02 1.51 1.28 1.02 1.38 1.1 DO Concentration mgL ⁻¹ 9.82 11.77 10.48 10.51 12.38 11.49 10.35 11.31 100 DO Saturation PCT 61.9 108.5 93.7 96.2 11.18 105.3 95.1 103.2 99 Fluorescence μ gL ⁻¹ 0.63 8.78 3.48 1.49 11.26 6.30 0.23 3.62 1.1 Chlorophyla μ gL ⁻¹ 0.12 0.65 0.30 0.55 1.50 0.99 0.13 0.42 0.3 Nutrients μ M 0.26 2.44 0.73 0.31 1.43 1.02 0.50 1.23 0.0 NO2+NO3 μ M 0.19 0.65 0.38 0.71	Salinity	PSU	32.2	33.2	32.6	31.8	32.2	32.1	31.9	32.4	32.2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sigma _T		25.6	26.3	25.8	25.4	25.7	25.6	25.5	25.8	25.7
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Beam Attenuation	m ⁻¹	0.58	1.17	0.80	1.02	1.51	1.28	1.02	1.38	1.16
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	DO Concentration	mgL ⁻¹	9.82	11.77	10.48	10.51	12.38	11.49	10.35	11.31	10.77
Fluorescence μgL^{-1} 0.63 8.78 3.48 1.49 11.26 6.30 0.23 3.62 1. Chlorophyll a μgL^{-1} 0.77 3.74 1.81 5.58 10.42 7.38 0.91 3.54 2. Phacopigment μgL^{-1} 0.12 0.65 0.30 0.55 1.50 0.99 0.13 0.42 0.0 Nutrients 0.12 0.15 0.18 0.17 0.14 0.23 0.0 NO2 μM 0.02 0.16 0.12 0.15 0.18 0.17 0.14 0.23 0.0 NO2 μM 0.02 0.16 0.12 0.15 0.18 0.17 0.14 0.23 0.0 NO2+NO3 μM 1.19 8.56 6.50 3.40 7.22 5.51 4.81 6.04 5. OD μM 0.50 6.45 4.15 0.34 2.16 1.50 <	DO Saturation	PCT	61.9	108.5	93.7	96.2	111.8	105.3	95.1	103.2	98.6
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Fluorescence	μgL ⁻¹	0.63	8.78	3.48	1.49	11.26	6.30	0.23	3.62	1.82
Phaeopigment μgL ⁻¹ 0.12 0.65 0.30 0.55 1.50 0.99 0.13 0.42 0.0 Nutrients V	Chlorophyll a	μgL ⁻¹	0.77	3.74	1.81	5.58	10.42	7.38	0.91	3.54	2.02
Nutrients NH4 μ M 0.26 2.44 0.73 0.31 1.43 1.02 0.50 1.23 0.00 NO2 μ M 0.02 0.16 0.12 0.15 0.18 0.17 0.14 0.23 0.0 NO2+NO3 μ M 1.19 8.56 6.50 3.40 7.22 5.51 4.81 6.04 5.5 PO4 μ M 0.47 1.08 0.77 0.65 0.88 0.78 0.51 0.79 0.0 SIO4 μ M 0.50 6.45 4.15 0.34 2.16 1.50 1.37 4.99 2. BIOSI μ M 1.50 4.70 3.35 5.40 6.70 6.02 2.90 5.60 3. DOC μ M 1.50 4.70 3.35 5.40 6.70 4.01 0.18 0.23 0. L DOC μ M 0.06 0.24 0.13 0.34 0.47 0.41<	Phaeopigment	μgL ⁻¹	0.12	0.65	0.30	0.55	1.50	0.99	0.13	0.42	0.27
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Nutrients		0								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	NH4	μΜ	0.26	2.44	0.73	0.31	1.43	1.02	0.50	1.23	0.77
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	NO2	μΜ	0.02	0.16	0.12	0.15	0.18	0.17	0.14	0.23	0.18
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	NO2+NO3	μΜ	1.19	8.56	6.50	3.40	7.22	5.51	4.81	6.04	5.56
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	PO4	μΜ	0.47	1.08	0.77	0.65	0.88	0.78	0.51	0.79	0.67
BIOSI μ M 1.50 4.70 3.35 5.40 6.70 6.02 2.90 5.60 3.35 DOC μ M 112.7 215.1 145.6 115.8 459.3 189.9 120.6 180.1 14 PARTP μ M 0.06 0.24 0.13 0.34 0.47 0.41 0.18 0.23 0.0 POC μ M 8.58 24.70 14.51 29.40 42.50 37.62 16.20 20.00 18. PON μ M 1.54 4.19 2.60 4.61 7.21 6.12 2.46 3.34 2. TDN μ M 17.0 81.3 40.0 16.2 39.1 22.6 15.7 25.3 19 TDN μ M 0.81 1.05 0.97 0.77 0.96 0.87 0.71 0.93 0. TDN μ M 0.10 0.32 0.17 0.10 0.57 0.22 0.10	SIO4	μΜ	0.50	6.45	4.15	0.34	2.16	1.50	1.37	4.99	2.45
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BIOSI	μΜ	1.50	4.70	3.35	5.40	6.70	6.02	2.90	5.60	3.66
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DOC	μΜ	112.7	215.1	145.6	115.8	459.3	189.9	120.6	180.1	141.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PARTP	μΜ	0.06	0.24	0.13	0.34	0.47	0.41	0.18	0.23	0.20
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	POC	μΜ	8.58	24.70	14.51	29.40	42.50	37.62	16.20	20.00	18.16
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PON	μΜ	1.54	4.19	2.60	4.61	7.21	6.12	2.46	3.34	2.93
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TDN	μΜ	17.0	81.3	40.0	16.2	39.1	22.6	15.7	25.3	19.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TDP	μΜ	0.81	1.05	0.97	0.77	0.96	0.87	0.71	0.93	0.82
Urea μM 0.10 0.32 0.17 0.10 0.57 0.22 0.10 0.63 0. Productivity Alpha mgCm ⁻³ h ⁻¹ (μEm ⁻² s ⁻¹) ⁻¹	TSS	mgL ⁻¹	0.30	1.30	0.77	1.14	1.97	1.47	0.82	1.79	1.39
Productivity Alpha mgCm ⁻³ h ⁻¹ (µEm ⁻² s ⁻¹) ⁻¹ Pmax mgCm ⁻³ h ⁻¹ Areal Production mgCm ⁻² d ⁻¹ Chlorophyll-Specific Depth-Averaged mgC(mg Chla) ¹ d ⁻¹	Urea	μΜ	0.10	0.32	0.17	0.10	0.57	0.22	0.10	0.63	0.40
Alpha mgCm ⁻³ h ⁻¹ (µEm ⁻² s ⁻¹) ⁻¹ Pmax mgCm ⁻³ h ⁻¹ Areal Production mgCm ⁻² d ⁻¹ Chlorophyll-Specific Depth-Averaged mgC(mg Chla) ⁻¹ d ⁻¹	Productivity										
Pmax mgCm ⁻³ h ⁻¹ Areal Production mgCm ⁻² d ⁻¹ Chlorophyll-Specific Depth-Averaged mgC(mg Chla) ⁻¹ d ⁻¹	Alpha	$mgCm^{-3}h^{-1}(\mu Em^{-2}s^{-1})^{-1}$									
Areal Production $mgCm^2d^{-1}$ Chlorophyll-Specific Depth-Averaged $mgC(mg Chla)^{-1}d^{-1}$	Pmax	mgCm ⁻³ h ⁻¹	1								
Chlorophyll-Specific Depth-Averaged mgC(mg Chla) ¹ d ⁻¹	Areal Production	mgCm ⁻² d ⁻¹	1								
Production	Chlorophyll-Specific Depth-Averaged Production	mgC(mg Chla) ⁻¹ d ⁻¹									
Respiration $\mu MO_2 h^{-1}$	Respiration	μMO_2h^{-1}									
Plankton	Plankton										
Total Phytoplankton 10 ⁶ Cells L ⁻¹ 0.237 0.549 0.386 1.326 1.608 1.479 0.336 0.460 0.3	Total Phytoplankton	10 ⁶ Cells L ⁻¹	0.237	0.549	0.386	1.326	1.608	1.479	0.336	0.460	0.386
Centric diatoms 10^{6} Cells L ⁻¹ 0.024 0.141 0.068 0.696 0.907 0.805 0.069 0.133 0.0	Centric diatoms	106Cells L-1	0.024	0.141	0.068	0.696	0.907	0.805	0.069	0.133	0.098
Alexandrium spp. Cells L ⁻¹ ND	Alexandrium spp.	Cells L ⁻¹	ND	NE							
Phaeocystis pouchetii 10 ⁶ Cells L ⁻¹ ND	Phaeocystis pouchetii 10 ⁶ Ce	ells L ⁻¹ ND	ND	ND	ND	ND	ND	ND	ND	ND	
<i>Psuedo-nitzschia pungens</i> 10 ⁶ Cells L ⁻¹ 0.0023 0.0113 0.0059 0.0092 0.0092 0.0092 0.0015 0.0058 0.0037	Psuedo-nitzschia pungens 10 ⁶ Ce	ells L ⁻¹ 0.0023	0.0113	0.0059	0.0092	0.0092	0.0092	0.0015	0.0058	0.0037	

Table 3-2. Combined Farfield/Nearfield Survey WF011 (Feb 01) Data Summary

Min

Unit

Boundary

Avg

Max

Farfield

Cape Cod Bay

Max

Min

Region

Parameter

Total Zooplankton	Individuals m ⁻³	9,383	16,411	12,897	8,533	23,133	15,242	2,914	13,068	8,635

				Far	field		1			
Region			Harbor			Offshore			Nearfield	
Parameter	Unit	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
In Situ										
Temperature	°C	1.03	2.51	1.96	3.91	5.43	4.32	2.55	4.43	3.94
Salinity	PSU	31.1	31.9	31.6	32.4	32.8	32.5	32.0	32.5	32.3
Sigma _T		24.8	25.6	25.3	25.7	25.9	25.8	25.5	25.8	25.7
Beam Attenuation	m ⁻¹	1.27	2.16	1.62	0.83	0.97	0.91	0.87	1.31	1.03
DO Concentration	mgL ⁻¹	11.12	12.01	11.64	10.04	11.03	10.44	10.46	11.52	11.05
DO Saturation	PCT	99.8	108.4	104.2	94.9	105.1	99.7	99.9	109.0	104.5
Fluorescence	μgL⁻¹	0.95	1.26	1.06	1.07	5.14	3.06	1.00	5.72	3.52
Chlorophyll a	µgL⁻¹	0.85	1.51	1.16	1.19	3.72	2.75	0.45	6.92	3.86
Phaeopigment	μgL ⁻¹	0.10	0.63	0.39	0.17	1.39	0.37	0.09	0.95	0.45
Nutrients										
NH4	μM	0.93	2.15	1.34	0.15	1.87	0.45	0.12	7.30	1.21
NO2	μΜ	0.02	0.28	0.13	0.13	0.20	0.15	0.13	0.20	0.16
NO2+NO3	μΜ	5.51	8.87	6.75	5.27	7.69	6.05	4.93	6.87	5.84
PO4	μΜ	0.48	1.46	0.78	0.63	0.84	0.74	0.56	0.90	0.70
SIO4	μΜ	3.66	8.13	5.23	1.16	6.51	2.85	1.59	7.32	2.47
BIOSI	μΜ	2.70	5.50	3.68	3.80	5.00	4.24	2.70	5.50	4.60
DOC	μΜ	148.1	201.1	164.1	113.8	228.2	155.6	107.7	196.2	135.9
PARTP	μΜ	0.18	0.32	0.25	0.11	0.19	0.16	0.15	0.29	0.21
POC	μΜ	13.80	38.80	20.38	8.58	19.90	15.40	12.20	90.00	21.65
PON	μΜ	2.09	4.01	2.95	1.59	3.24	2.56	2.04	4.55	3.24
TDN	μΜ	18.4	149.3	34.8	17.2	138.2	42.2	14.8	58.9	20.8
TDP	μΜ	0.77	0.98	0.86	0.88	1.00	0.93	0.19	1.03	0.88
TSS	mgL ⁻¹	0.73	4.32	2.19	0.27	0.95	0.79	0.55	2.42	0.92
Urea	μΜ	0.38	1.14	0.68	0.10	1.39	0.77	0.10	0.76	0.38
Productivity										
Alpha	$mgCm^{-3}h^{-1}(\mu Em^{-2}s^{-1})^{-1}$	0.027	0.042	0.033				0.075	0.164	0.131
Pmax	mgCm ⁻³ h ⁻¹	4.08	5.14	4.54				11.38	16.92	14.80
Areal Production	mgCm ⁻² d ⁻¹			203.9				879.4	1,122.1	1,000.8
Chlorophyll-Specific Depth-Averaged Production	mgC(mg Chla) ⁻¹ d ⁻¹			8.9				6.0	8.9	7.5
Respiration	$\mu MO_2 h^{-1}$	0.051	0.098	0.071	0.052	0.062	0.058	0.036	0.084	0.052
Plankton										
Total Phytoplankton	10 ⁶ Cells L ⁻¹	0.317	0.435	0.390	0.343	0.600	0.485	0.370	0.572	0.517
Centric diatoms	10 ⁶ Cells L ⁻¹	0.057	0.095	0.076	0.113	0.187	0.147	0.126	0.200	0.167
Alexandrium spp.	Cells L ⁻¹	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phaeocystis pouchetii	10 ⁶ Cells L ⁻¹	ND	ND	ND	ND	ND	ND	ND	ND	ND
Psuedo-nitzschia pungens	10 ⁶ Cells L ⁻¹	0.0005	0.0057	0.0021	0.0056	0.0157	0.0104	0.0111	0.0232	0.0191
Total Zooplankton	Individuals m ⁻³	4,885	6,504	5,520	17,462	21,234	19,348	14,888	28,403	21,112

 Table 3-2. Combined Farfield/Nearfield Survey WF011 (Feb 01) Data Summary (continued)

						Farfield				
Region			Boundary		Ca	pe Cod Ba	y		Coastal	
Parameter	Unit	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
In Situ			<u>I</u>						<u>.</u>	
Temperature	°C	3.28	4.59	4.00	2.12	3.12	2.65	2.43	3.43	2.97
Salinity	PSU	32.3	32.5	32.4	31.9	32.2	32.1	31.9	32.4	32.2
Sigma _T		25.6	25.8	25.7	25.5	25.6	25.6	25.5	25.7	25.6
Beam Attenuation	m ⁻¹	0.66	0.86	0.73	0.87	1.01	0.93	0.66	0.85	0.78
DO Concentration	mgL ⁻¹	10.48	11.07	10.77	11.21	12.47	11.85	10.93	11.88	11.22
DO Saturation	PCT	99.7	105.1	101.9	103.1	112.4	108.2	101.9	108.0	103.3
Fluorescence	μgL ⁻¹	1.13	4.98	3.09	2.10	7.46	4.92	0.86	3.22	2.20
Chlorophyll a	μgL ⁻¹	2.05	5.50	3.76	1.86	7.57	4.57	1.39	3.10	2.28
Phaeopigment	μgL ⁻¹	0.38	1.09	0.73	0.43	1.22	0.79	0.23	0.55	0.35
Nutrients										
NH4	μΜ	0.43	1.18	0.76	0.16	0.79	0.47	0.32	1.19	0.76
NO2	μM	0.08	0.14	0.11	0.06	0.12	0.09	0.10	0.15	0.12
NO2+NO3	μΜ	3.34	5.66	4.44	0.19	2.00	1.01	2.33	3.67	3.19
PO4	μΜ	0.50	0.74	0.64	0.19	0.47	0.33	0.35	0.64	0.46
SIO4	μΜ	0.54	7.16	2.54	0.34	0.94	0.57	1.37	4.20	1.94
BIOSI	μΜ	0.16	3.80	2.56	2.10	2.70	2.42	1.40	1.70	1.61
DOC	μΜ	125.4	199.0	153.5	120.8	200.2	160.6	147.6	406.2	245.8
PARTP	μΜ	0.14	0.24	0.19	0.27	0.37	0.31	0.15	0.21	0.18
POC	μΜ	15.40	28.80	20.00	23.80	31.80	28.82	13.70	18.90	15.23
PON	μΜ	2.37	4.79	3.27	4.16	5.46	4.99	2.06	3.06	2.66
TDN	μΜ	12.6	17.1	14.7	11.0	14.3	12.8	11.7	20.3	15.3
TDP	μΜ	0.82	0.93	0.85	0.52	0.73	0.65	0.68	0.90	0.79
TSS	mgL ⁻¹	0.34	0.86	0.60	0.08	0.99	0.68	0.13	0.82	0.51
Urea	μM	0.10	0.10	0.10	0.10	0.64	0.37	0.10	1.03	0.42
Productivity										
Alpha	mgCm ⁻³ h ⁻¹ (µEm ⁻² s ⁻¹) ⁻¹									
Pmax	mgCm ⁻³ h ⁻¹									
Areal Production	mgCm ⁻² d ⁻¹									
Chlorophyll-Specific Depth-Averaged Production	mgC(mg Chla) ⁻¹ d ⁻¹									
Respiration	$\mu MO_2 h^{-1}$									
Plankton										
Total Phytoplankton	10 ⁶ Cells L ⁻¹	0.395	0.609	0.483	0.182	1.024	0.656	0.217	0.494	0.340
Centric diatoms	10 ⁶ Cells L ⁻¹	0.204	0.284	0.246	0.061	0.447	0.274	0.081	0.174	0.128
Alexandrium ssp.	Cells L ⁻¹	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phaeocystis pouchetii	10 ⁶ Cells L ⁻¹	ND	ND	ND	ND	ND	ND	ND	ND	ND
Psuedo-nitzschia pungens	10 ⁶ Cells L ⁻¹	0.0006	0.0031	0.0013	0.0033	0.0242	0.0131	0.0006	0.0012	0.0008
Total Zooplankton	Individuals m ⁻³	6,808	10,822	8,815	13,640	21,333	15,966	9,436	15,985	12,234

Table 3-3. Combined Farfield/Nearfield Survey WF012 (Feb–Mar 01) Data Summary

				Farf	ield					
Region			Harbor			Offshore			Nearfield	
Parameter	Unit	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
In Situ									<u> </u>	
Temperature	°C	2.12	2.54	2.32	3.30	4.20	3.72	3.31	4.04	3.74
Salinity	PSU	30.9	32.0	31.6	32.4	32.5	32.4	32.3	32.5	32.4
Sigma _T		24.6	25.5	25.2	25.7	25.8	25.8	25.6	25.8	25.8
Beam Attenuation	m ⁻¹	0.88	1.20	1.02	0.57	0.71	0.65	0.63	0.92	0.70
DO Concentration	mgL ⁻¹	11.42	11.80	11.63	10.73	11.62	11.06	10.57	11.12	10.85
DO Saturation	PCT	103.8	106.3	105.0	101.4	108.2	104.0	100.0	104.9	102.1
Fluorescence	μgL ⁻¹	2.55	3.68	3.16	1.27	2.97	2.26	0.52	3.82	2.05
Chlorophyll a	μgL ⁻¹	1.93	2.93	2.60	1.71	3.10	2.43	1.56	3.68	2.39
Phaeopigment	μgL ⁻¹	0.21	0.47	0.36	0.32	0.63	0.42	0.17	0.70	0.35
Nutrients										
NH4	μM	0.38	1.15	0.62	0.56	2.22	1.06	0.46	9.69	1.65
NO2	μΜ	0.11	0.19	0.15	0.08	0.21	0.11	0.04	0.20	0.11
NO2+NO3	μΜ	1.67	3.42	2.24	3.59	5.04	4.55	3.83	5.46	4.76
PO4	μΜ	0.22	0.46	0.35	0.53	0.77	0.66	0.60	1.02	0.70
SIO4	μΜ	1.57	7.49	3.19	0.56	4.74	1.68	1.36	6.99	2.20
BIOSI	μΜ	1.70	4.00	2.27	1.50	2.80	2.27	1.50	2.30	1.87
DOC	μΜ	134.1	249.0	190.2	143.5	408.7	216.3	135.1	452.6	194.6
PARTP	μΜ	0.19	0.32	0.25	0.13	0.17	0.14	0.11	0.23	0.15
POC	μΜ	15.70	28.50	21.51	12.50	19.80	15.49	10.00	20.00	14.23
PON	μΜ	3.17	4.44	3.67	1.91	3.41	2.70	1.84	3.56	2.36
TDN	μM	11.5	15.2	13.1	14.1	17.4	15.8	13.7	22.6	16.3
TDP	μΜ	0.53	0.70	0.60	0.82	1.00	0.91	0.82	1.08	0.91
TSS	mgL ⁻¹	0.28	1.68	0.91	0.16	0.63	0.38	0.17	0.81	0.55
Urea	μΜ	0.10	1.03	0.54	0.10	0.25	0.18	0.10	0.31	0.17
Productivity		8								
Alpha	mgCm ⁻³ h ⁻¹ (µEm ⁻² s ⁻¹) ⁻¹	0.084	0.095	0.091				0.029	0.099	0.072
Pmax	mgCm ⁻³ h ⁻¹	8.86	11.50	10.15				5.71	8.14	6.88
Areal Production	mgCm ⁻² d ⁻¹			999.5				1063.4	1494.1	1278.8
Chlorophyll-Specific Depth-Averaged Production	mgC(mg Chla) ⁻¹ d ⁻¹			19.2				15.9	21.2	18.6
Respiration	μMO_2h^{-1}	0.044	0.090	0.070	0.011	0.041	0.030	0.031	0.059	0.044
Plankton										
Total Phytoplankton	10 ⁶ Cells L ⁻¹	0.276	0.399	0.339	0.272	0.361	0.316	0.256	0.439	0.348
Centric diatoms	10 ⁶ Cells L ⁻¹	0.120	0.180	0.147	0.085	0.144	0.116	0.091	0.178	0.120
Alexandrium spp.	Cells L ⁻¹	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phaeocystis pouchetii	10 ⁶ Cells L ⁻¹	ND	ND	ND	ND	ND	ND	ND	ND	ND
Psuedo-nitzschia pungens	10 ⁶ Cells L ⁻¹	ND	ND	ND	0.0005	0.0020	0.0012	0.0006	0.0028	0.0019
Total Zooplankton	Individuals m ⁻³	1,967	9,445	5,966	7,818	23,479	15,649	10,655	13,399	12,056

 Table 3-3. Combined Farfield/Nearfield Survey WF012 (Feb-Mar 01) Data Summary (continued)

February, 2002

r

Region	Nearfield						
Parameter	Unit	Min	Max	Avg			
In Situ							
Temperature	°C	3.65	4.33	3.87			
Salinity	PSU	29.3	32.3	31.4			
Sigma_T		23.2	25.7	24.9			
Beam Attenuation	m ⁻¹	0.71	2.01	1.04			
DO Concentration	mgL ⁻¹	9.88	10.55	10.30			
DO Saturation	PCT	92.8	99.9	96.4			
Fluorescence	μgL ⁻¹	0.02	2.17	0.76			
Chlorophyll a	μgL ⁻¹	0.14	1.36	0.66			
Phaeopigment	μgL ⁻¹	0.15	1.14	0.34			
Nutrients							
NH4	μM	0.76	6.07	2.38			
NO2	μΜ	0.02	0.25	0.15			
NO2+NO3	μΜ	5.93	7.98	6.81			
PO4	μΜ	0.51	1.69	0.87			
SIO4	μΜ	4.92	9.60	6.50			
BIOSI	μΜ	2.05	3.88	2.88			
DOC	μΜ	140.4	483.1	256.9			
PARTP	μΜ	0.09	0.32	0.18			
POC	μΜ	7.29	29.80	14.81			
PON	μΜ	1.41	4.69	2.35			
TDN	μΜ	21.6	79.3	35.3			
TDP	μΜ	0.87	1.16	1.02			
TSS	mgL⁻¹	0.40	2.31	1.13			
Urea	μM	0.10	1.57	0.89			
Productivity							
Alpha	mgCm ⁻³ h ⁻¹ (µEm ⁻² s ⁻¹) ⁻¹	0.008	0.042	0.024			
Pmax	mgCm ⁻³ h ⁻¹	1.32	3.98	2.55			
Areal Production	mgCm ⁻² d ⁻¹	306.9	659.5	483.2			
Chlorophyll-Specific Depth-Averaged Production	mgC(mg Chla) ⁻¹ d ⁻¹	15.2	16.8	16.0			
Respiration	$\mu MO_2 h^{-1}$	0.011	0.059	0.031			
Plankton							
Total Phytoplankton	10 ⁶ Cells L ⁻¹	0.366	0.493	0.444			
Centric diatoms	10 ⁶ Cells L ⁻¹	0.061	0.136	0.094			
Alexandrium spp.	Cells L ⁻¹	ND	ND	ND			
Phaeocystis pouchetii	10 ⁶ Cells L ⁻¹	ND	0.003	0.003			
Psuedo-nitzschia pungens	10 ⁶ Cells L ⁻¹	0.0005	0.0038	0.0021			
Total Zooplankton	Individuals m ⁻³	16,152	22,656	19,404			

Fable 3-4.	Nearfield	Survey	WN013	(Mar	01)	Data	Summar	v
	1 (cui nona	Durvey	111010	(111001	vx	Dutu	Summu	J

Region Carpe Cod Bay Constant Constant Parameter Unit Min Max Arg Min Max			Farfield									
Parameter Unit Min Max Avg Min Max May Max Max <th< th=""><th colspan="3">Region</th><th>Bo</th><th>undary</th><th></th><th colspan="4">Cape Cod Bay Coasta</th><th>Coastal</th><th></th></th<>	Region			Bo	undary		Cape Cod Bay Coasta				Coastal	
In Situ Temperature °C 3.60 4.69 4.07 4.18 5.71 4.86 3.85 4.86 3.85 4.86 3.85 4.86 3.85 4.86 3.85 4.86 3.85 4.86 4.86 3.85 3.11 3.11 3.13 3.14 2.99 3.16 3.11 Beam Attenuation m ³ 0.63 1.14 0.90 0.67 1.34 1.02 0.82 1.64 1.1 DO Concentration mgL ⁻¹ 9.63 1.174 10.65 9.58 10.76 10.33 10.35 11.40 10.02 Plotorescree µgL ⁻¹ 0.02 2.73 0.92 0.07 10.47 10.02 0.58 0.54 1.52 1.1 Placopigment µgL ⁻¹ 0.02 2.73 0.92 0.02 0.52 0.28 0.55 0.54 1.52 1.1 Nutrents µM 0.01 0.21 0.13 0.12 0.25 0.6 0.6	Parameter	Unit	Ν	/lin	Max	Avg	Min	Max	Avg	Min	Max	Avg
Temperature °C 3.60 4.69 4.07 4.18 5.71 4.86 3.85 4.86 4.8 Saininy PSU 28.0 32.4 31.5 31.1 31.8 31.4 29.9 31.6 31 Beam Atternation m ⁻¹ 0.63 1.144 0.90 0.67 1.34 1.02 0.82 1.044 1.02 0.82 1.044 1.02 0.82 1.044 1.02 0.82 1.044 1.02 0.82 1.044 1.02 0.82 1.044 1.04 1.00 DO Concentration mgL ⁻¹ 0.06 109.2 100.5 90.7 104.7 99.3 97.0 108.1 102 Chorophyl In µgL ⁻¹ 0.02 2.73 0.93 0.02 0.52 0.28 0.15 0.62 0.0 Natients NI4 µM 0.07 3.53 1.33 1.02 2.45 3.05 5.85 4.4 NO2 µM 0.13	In Situ											
salinity PSU 22.0 32.4 31.5 31.1 31.8 31.4 29.9 31.6 31.4 Beam Attemation m1 0.63 1.44 0.90 0.67 1.34 1.02 0.82 1.64 1.1 DO Concentration mgL ⁻¹ 9.63 1.174 10.65 9.95 10.76 10.33 10.35 11.40 10.0 DO Concentration mgL ⁻¹ 9.06 10.92 10.05 9.07 10.47 99.3 97.0 10.81 10.02 Chorophyll a µgL ⁻¹ 0.02 5.46 1.04 0.02 1.06 0.58 0.54 1.52 1.1 Natrients mgL ⁻¹ 0.02 2.73 0.93 0.02 0.52 0.28 0.15 0.62 0.0 Not µM 0.01 5.31 1.33 1.02 2.24 4.95 3.05 5.85 4.10 NO2+NO3 µM 0.13 5.10 3.22 4.05	Temperature	°C	1	3.60	4.69	4.07	4.18	5.71	4.86	3.85	4.86	4.17
Sigma_T 22.2 25.7 25.0 24.6 25.2 24.9 23.6 25.1 24.6 Beam Attenuation mg ¹ 0.63 1.44 0.90 0.67 1.34 1.02 0.82 1.64 1.1 DO Concentration mgL ¹ 0.63 1.74 10.65 9.58 10.76 10.33 0.03 10.35 10.35 10.35 10.35 10.35 10.35 10.35 10.35 10.16 100 20 5.64 1.04 0.02 1.37 0.34 0.02 3.98 1.1 100 10.5 0.55 0.62 0.02 0.05 0.05 0.05 0.02 0.02 0.05 0.02 0.02 0.02 0.02 0.02 0.02 0.05 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.04	Salinity	PSU	80	28.0	32.4	31.5	31.1	31.8	31.4	29.9	31.6	31.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sigma_T		80	22.2	25.7	25.0	24.6	25.2	24.9	23.6	25.1	24.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Beam Attenuation	m ⁻¹	80.1	0.63	1.44	0.90	0.67	1.34	1.02	0.82	1.64	1.10
DO Saturation PCT 90.6 100.2 10.05 90.7 104.7 90.3 97.0 108.1 100.2 Ritorescence µgL ⁻¹ 0.02 5.46 1.04 0.02 1.57 0.34 0.02 3.98 1.1 Chlorophyll µgL ⁻¹ 0.02 2.73 0.93 0.02 0.52 0.28 0.15 0.62 0.0 Nutrients 0.02 2.73 0.93 0.02 0.52 0.28 0.15 0.62 0.0 Nutrients 0.02 0.17 0.09 0.10 0.21 0.31 0.12 0.25 3.05 5.85 4.11 NO2+NO3 µM 0.13 5.10 3.29 4.05 5.42 4.95 3.05 5.85 4.14 POU µM 0.13 0.28 0.45 0.70 0.56 0.46 0.09 0.17 1.04 1.01 1.71 2.38 1.73 3.237 3.85	DO Concentration	mgL ⁻¹	10	9.63	11.74	10.65	9.58	10.76	10.33	10.35	11.40	10.87
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	DO Saturation	PCT		90.6	109.2	100.5	90.7	104.7	99.3	97.0	108.1	102.5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Fluorescence	μgL ⁻¹		0.02	5.46	1.04	0.02	1.57	0.34	0.02	3.98	1.31
Phaeopigment μgL ⁻¹ 0.02 2.73 0.93 0.02 0.52 0.28 0.15 0.62 0.7 Nutrients NIH μM 0.07 3.53 1.33 1.02 2.32 1.62 1.25 3.27 1.1 NO2 μM 0.03 5.10 3.29 4.05 5.42 4.95 3.05 5.85 4.4 PO4 μM 0.31 0.81 0.55 0.45 0.70 0.56 0.46 0.69 0.09 StO4 μM 1.61 9.78 3.91 3.17 7.79 4.61 4.10 7.19 5.3 BlOSI μM 1.17 2.88 2.00 1.17 2.38 1.73 2.37 3.85 2.2 DOC μM 10.30 5.58 3.98 1.46 4.00 2.48 2.56 4.61 3.3 PON μM 0.59 0.93 0.78 0.98 0.90 0.78 0.96	Chlorophyll a	μgL ⁻¹	12	0.78	3.98	2.24	0.29	1.00	0.58	0.54	1.52	1.06
Nutrients NH4 μ M 0.17 3.53 1.02 2.32 1.62 1.25 3.27 1.1 NO2 +NO3 μ M 0.017 0.09 0.10 0.21 0.13 0.12 0.25 0.12 0.25 0.0 NO2 +NO3 μ M 0.13 5.10 3.29 4.05 5.42 4.95 3.05 5.85 4.41 PO4 μ M 0.31 0.81 0.55 0.45 0.70 0.56 0.46 0.69 0.0 SIO4 μ M 1.61 9.78 3.91 3.17 7.79 4.61 4.10 7.19 5.3 BIOSI μ M 1.03 0.28 0.21 0.13 0.28 0.17 0.16 0.27 0.0 PARTP μ M 0.13 0.28 0.21 0.10 0.28 0.17 0.16 0.27 0.2 POC μ M 10.3 0.25 5.58 3.98 1.46 4.00	Phaeopigment	μgL ⁻¹		0.02	2.73	0.93	0.02	0.52	0.28	0.15	0.62	0.40
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Nutrients											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	NH4	μM	-	0.17	3.53	1.33	1.02	2.32	1.62	1.25	3.27	1.98
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	NO2	μΜ	12.0	0.02	0.17	0.09	0.10	0.21	0.13	0.12	0.25	0.18
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	NO2+NO3	μΜ		0.13	5.10	3.29	4.05	5.42	4.95	3.05	5.85	4.86
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	PO4	μΜ	12.0	0.31	0.81	0.55	0.45	0.70	0.56	0.46	0.69	0.60
BIOSI μM 1.17 2.83 2.00 1.17 2.38 1.73 2.37 3.85 2.2 DOC μM 122.7 305.5 188.0 134.9 361.7 209.8 141.2 458.8 204 PARTP μM 0.13 0.28 0.21 0.13 0.28 0.17 0.16 0.27 0.1 POC μM 16.30 35.80 24.23 10.10 23.50 16.18 15.60 29.80 21.1 PON μM 11.1 17.0 14.0 15.7 21.9 17.9 16.3 24.9 195 TDN μM 0.59 0.93 0.78 0.78 0.98 0.90 0.78 0.96 0.0 TDN μM 0.10 0.28 0.22 0.10 0.31 0.19 0.31 0.69 0.0 Productivity mgCm ³ h ⁻¹ μM 0.10 0.28 0.22 0.10 0.31 0.19	SIO4	μΜ	12.1	1.61	9.78	3.91	3.17	7.79	4.61	4.10	7.19	5.84
DOC μM 122.7 305.5 188.0 134.9 361.7 209.8 141.2 458.8 204 PARTP μM 0.13 0.28 0.21 0.13 0.28 0.17 0.16 0.27 0. POC μM 16.30 35.80 24.23 10.10 23.50 16.18 15.60 29.80 21. PON μM 2.05 5.58 3.98 1.46 4.00 2.48 2.56 4.61 3.3 Image: Comparison of the product	BIOSI	μΜ	2.0	1.17	2.83	2.00	1.17	2.38	1.73	2.37	3.85	2.99
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	DOC	μΜ	1201	122.7	305.5	188.0	134.9	361.7	209.8	141.2	458.8	204.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	PARTP	μΜ		0.13	0.28	0.21	0.13	0.28	0.17	0.16	0.27	0.22
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	POC	μΜ		16.30	35.80	24.23	10.10	23.50	16.18	15.60	29.80	21.17
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	PON	μΜ	12.0	2.05	5.58	3.98	1.46	4.00	2.48	2.56	4.61	3.24
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	TDN	μΜ	1201	11.1	17.0	14.0	15.7	21.9	17.9	16.3	24.9	19.0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	TDP	μΜ	2.1	0.59	0.93	0.78	0.78	0.98	0.90	0.78	0.96	0.87
Urea μM 0.10 0.28 0.22 0.10 0.31 0.19 0.31 0.69 0.4 Productivity Alpha mgCm ⁻³ h ⁻¹ (µEm ⁻² s ⁻¹) ⁻¹ mgCm ⁻³ h ⁻¹ mgCm ⁻³ h ⁻¹ mgCm ⁻³ h ⁻¹ mgCm ⁻³ h ⁻¹ Pmax mgCm ⁻³ h ⁻¹ mgC(mg Chla) ⁻¹ d ⁻¹	TSS	mgL ⁻¹		0.44	1.22	0.80	0.47	1.33	0.82	0.84	1.46	1.20
Productivity Alpha mgCm ⁻³ h ⁻¹ (μEm ⁻² s ⁻¹) ⁻¹ Pmax mgCm ⁻³ h ⁻¹ Pmax mgCm ⁻³ h ⁻¹ Areal Production mgCmgChla) ⁻¹ d ⁻¹ Chlorophyll-Specific Depth-Averaged Production mgC(mg Chla) ⁻¹ d ⁻¹ Respiration μMO ₂ h ⁻¹ Plankton 10 ⁶ Cells L ⁻¹ 0.881 3.379 2.544 0.325 0.897 0.588 0.668 1.090 0.881 Centric diatoms 10 ⁶ Cells L ⁻¹ 0.034 0.039 0.037 0.009 0.200 0.061 0.121 0.001 Alexandrium spp. Cells L ⁻¹ 0.608 3.130 2.236 0.046 0.055 0.245 0.589 0.668 Phaeocystis pouchetii 10 ⁶ Cells L ⁻¹ 0.608 3.130 2.236 0.046 0.055 0.245 0.589 0.66	Urea	μM		0.10	0.28	0.22	0.10	0.31	0.19	0.31	0.69	0.48
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Productivity											
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Alpha	mgCm ⁻³ h ⁻¹ (µEm ⁻² s ⁻¹))-1									_
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Pmax	mgCm ⁻³ h ⁻¹										
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Areal Production	mgCm ⁻² d ⁻¹										
Production μMO2h ⁻¹ Respiration μMO2h ⁻¹ Plankton 10 ⁶ Cells L ⁻¹ Centric diatoms 10 ⁶ Cells L ⁻¹ 0.034 0.039 0.037 0.009 0.001 0.061 0.0029 0.0034 0.0039 0.001 0.001 0.0001 0.0029 0.0024 0.0029 0.0024 0.0029 0.0024 0.0029 0.0024 0.0021 0.0001 0.0021 0.0021	Chlorophyll-Specific Depth-Averaged	mgC(mg Chla) ⁻¹ d ⁻¹										
Respiration μMO ₂ h ⁻¹ Plankton 10 ⁶ Cells L ⁻¹ 0.881 3.379 2.544 0.325 0.897 0.588 0.668 1.090 0.881 Centric diatoms 10 ⁶ Cells L ⁻¹ 0.034 0.039 0.037 0.009 0.200 0.061 0.061 0.121 0.001 Alexandrium spp. Cells L ⁻¹ ND ND<	Production											
Plankton Total Phytoplankton 10 ⁶ Cells L ⁻¹ 0.881 3.379 2.544 0.325 0.897 0.588 0.668 1.090 0.881 Centric diatoms 10 ⁶ Cells L ⁻¹ 0.034 0.039 0.037 0.009 0.200 0.061 0.061 0.121 0.001 Alexandrium spp. Cells L ⁻¹ ND ND </td <td>Respiration</td> <td>μMO_2h^{-1}</td> <td></td>	Respiration	μMO_2h^{-1}										
Total Phytoplankton 10°Cells L ¹ 0.881 3.379 2.544 0.325 0.897 0.588 0.668 1.090 0.881 Centric diatoms 10°Cells L ¹ 0.034 0.039 0.037 0.009 0.200 0.061 0.061 0.121 0.001 Alexandrium spp. Cells L ¹ ND <	Plankton											
Centric diatoms 10°Cells L ⁻¹ 0.034 0.039 0.037 0.009 0.200 0.061 0.061 0.121 0.001 Alexandrium spp. Cells L ⁻¹ ND	Total Phytoplankton	10°Cells L ⁻¹	_	0.881	3.379	2.544	0.325	0.897	0.588	0.668	1.090	0.821
Alexandrium spp. Cells L ⁻¹ ND ND <th< td=""><td>Centric diatoms</td><td>10°Cells L⁻¹</td><td></td><td>0.034</td><td>0.039</td><td>0.037</td><td>0.009</td><td>0.200</td><td>0.061</td><td>0.061</td><td>0.121</td><td>0.085</td></th<>	Centric diatoms	10°Cells L ⁻¹		0.034	0.039	0.037	0.009	0.200	0.061	0.061	0.121	0.085
Phaeocystis pouchetii 10°Cells L° 0.608 3.130 2.236 0.046 0.065 0.056 0.245 0.589 0.60 Psuedo-nitzschia pungens 10 ⁶ Cells L° 0.0029 0.0054 0.0039 0.0001 0.0001 0.0007 0.0060 0.0032	Alexandrium spp.	Cells L ⁻¹		ND	ND	ND	ND	ND	ND	ND	ND	ND
Psuedo-nitzschia pungens 10°Cells L ⁻¹ 0.0029 0.0054 0.0039 0.0001 0.0001 0.0001 0.0007 0.0060 0.0032	Phaeocystis pouchetii	10°Cells L ⁻¹	0.000	0.608	3.130	2.236	0.046	0.065	0.056	0.245	0.589	0.608
	Psuedo-nitzschia pungens	10°Cells L ⁻¹	0.0029	0.005	4 0.003	0.00	0.0	001 0.00	0.00	07 0.00	0.00	032

Table 3-5. Combined Farfield/Nearfield Survey WF014 (Apr 01) Data Summary
				Farfield								
Region			Harbor		Offshore			Nearfield				
Parameter	Unit	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg		
In Situ		1							<u> </u>			
Temperature	°C	3.90	5.27	4.52	3.70	4.83	3.97	3.71	5.14	4.00		
Salinity	PSU	27.0	31.8	30.0	30.3	32.4	31.8	30.2	32.2	31.4		
Sigma _T		21.3	25.3	23.7	24.0	25.7	25.2	23.9	25.6	24.9		
Beam Attenuation	m ⁻¹	1.49	2.10	1.72	0.57	1.15	0.74	0.60	1.52	0.85		
DO Concentration	mgL ⁻¹	10.19	11.02	10.57	9.56	11.82	10.59	10.07	11.77	10.95		
DO Saturation	PCT	96.0	103.6	99.8	89.9	111.5	99.8	94.9	110.4	103.0		
Fluorescence	μgL ⁻¹	0.18	1.41	0.72	0.13	4.04	1.34	0.27	3.17	1.62		
Chlorophyll a	μgL⁻¹	0.45	1.44	1.06	0.43	3.44	1.54	0.40	2.24	1.17		
Phaeopigment	μgL⁻¹	0.39	0.75	0.59	0.19	2.30	0.65	0.15	1.35	0.50		
Nutrients							_					
NH4	μΜ	1.32	3.46	2.26	0.52	2.94	1.52	0.66	7.73	1.93		
NO2	μΜ	0.18	0.25	0.21	0.05	0.19	0.11	0.07	0.23	0.12		
NO2+NO3	μΜ	4.67	11.73	7.02	1.27	5.35	3.93	2.99	6.42	4.61		
PO4	μΜ	0.50	0.70	0.57	0.36	0.80	0.61	0.46	0.82	0.63		
SIO4	μΜ	5.64	17.09	9.25	2.62	7.03	4.58	3.92	8.67	5.54		
BIOSI	μΜ	3.15	5.57	4.41	1.26	4.14	1.99	1.01	3.37	2.29		
DOC µl		134.3	338.6	207.7	157.5	332.0	234.7	119.1	247.6	172.9		
PARTP	μΜ	0.21	0.40	0.26	0.12	0.26	0.17	0.10	0.28	0.19		
POC	μΜ	21.70	30.10	26.24	14.50	64.60	27.87	9.42	35.80	20.29		
PON	μΜ	3.05	5.10	3.91	2.12	12.10	4.35	1.14	5.44	3.00		
TDN	μΜ	17.36	30.11	22.88	12.58	18.10	15.01	13.63	22.98	16.84		
TDP	μΜ	0.83	0.92	0.88	0.67	1.06	0.85	0.78	1.13	0.92		
TSS	mgL ⁻¹	1.62	3.71	2.80	0.17	0.92	0.66	0.04	1.51	0.73		
Urea	μΜ	0.39	0.79	0.63	0.14	0.33	0.25	0.23	1.31	0.57		
Productivity		0					-					
Alpha	mgCm ⁻³ h ⁻¹ (µEm ⁻² s ⁻¹) ⁻¹	0.044	0.098	0.070				0.024	0.157	0.099		
Pmax	mgCm ⁻³ h ⁻¹	5.74	11.31	8.09				2.95	9.59	6.65		
Areal Production	mgCm ⁻² d ⁻¹			689.2				1602.4	1875.7	1739.1		
Chlorophyll-Specific Depth-Averaged Production	mgC(mg Chla) ⁻¹ d ⁻¹			23.7				50.8	65.8	58.3		
Respiration	$\mu MO_2 h^{-1}$	0.059	0.097	0.074	0.062	0.137	0.095	0.024	0.082	0.061		
Plankton	·	0										
Total Phytoplankton	10 ⁶ Cells L ⁻¹	0.310	1.178	0.656	0.586	1.803	1.067	1.080	1.561	1.207		
Centric diatoms	10 ⁶ Cells L ⁻¹	0.026	0.137	0.073	0.023	0.076	0.046	0.046	0.102	0.075		
Alexandrium spp.	Cells L ⁻¹	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Phaeocystis pouchetii	10 ⁶ Cells L ⁻¹	0.061	0.620	0.254	0.193	1.462	0.685	0.641	1.126	0.807		
Psuedo-nitzschia pungens	10 ⁶ Cells L ⁻¹	0.0003	0.0147	0.0036	0.0011	0.0019	0.0016	0.0010	0.0043	0.0022		
Total Zooplankton	Individuals m ⁻³	4,212 13.	,220 8,6	84 9,	606 18,	226 13,	916 12.2	23 15,9	90 14,4	421		

Table 3-5. Combined Farfield/Nearfield Survey WF014 (Apr 01) Data Summary (continued)

Region	Nearfield				
Parameter	Unit	Min	Max	Avg	
In Situ					
Temperature	°C	3.92	8.48	5.91	
Salinity	PSU	29.7	32.1	31.1	
Sigma _T		23.2	25.5	24.5	
Beam Attenuation	m ⁻¹	0.50	1.13	0.73	
DO Concentration	mgL ⁻¹	9.53	11.51	10.41	
DO Saturation	PCT	90.0	116.5	102.5	
Fluorescence	μgL ⁻¹	0.02	4.94	0.98	
Chlorophyll a	μgL ⁻¹	0.07	4.78	1.41	
Phaeopigment	μgL ⁻¹	0.06	1.88	0.53	
Nutrients					
NH4	μΜ	0.23	20.62	2.63	
NO2	μΜ	0.01	0.23	0.08	
NO2+NO3	μΜ	0.05	5.21	1.95	
PO4	μΜ	0.15	1.00	0.49	
SIO4	μΜ	0.99	8.47	3.93	
BIOSI	μΜ	0.67	4.97	1.98	
DOC	μΜ	126.9	535.0	190.1	
PARTP	μΜ	0.06	0.38	0.19	
POC	μΜ	5.96	46.10	22.11	
PON	μΜ	0.38	6.64	3.33	
TDN	μΜ	8.9	23.0	14.5	
TDP	μΜ	0.47	1.16	0.79	
TSS	mgL ⁻¹	0.22	1.45	0.73	
Urea	μΜ	0.10	0.28	0.18	
Productivity					
Alpha	$mgCm^{-3}h^{-1}(\mu Em^{-2}s^{-1})^{-1}$	0.009	0.077	0.046	
Pmax	mgCm ⁻³ h ⁻¹	0.32	6.91	4.15	
Areal Production	mgCm ⁻² d ⁻¹	1073.5	1108.4	1091.0	
Chlorophyll-Specific Depth-Averaged Production	mgC(mg Chla) ⁻¹ d ⁻¹	53.1	54.3	53.7	
Respiration	$\mu MO_2 h^{-1}$	0.030	0.142	0.071	
Plankton					
Total Phytoplankton	10 ⁶ Cells L ⁻¹	0.65	0.992	0.789	
Centric diatoms	10 ⁶ Cells L ⁻¹	0.066	0.168	0.124	
Alexandrium spp.	Cells L ⁻¹	ND	17.50	17.50	
Phaeocystis pouchetii	10 ⁶ Cells L ⁻¹	ND	ND	ND	
Psuedo-nitzschia pungens	10 ⁶ Cells L ⁻¹	0.0003	0.0026	0.0015	
Total Zooplankton	Individuals m ⁻³	21,387	29,669	25,528	

Table 3-6.	Nearfield Surv	ey WN015 (A	Apr 01) Data	Summary
			· · · · · · · · · · · · · · · · · · ·	

Region		Nearfield					
Parameter	Unit	Min	Max	Avg			
In Situ							
Temperature	°C	4.17	11.31	<mark>9.3</mark> 1			
Salinity	PSU	30.0	32.1	30.7			
Sigma _T		22.9	25.5	23.7			
Beam Attenuation	m ⁻¹	0.45	1.61	0.79			
DO Concentration	mgL ⁻¹	9.27	10.35	9.72			
DO Saturation	PCT	91.3	108.4	103.1			
Fluorescence	μgL ⁻¹	0.02	1.75	0.77			
Chlorophyll a	μgL ⁻¹	0.19	1.57	0.81			
Phaeopigment	μgL ⁻¹	0.15	1.05	0.45			
Nutrients							
NH4	μΜ	0.07	19.54	1.44			
NO2	μΜ	0.01	0.31	0.09			
NO2+NO3	μΜ	0.01	4.38	0.78			
PO4	μΜ	0.01	1.38	0.30			
SIO4	μΜ	0.57	6.34	2.35			
BIOSI	μΜ	0.40	5.60	2.09			
DOC	μΜ	158.1	441.4	236.0			
PARTP	μΜ	0.05	0.36	0.19			
POC	μΜ	7.86	40.70	20.55			
PON	μΜ	1.26	6.49	3.09			
TDN	μΜ	8.0	17.2	12.4			
TDP	μΜ	0.35	1.07	0.53			
TSS	mgL ⁻¹	0.05	1.77	0.67			
Urea	μΜ	0.10	0.35	0.23			
Productivity							
Alpha	$mgCm^{-3}h^{-1}(\mu Em^{-2}s^{-1})^{-1}$	0.002	0.044	0.027			
Pmax	mgCm ⁻³ h ⁻¹	0.30	4.39	2.47			
Areal Production	mgCm ⁻² d ⁻¹	490	561	526			
Chlorophyll-Specific Depth-Averaged Production	mgC(mg Chla) ⁻¹ d ⁻¹	14.6	44.6	29.6			
Respiration	$\mu MO_2 h^{-1}$	0.029	0.094	0.076			
Plankton							
Total Phytoplankton	10 ⁶ Cells L ⁻¹	0.838	2.272	1.330			
Centric diatoms	10 ⁶ Cells L ⁻¹	0.130	1.532	0.656			
Alexandrium spp.	Cells L ⁻¹	ND	4.30	4.30			
Phaeocystis pouchetii	10 ⁶ Cells L ⁻¹	ND	ND	ND			
Psuedo-nitzschia pungens	10 ⁶ Cells L ⁻¹	0.0003	0.0004	0.0004			
Total Zooplankton	Individuals m ⁻³	32,027	54,651	43,339			

 Table 3-7. Nearfield Survey WN016 (May 01) Data Summary

RegnonImage of the stateImage of the sta			Farfield								
ParameterUnitMarArgManMaxArgIn SituIn SituIn SituStatumC°C4.2918.318.706.6110.7812.2870.9510.1110.25SubiniPSU2.9810.3110.3110.3110.3010.3010.3110.3010.3110.30SteigentM"10.21512.4812.1310.1310.2710.2810.2810.2110.4610.2110.4610.2110.4610.2110.4610.2110.4610.2110.4610.2110.4610.2110.4610.2110.4610.2110.46 </th <th>Region</th> <th></th> <th colspan="4">Boundary Cape Cod Bay</th> <th></th> <th>Coastal</th> <th></th>	Region		Boundary Cape Cod Bay					Coastal			
In Sim	Parameter	Unit	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
Temperature Stating °C 4.29 18.31 8.70 6.61 19.78 12.28 7.05 17.11 12.5 Sigma T 21.5 22.6 22.1 32.1 31.4 30.4 31.5 30.9 33.1 43.0 Beam Attentation m ¹ 0.48 3.44 1.23 0.07 3.05 1.27 0.70 2.20 2.21 DO Concentration mGt ¹ 7.51 11.289 10.08 7.31 10.27 8.88 8.40 9.90 9.02 DO Dosturation PCT 9.18 12.54 10.05 7.33 11.72 10.06 9.91 11.68 10.5 Phoneopignent µgL ¹ 0.07 2.06 0.73 0.014 1.27 0.68 0.02 3.99 1.71 Nta µgL ¹ 0.07 0.06 0.47 0.03 0.01 0.03 0.01 0.03 0.01 0.01 0.04 0.21 2.56 0.70 0.01 0.03<	In Situ										
Saining PSU 228 32.1 31.4 30.4 31.5 30.9 30.3 31.4 30.0 Signa_T 21.5 25.4 21.3 24.7 22.3 22.0 22.4 22.3 DO Cancentation mgL ⁻¹ 7.5 12.89 10.18 7.31 10.27 8.88 8.40 9.99 9.2 DO Cancentation mgL ⁻¹ 0.02 4.16 0.63 7.33 10.27 8.88 8.40 9.99 9.2 DO Cancentation mgL ⁻¹ 0.02 4.16 0.64 0.02 2.05 0.85 0.02 3.99 1.7. Chiorophyli.s µgL ⁻¹ 0.06 0.47 0.28 0.04 0.21 0.12 0.13 1.03 0.55 Notziens µM 0.01 0.44 0.17 0.03 3.35 0.79 0.04 2.8 0.8 Notziens µM 0.012 2.8 0.63 0.57 0.18 0.43 0.	Temperature	°C	4.29	18.31	8.70	6.61	19.78	12.28	7.05	17.11	12.54
Signa T 12.5 25.4 24.3 24.7 24.7 23.3 22.0 24.4 22.0 12.3 12.5 13.5 12.5 13.5 12.7 10.7 12.5 12.5 12.5 10.18 7.3 10.27 6.8.8 8.4.0 9.90 9.2 DO Concentation mgL-1 0.02 1.12 10.65 7.3.3 11.7.2 100.6 91.5 11.68 10.5 Placescence µgL-1 0.07 2.06 0.07 0.04 1.27 0.64 0.23 0.35 11.4 Phaceprigmen µgL-1 0.07 2.06 0.77 0.04 1.27 0.64 0.23 0.35 1.4 Phaceprigmen µgL-1 0.00 0.44 1.81 0.03 0.41 1.27 0.66 0.73 0.14 1.27 0.66 0.24 0.33 0.71 0.33 0.71 0.13 0.31 0.13 0.13 0.13 0.13 0.13 0.13 0.13 </td <td>Salinity</td> <td>PSU</td> <td>29.8</td> <td>32.1</td> <td>31.4</td> <td>30.4</td> <td>31.5</td> <td>30.9</td> <td>30.3</td> <td>31.4</td> <td>30.8</td>	Salinity	PSU	29.8	32.1	31.4	30.4	31.5	30.9	30.3	31.4	30.8
Beam Attenuation m ⁻¹ 0.048 3.44 1.22 0.73 3.05 1.27 0.70 2.20 0.12 DO Concentration mgL ⁻¹ 7.51 12.89 10.18 7.33 117.2 100.6 91.5 116.8 105. Chorophylla μgL ⁻¹ 0.00 2.41.6 0.64 0.02 2.05 0.85 0.02 3.39 1.17 Chorophylla μgL ⁻¹ 0.00 0.47 0.28 0.04 0.44 0.21 0.13 1.03 0.02 Nutrients	Sigma _T		21.5	25.4	24.3	21.3	24.7	23.3	22.0	24.6	23.2
DD Concentration mgL ¹ 7.51 12.84 10.18 7.31 10.72 8.88 8.40 9.90 9.92 DD Saturation PCT 91.8 125.4 106.5 7.33 117.2 100.6 91.5 116.8 105. Rubressence µgL ¹ 0.00 2.06 0.75 0.14 1.27 0.64 0.02 3.58 1.17 Chhorophylla µgL ¹ 0.00 7.06 0.02 0.04 1.27 0.64 0.02 3.58 1.17 Nutrients	Beam Attenuation	m ⁻¹	0.48	3.44	1.23	0.73	3.05	1.27	0.70	2.20	1.28
DO Saturation PCT 91.8 125.4 106.3 73.3 117.2 100.6 91.5 11.6.8 105.5 Chlorophyll a µgL ¹ 0.07 2.06 0.075 0.14 1.27 0.66 0.02 3.58 1.14 Phacopigmem µgL ¹ 0.06 0.47 0.28 0.04 0.43 0.21 0.13 1.03 0.5 Nutriens Nut µM 0.01 0.44 0.17 0.01 0.26 0.07 0.01 0.33 0.79 0.01 0.30 0.11 NO2+NO3 µM 0.01 0.44 0.17 0.01 0.26 0.07 0.01 0.30 0.11 0.44 0.43 0.41 0.48 0.44 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.44 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43	DO Concentration	mgL ⁻¹	7.51	12.89	10.18	7.31	10.27	8.88	8.40	9.90	9.24
Fluorescence µgL ¹ 0.02 4.16 0.06 0.02 2.05 0.85 0.02 3.99 1.7 Chlorophylla µgL ¹ 0.06 0.75 0.14 1.27 0.66 0.28 0.04 0.41 0.21 0.61 0.13 1.03 0.55 Nutriemts 0.01 0.44 0.01 0.028 0.04 0.43 0.21 0.13 0.65 Notz µM 0.01 0.44 0.01 0.26 0.07 0.01 0.30 0.11 NO2+NO3 µM 0.02 5.26 1.75 0.05 3.35 0.79 0.04 2.81 0.83 NO2+NO3 µM 0.02 2.810 3.22 1.17 12.99 4.53 0.63 10.71 2.9 Addith 0.32 2.19 0.89 0.39 2.67 0.53 1.61 3.44 2.83 3.53 1.75 DOC µM 11.50 4	DO Saturation	PCT	91.8	125.4	106.3	73.3	117.2	100.6	91.5	116.8	105.2
Chioophyla μgL ⁻¹ 0.07 2.06 0.75 0.14 1.27 0.64 0.24 3.58 1.44 Phaeopignen μgL ⁻¹ 0.06 0.47 0.28 0.04 0.43 0.21 0.13 1.03 0.05 Nutrients U U 0.44 0.71 0.01 0.24 0.75 0.15 NO2 µM 0.01 0.44 0.71 0.01 0.22 0.07 0.00 0.03 0.11 ND2-NO3 µM 0.02 5.26 1.75 0.05 3.35 0.07 0.01 0.44 0.44 OLO µM 0.02 8.10 3.22 1.04 0.47 0.13 0.74 0.44 OLO µM 0.32 2.19 0.65 0.39 2.67 0.05 0.33 3.27 1.17 DOC µM 17.66 641.2 37.53 196.1 344.3 25.83 167.5 33.5 275.7 <t< td=""><td>Fluorescence</td><td>μgL⁻¹</td><td>0.02</td><td>4.16</td><td>0.64</td><td>0.02</td><td>2.05</td><td>0.85</td><td>0.02</td><td>3.99</td><td>1.76</td></t<>	Fluorescence	μgL ⁻¹	0.02	4.16	0.64	0.02	2.05	0.85	0.02	3.99	1.76
Phacopignent μgL ⁻¹ 0.06 0.47 0.28 0.04 0.43 0.21 0.13 1.03 0.05 Nutrients μM μM 0.01 0.44 1.81 0.30 4.24 1.12 0.12 6.57 1.5 NO2 μM 0.01 0.44 0.17 0.01 0.26 0.07 0.01 0.30 0.11 NO2+NO3 μM 0.02 5.26 1.75 0.05 3.35 0.79 0.04 2.81 0.83 0.72 0.05 0.53 0.37 1.07 0.93 0.65 0.53 3.27 1.7 OLO μM 0.02 2.810 3.22 1.07 0.29 0.65 3.35 3.935 2.75 DOC μM 117.66 641.2 375.3 196.1 344.3 2.58.3 167.5 393.5 2.75 PARTP μM 0.05 0.30 0.17 0.52 10.30 7.32 5.27 9.	Chlorophyll a	μgL ⁻¹	0.07	2.06	0.75	0.14	1.27	0.64	0.24	3.58	1.45
Nutrients <	Phaeopigment	μgL ⁻¹	0.06	0.47	0.28	0.04	0.43	0.21	0.13	1.03	0.58
NH4 μM 0.14 4.45 1.81 0.30 4.24 1.12 0.67 1.55 NO2 μM 0.01 0.44 0.17 0.01 0.26 0.07 0.01 0.30 0.01 NO2+NO3 μM 0.02 5.26 1.75 0.05 3.35 0.79 0.04 2.81 0.83 ABOA µM 0.02 8.10 3.22 1.77 1.29 4.53 0.65 10.71 2.9 BIOS µM 0.03 2.19 0.89 0.39 2.67 0.05 0.53 3.27 1.7 COC µM 10.66 641.2 375.3 196.1 344.3 2583 167.5 393.5 275. PARTP µM 0.05 0.30 0.17 0.15 0.27 0.21 0.16 0.44 0.23 POC µM 1.12 20.5 15.4 14.1 24.3 17.3 10.1 19.5 14.4 <td>Nutrients</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(</td> <td></td> <td></td>	Nutrients								(
NO2 μM 0.01 0.44 0.71 0.01 0.26 0.07 0.01 0.30 0.11 NO2+NO3 μM 0.02 5.26 1.75 0.05 3.35 0.79 0.04 2.81 0.84 PO4 μM 0.02 8.10 3.22 1.17 12.99 4.53 0.63 10.71 2.9 BIOSI μM 0.02 2.19 0.89 0.39 2.67 0.95 0.33 3.7 1.7. DOC μM 10.76 641.2 375.3 196.1 344.3 288.3 167.5 393.5 275.7 PARTP μM 0.05 0.30 0.17 0.15 0.27 0.21 0.16 0.44 0.20 PON μM 4.88 8.57 7.01 5.29 10.30 7.32 0.73 0.41 4.41 24.3 1.73 10.1 19.5 14.4 Ch TDN μM 0.37 0.29<	NH4	μΜ	0.14	4.45	1.81	0.30	4.24	1.12	0.12	6.57	1.51
NO2+NO3 μM 0.02 5.26 1.75 0.05 3.35 0.79 0.04 2.81 0.88 PO4 μM 0.14 0.89 0.52 0.18 1.04 0.47 0.13 0.74 0.4 SIO4 μM 0.22 8.10 3.22 1.77 12.99 4.53 0.63 10.71 2.99 BIOSI μM 0.32 2.19 0.89 0.39 2.67 0.95 0.53 3.27 1.77 DOC μM 10.66 641.2 375.3 196.1 344.3 288.3 167.5 393.5 275.7 ODC μM 10.15 0.48 0.31 0.17 0.52 10.30 7.32 5.27 9.07 7.33 OPO μM 11.2 20.5 15.4 14.1 24.3 10.83 0.66 OB 0.37 0.92 0.65 0.30 1.16 0.64 0.34 0.83 0.67	NO2	μΜ	0.01	0.44	0.17	0.01	0.26	0.07	0.01	0.30	0.14
mp mp 0.14 0.89 0.52 0.18 1.04 0.47 0.13 0.74 0.44 M M 0.22 8.10 3.22 1.17 12.99 4.53 0.66 10.71 2.29 BIOS µM 0.32 2.19 0.89 0.37 0.57 0.95 0.53 3.27 7.7 DOC µM 10.66 641.2 375.3 196.1 344.3 258.3 167.5 393.5 275.5 PARTP µM 0.05 0.30 0.17 0.15 0.27 0.21 0.16 0.44 0.23 PON µM 4.89 8.57 7.01 5.29 10.30 7.32 5.27 9.07 7.33 IDP µM 0.37 0.92 0.65 0.30 1.16 0.64 0.34 0.83 0.66 IDP µM 0.37 1.25 0.76 0.49 1.43 0.94 0.29 1.85	NO2+NO3	μΜ	0.02	5.26	1.75	0.05	3.35	0.79	0.04	2.81	0.84
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	PO4	μΜ	0.14	0.89	0.52	0.18	1.04	0.47	0.13	0.74	0.41
BIOSI μM 0.32 2.19 0.89 0.39 2.67 0.95 0.53 3.27 1.77 DOC μM 10.66 641.2 375.3 196.1 344.3 258.3 167.5 393.5 275.5 PARTP μM 0.05 0.30 0.17 0.15 0.27 0.21 0.16 0.44 0.25 POC μM 11.50 48.60 34.10 21.30 54.10 31.27 25.60 42.50 33.9 PON μM 4.89 8.57 7.01 5.29 10.30 7.32 5.27 9.07 7.3 1.0 μM 0.37 0.92 0.65 0.30 1.16 0.64 0.34 0.83 0.65 1.112 0.37 0.32 0.76 0.49 1.43 0.94 0.29 1.88 1.1 0.10 0.16 0.28 0.10 0.39 0.35 0.10 0.61 0.28 0.10	SIO4	μΜ	0.22	8.10	3.22	1.77	12.99	4.53	0.63	10.71	2.98
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	BIOSI	μΜ	0.32	2.19	0.89	0.39	2.67	0.95	0.53	3.27	1.70
PARTP μM 0.05 0.30 0.17 0.15 0.27 0.21 0.16 0.44 0.22 POC μM 11.50 48.60 34.10 21.30 54.10 31.27 25.60 42.50 33.9 PON μM 48.9 8.57 7.01 5.29 10.30 7.32 5.27 9.07 7.3 ICD μM 11.2 20.5 15.4 14.1 24.3 17.3 10.1 19.5 14.4 Character μM 0.37 0.92 0.65 0.30 1.16 0.64 0.34 0.83 0.66 Character μM 0.24 0.39 0.35 0.10 0.61 0.28 0.10 0.39 0.35 Productivity Mgen ^m b ⁻¹ mge ^m b ⁻¹ /4 0.24 0.39 0.35 0.10 0.61 0.28 0.10 0.39 0.33 Phate mge ^m b ⁻¹ /4 mge ^m b ⁻¹ /4 mge ^m b ⁻¹ /4 0.071 0.690	DOC	μΜ	176.6	641.2	375.3	196.1	344.3	258.3	167.5	393.5	275.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PARTP	μΜ	0.05	0.30	0.17	0.15	0.27	0.21	0.16	0.44	0.28
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	POC	μΜ	11.50	48.60	34.10	21.30	54.10	31.27	25.60	42.50	33.97
mm 11.2 20.5 15.4 14.1 24.3 17.3 10.1 19.5 14.4 11.2 0.37 0.92 0.65 0.30 1.16 0.64 0.34 0.83 0.66 11.2 0.37 0.22 0.65 0.30 1.16 0.64 0.34 0.83 0.66 mss mgL ¹ 0.37 1.25 0.76 0.49 1.43 0.94 0.29 1.85 1.1 With Urea MM 0.24 0.39 0.35 0.10 0.61 0.28 0.10 0.39 0.33 Productivity mgCm ³ h ¹ (µEm ² s ¹) ¹ mgCm ³ h ¹ mgC ³ h	PON	μΜ	4.89	8.57	7.01	5.29	10.30	7.32	5.27	9.07	7.32
TDP μM 0.37 0.92 0.65 0.30 1.16 0.64 0.34 0.83 0.66 TSS mgL ¹ 0.37 1.25 0.76 0.49 1.43 0.94 0.29 1.85 1.1 Question μM 0.24 0.39 0.35 0.10 0.61 0.28 0.10 0.39 0.3 Productivity mgCm ³ h ⁻¹ (μEm ² s ¹) ⁻¹ mgCm ³ h ⁻¹ mgC ³ h ⁻¹ </td <td>TDN</td> <td>μΜ</td> <td>11.2</td> <td>20.5</td> <td>15.4</td> <td>14.1</td> <td>24.3</td> <td>17.3</td> <td>10.1</td> <td>19.5</td> <td>14.7</td>	TDN	μΜ	11.2	20.5	15.4	14.1	24.3	17.3	10.1	19.5	14.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TDP	μΜ	0.37	0.92	0.65	0.30	1.16	0.64	0.34	0.83	0.63
Urea μM 0.24 0.39 0.35 0.10 0.61 0.28 0.10 0.39 0.3 Productivity mgCm ⁻³ h ⁻¹ (µEm ⁻² s ⁻¹) ⁻¹ mgCm ⁻³ h ⁻¹ s s	TSS	mgL ⁻¹	0.37	1.25	0.76	0.49	1.43	0.94	0.29	1.85	1.12
Productivity MgCm ⁻³ h ⁻¹ (μEm ² s ⁻¹) ⁻¹ Pmax mgCm ⁻³ h ⁻¹ Pmax mgCm ⁻³ h ⁻¹ Chlorophyll-Specific Depth-Averaged Production mgC(mg Chla) ⁻¹ d ⁻¹ Plankton mgC(mg Chla) ⁻¹ d ⁻¹ Plankton 10 ⁶ Cells L ⁻¹ 0.072 1.497 0.777 0.690 1.052 0.930 1.043 3.925 2.34 Centric diatoms 10 ⁶ Cells L ⁻¹ 0.0072 1.497 0.777 0.690 1.052 0.930 1.043 3.925 2.34 Centric diatoms 10 ⁶ Cells L ⁻¹ 0.002 0.612 0.252 0.027 0.079 0.051 0.035 2.38 0.93 Alexandrium spp. Cells L ⁻¹ ND 2.50 ND N	Urea	μM	0.24	0.39	0.35	0.10	0.61	0.28	0.10	0.39	0.30
Alpha mgCm ⁻³ h ⁻¹ (μEm ⁻² s ⁻¹) ⁻¹ Pmax mgCm ⁻³ h ⁻¹ Max mgCm ⁻³ h ⁻¹ Areal Production mgCm ⁻² d ⁻¹ Chlorophyll-Specific Depth-Averaged Production mgC(mg Chla) ⁻¹ d ⁻¹ Plankton MO2 ₂ h ⁻¹ Plankton 10 ⁶ Cells L ⁻¹ 0.072 1.497 0.777 0.690 1.052 0.930 1.043 3.925 2.34 Centric diatoms 10 ⁶ Cells L ⁻¹ 0.021 0.612 0.252 0.027 0.079 0.051 0.035 2.385 0.93 Alexandrium spp. Cells L ⁻¹ ND 2.50 ND ND <td>Productivity</td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Productivity		<u> </u>								
Pmax mgCm ⁻³ h ⁻¹ Areal Production mgCm ⁻² d ⁻¹ Chlorophyll-Specific Depth-Averaged Production mgC(mg Chla) ⁻¹ d ⁻¹ Respiration μMO2h ⁻¹ Plankton 10 ⁶ Cells L ⁻¹ 0.072 1.497 0.777 0.690 1.052 0.930 1.043 3.925 2.34 Centric diatoms 10 ⁶ Cells L ⁻¹ 0.021 0.612 0.252 0.027 0.079 0.051 0.035 2.385 0.93 Alexandrium spp. Cells L ⁻¹ ND 2.50 ND ND <td>Alpha</td> <td>$mgCm^{-3}h^{-1}(\mu Em^{-2}s^{-1})^{-1}$</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Alpha	$mgCm^{-3}h^{-1}(\mu Em^{-2}s^{-1})^{-1}$									
	Pmax	mgCm ⁻³ h ⁻¹									
Chlorophyll-Specific Depth-Averaged Production mgC(mg Chla) ⁻¹ d ⁻¹ Respiration μMO2h ⁻¹ Plankton 10 ⁶ Cells L ⁻¹ 0.072 1.497 0.777 0.690 1.052 0.930 1.043 3.925 2.34 Centric diatoms 10 ⁶ Cells L ⁻¹ 0.021 0.612 0.252 0.027 0.079 0.051 0.035 2.385 0.93 Alexandrium spp. Cells L ⁻¹ ND 2.50 2.50 ND N	Areal Production	mgCm ⁻² d ⁻¹									
Respiration μMO2h ⁻¹ Plankton 10 ⁶ Cells L ⁻¹ 0.072 1.497 0.777 0.690 1.052 0.930 1.043 3.925 2.34 Centric diatoms 10 ⁶ Cells L ⁻¹ 0.021 0.612 0.252 0.027 0.079 0.051 0.035 2.385 0.930 Alexandrium spp. Cells L ⁻¹ ND 2.50 2.50 ND	Chlorophyll-Specific Depth-Averaged Production	mgC(mg Chla) ⁻¹ d ⁻¹									
Plankton Image: Displayment of the system of t	Respiration	μMO_2h^{-1}									
Total Phytoplankton 10^{6} Cells L ⁻¹ 0.072 1.497 0.777 0.690 1.052 0.930 1.043 3.925 2.34 Centric diatoms 10^{6} Cells L ⁻¹ 0.021 0.612 0.252 0.027 0.079 0.051 0.035 2.385 0.93 Alexandrium spp. Cells L ⁻¹ ND 2.50 2.50 ND ND ND 7.50 5.0 Phaeocystis pouchetii 10^{6} Cells L ⁻¹ ND ND <th< td=""><td>Plankton</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Plankton										
Centric diatoms 10^{6} Cells L ⁻¹ 0.021 0.612 0.252 0.027 0.079 0.051 0.035 2.385 0.93 Alexandrium spp. Cells L ⁻¹ ND 2.50 ND ND ND ND 7.50 5.0 Phaeocystis pouchetii 10^{6} Cells L ⁻¹ ND ND </td <td>Total Phytoplankton</td> <td>10⁶Cells L⁻¹</td> <td>0.072</td> <td>1.497</td> <td>0.777</td> <td>0.690</td> <td>1.052</td> <td>0.930</td> <td>1.043</td> <td>3.925</td> <td>2.343</td>	Total Phytoplankton	10 ⁶ Cells L ⁻¹	0.072	1.497	0.777	0.690	1.052	0.930	1.043	3.925	2.343
Alexandrium spp.Cells L ⁻¹ ND 2.50 2.50 NDNDNDND 7.50 5.0 Phaeocystis pouchetii 10^{6} Cells L ⁻¹ NDNDNDNDNDNDNDNDNDNDPsuedo-nitzschia pungens 10^{6} Cells L ⁻¹ NDNDNDND0.00840.00840.00840.00090.00090.0009	Centric diatoms	10 ⁶ Cells L ⁻¹	0.021	0.612	0.252	0.027	0.079	0.051	0.035	2.385	0.934
Phaeocystis pouchetii 10° Cells L ⁻¹ NDNDNDNDNDNDNDPsuedo-nitzschia pungens 10° Cells L ⁻¹ NDNDND 0.0084 0.0084 0.0084 0.0099 0.0009	Alexandrium spp.	Cells L ⁻¹	ND	2.50	2.50	ND	ND	ND	ND	7.50	5.00
Psuedo-nitzschia pungens 10° Cells L ⁻¹ ND ND ND 0.0084 0.0084 0.0009 0.0009 0.0009	Phaeocystis pouchetii	10 ⁶ Cells L ⁻¹	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Psuedo-nitzschia pungens	10°Cells L ⁻¹	ND	ND	ND	0.0084	0.0084	0.0084	0.0009	0.0009	0.0009

Table 3-8. Combined Farfield/Nearfield Survey WF017 (Jun 01) Data Summary

[
		Farheld			0.00.1		_			
Region		Harbor				Offshore			Nearfield	
Parameter	Unit	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
In Situ										
Temperature	°C	14.00	17.85	15.78	4.48	18.51	9.68	5.55	19.55	9.73
Salinity	PSU	27.9	30.5	29.6	30.4	32.0	31.3	30.3	31.7	31.2
Sigma _T		20.1	22.6	21.6	21.7	25.4	24.0	21.4	25.0	23.9
Beam Attenuation	m ⁻¹	2.06	2.97	2.42	0.47	1.90	0.80	0.48	3.85	0.99
DO Concentration	mgL⁻¹	8.15	8.49	8.33	8.73	11.65	10.11	8.59	11.72	9.87
DO Saturation	PCT	96.2	107.0	100.8	88.6	120.7	108.2	90.7	122.6	105.9
Fluorescence	μgL ⁻¹	2.09	4.83	3.48	0.02	6.45	1.05	0.02	7.89	1.12
Chlorophyll a	μgL ⁻¹	1.66	4.94	3.31	0.08	4.36	1.62	0.02	4.57	1.52
Phaeopigment	μgL ⁻¹	0.85	1.91	1.51	0.11	0.77	0.37	0.02	1.41	0.44
Nutrients										
NH4	μM	0.45	2.60	1.69	0.09	6.32	1.48	0.27	21.96	<mark>4.3</mark> 1
NO2	μΜ	0.10	0.41	0.24	0.01	0.39	0.12	0.01	0.52	0.15
NO2+NO3	μΜ	0.28	3.09	1.66	0.03	4.59	1.08	0.01	3.14	1.17
PO4	μΜ	0.31	0.58	0.46	0.04	0.91	0.42	0.10	1.27	0.58
SIO4	μΜ	3.08	10.29	6.44	0.31	9.20	2.58	0.39	10.34	3.86
BIOSI	μΜ	3.91	4.78	4.25	0.55	2.29	0.94	0.32	2.52	1.07
DOC	μΜ	214.2	760.1	406.0	216.3	715.3	374.1	178.2	670.8	289.0
PARTP	μΜ	0.44	0.57	0.51	0.12	0.45	0.23	0.07	0.50	0.26
POC	μΜ	32.80	49.90	41.66	10.80	65.60	30.24	11.40	62.10	32.10
PON	μΜ	7.79	10.10	8.58	4.66	10.00	7.01	4.04	11.00	7.40
TDN	μΜ	12.0	22.3	17.2	10.0	18.3	13.7	9.0	36.7	15.8
TDP	μΜ	0.59	0.87	0.76	0.33	1.06	0.60	0.35	1.45	0.69
TSS	mgL ⁻¹	2.22	3.16	2.76	0.42	1.23	0.73	0.19	1.28	0.68
Urea	μΜ	0.31	0.83	0.45	0.10	0.61	0.35	0.10	0.54	0.32
Productivity										
Alpha	mgCm ⁻³ h ⁻¹ (µEm ⁻² s ⁻¹) ⁻¹	0.070	0.127	0.103				0.002	0.087	0.040
Pmax	mgCm ⁻³ h ⁻¹	11.77	22.51	16.50				0.33	7.43	4.11
Areal Production	mgCm ⁻² d ⁻¹			1408.7				801.7	1336.2	1069.0
Chlorophyll-Specific Depth-Averaged Production	mgC(mg Chla) ⁻¹ d ⁻¹			19.6				8.3	35.6	22.0
Respiration	μMO ₂ h ⁻¹	0.121	0.166	0.146	0.068	0.217	0.120	0.041	0.406	0.186
Plankton										
Total Phytoplankton	10 ⁶ Cells L ⁻¹	1.777	4.418	2.606	0.450	1.715	0.889	0.338	1.332	0.697
Centric diatoms	10 ⁶ Cells L ⁻¹	0.061	1.723	0.562	0.032	0.205	0.107	0.014	0.114	0.077
Alexandrium spp.	Cells L ⁻¹	ND	ND	ND	ND	ND	ND	7.50	35.00	24.17
Phaeocystis pouchetii	10 ⁶ Cells L ⁻¹	ND	ND	ND	ND	ND	ND	ND	ND	ND
Psuedo-nitzschia pungens	10 ⁶ Cells L ⁻¹	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Zooplankton	Individuals m ⁻³	37,185	82,551	59,955	89,65	12,879	10,922	9,727	11,866	10,794

Table 3-8. Combined Farfield/Nearfield Survey WF017 (Jun 01) Data Summary (continued)

February, 2002

(Note: 13m instrument first deployed May 2001 and data not yet available for May 2001 deployment of 20m and 27m instrument. The 20m instrument failed during Jan-May 2001 deployment.)

Figure 3-2. MWRA and Battelle *In Situ* Wetstar Fluorescence Data (MWRA Data Acquired at ~13 m on USGS Mooring and Battelle Data Acquired at 12.5 to 13.5 m at Station N21)

4.0 **RESULTS OF WATER COLUMN MEASUREMENTS**

Data presented in this section are organized by type of data and survey. Physical data, including temperature, salinity, density, and beam attenuation are presented in Section 4.1. Nutrients, chlorophyll *a*, and dissolved oxygen are discussed in Section 4.2. Finally a summary of the major results of water column measurements (excepting biological measurements) is provided in Section 4.4.

Four of the nine surveys conducted during the semi-annual period were combined farfield/nearfield surveys. The first two combined surveys in early February (WF011) and late February/early March (WF012) were conducted during winter well-mixed conditions. The water column had begun to stratify throughout Massachusetts Bay by the April combined survey (WF014), but remained well mixed in Cape Cod Bay. Stratification in Massachusetts Bay in April was driven by the salinity gradient between surface and bottom waters due to March/April runoff. The last combined survey (WF017) was conducted in June and a strong density gradient was observed at all stations in Massachusetts and Cape Cod Bays.

The variation of regional surface water properties is presented using contour plots of surface water parameters derived from the surface (A) water sample. Classifying data by regions allows comparison of the horizontal distribution of water mass properties over the farfield area. The vertical distribution of water column parameters is presented in the following sections along three farfield transects (Boston-Nearfield, Cohassett and Marshfield) in the survey area and one transect across the nearfield area (Figure 1-3). Examining data trends along transects provides a three-dimensional perspective of water column conditions during each survey. Nearfield surveys were conducted more frequently than farfield surveys allowing better temporal resolution of the changes in water column parameters and the onset of stratification. In addition to the nearfield vertical transect (Figure 1-3), vertical variability in nearfield data is examined and presented by comparing surface and bottom water concentrations (A and E depths) and by plotting individual parameters with depth in the water column. A complete set the surface contour maps, vertical transect plots and parameter scatter plots is provided in Appendices B, C and D, respectively.

4.1 Physical Characteristics

4.1.1 Temperature\Salinity\Density

The timing of the annual setup of vertical stratification in the water column is an important determinant of water quality, primarily because of the trend towards continuously decreasing dissolved oxygen in bottom water during the summer and early fall. The pycnocline, defined as a narrow water depth interval over which density increases rapidly, is caused by a combination of freshwater input during spring runoff and warming of surface water in the summer. Above the pycnocline the surface water is well mixed, and below the pycnocline density increases more gradually. For the purposes of this report, the water column is considered stratified when the difference between surface and bottom water density is greater than 1.0 sigma-t units (σ_t). Using this definition, stratification was developing in the nearfield in late March (WN013; Figure 4-1). The Broad Sound station N01 remained well mixed in March. The density profiles plotted over the February to June 2001 period suggest that although the pycnocline may have been developing in the nearfield in March and April, strong stratified conditions were not established across the entire nearfield until late May (Figure 4-2).

4.1.1.1 Horizontal Distribution

In early February (WF011), surface water temperatures were cold (1-4°C) across most of Massachusetts and Cape Cod Bays with slightly warmer water observed further offshore in Stellwagen Basin and on the Bank (4-6°C; Figure 4-3). The surface water temperatures ranged from 1.03°C at station F31 in Boston Harbor to 5.93°C at boundary station F27. Cooler waters were observed in Boston Harbor, coastal waters, and Cape Cod Bay and there was a clear inshore to offshore increase in temperatures. Surface water salinity also exhibited an inshore to offshore increase during WF011 (Figure 4-4). Lower salinity waters (<32 PSU) were observed in Boston Harbor and southern Cape Cod Bay, while the higher salinities were at boundary stations F27 and F28. Surface water temperatures showed little change by the end of February (WF012). Surface water temperatures ranged from 2.12°C at harbor station F23 to 4.59°C at boundary station F28. Cooler waters ($< 3^{\circ}$ C) continued to be present in Boston Harbor, coastal waters, and Cape Cod Bay. The distribution of minimum and maximum surface temperatures followed the general trend of increasing temperatures from south to north and inshore to offshore waters. A similar inshore to offshore pattern was observed for surface salinity data with lower surface salinity (<32 PSU) being observed in Boston Harbor and southern Cape Cod Bay and the higher salinity (>32.4 PSU) at most eastern nearfield, offshore, and boundary stations.

By early April (WF014), the range of surface water temperature had only increased a few degrees $(4.7^{\circ}C \pm 1^{\circ}C)$, but the shallow waters in Cape Cod Bay, Boston Harbor, and along coastal areas had become warmer creating a decreasing temperature gradient from inshore to offshore (Figure 4-5). In early April, the highest surface temperature was observed at Cape Cod station F03 (5.71°C) and the lowest at nearfield station N01 (3.74° C). The cooler temperatures ($<4^{\circ}$ C) were restricted to stations F23, N01 and N02, which were the first three stations sampled during the first day of the survey (April 4). Excepting these cool April 4th temperatures and the warmer surface waters in Boston Harbor and Cape Cod Bay, surface temperatures throughout the rest of Massachusetts Bay were relatively uniform (4-5°C). Surface salinity values had decreased to <30 PSU in the harbor and at station F26 off of Cape Ann and generally increased from inshore to offshore and from north to south (Figure 4-6). The lowest surface salinity was at station F30 (27.02 PSU) in Boston Harbor and the maximum at station F29 (31.89 PSU) off of Provincetown. The low surface salinity at station F26 is indicative of the spring freshet of lower salinity surface waters from the Gulf of Maine and rivers to the north. Flow in the Merrimack River was relatively low until mid-March, increasing sharply in late March reaching flows of 25,000-30,000 cfs (Figure 4-7), which likely contributed to the low surface salinity off of Cape Ann and into northern Massachusetts Bay. The Charles River followed a similar pattern with relatively low flow until mid-March and reached maximum flows (1,500-2,000 cfs) in late March and early April that led to low salinity in Boston Harbor. Precipitation measured at Boston's Logan airport was correlated to the river flow data as there were two large precipitation events with >2 in/d of rain in the mid to late March time frame, which combined with the seasonal melting of the snow pack led to increased riverine flows.

By June (WF017), surface water temperature had increased substantially across the bays ranging from a low of 11.76°C at station F26 to a maximum of 19.78°C in Cape Cod Bay at station F01 (Figure 4-8). Surface water temperatures were generally warmer to the south in Cape Cod Bay, southern Massachusetts Bay, and extending into the southeastern nearfield area. There was a high degree of variability in surface temperature in the nearfield ranging from a low of 13.01°C at station N13 to a high of 19.55°C at station N06. It is unclear what may have influenced the spatial variability in the nearfield. Certainly some of the variability is due to diurnal heating, but the timing of sampling suggests there were real spatial differences across the relatively small nearfield area. Surface water salinity ranged from 27.90 PSU at harbor station F30 to 30.87 PSU at boundary station F26 and was

generally lower than measured in April. The June surface salinity pattern was similar to that seen in April, in that lower salinity surface waters were observed in Boston Harbor. It differed, however, in that higher salinity water was found off Cape Ann (Figure 4-9). There was a substantial rainfall event (1.7 inches on June 17 at Logan Airport) with concomitant increase in Charles River flow (Figure 4-7) that contributed to the low salinity in Boston Harbor. There was no appreciable increase in Merrimack River flow associated with this rainfall event (possibly rainfall concentrated to the Boston area and further south) so the lack of a salinity signal from this event at station F26 is not surprising. Note that a relatively low surface salinity value was observed at station F27, which is about 10 km further offshore from station F26. This area is often influenced by the same coastal currents and may reflect offshore passage of water influenced by the Merrimack River.

The changes that were observed in surface temperatures and salinity from February to April to June are indicative of the onset of seasonal stratification. The temperature-salinity (T-S) plots show a clear change in the relationship between these two parameters from early February to late June (Figures 4-10 and 4-11). In early February, the trend within each of the regions was that increasing temperatures were concurrent with increasing salinity. The surface waters were generally cooler and less saline than bottom waters and thus the density gradient was not significant. By late February/early March, this trend was less pronounced as surface and shallow waters warmed. The April survey occurred during a transition period. There was relatively little difference in temperature over the water column, but there was a wide range of salinity. By June, seasonal stratified conditions had been established with a warmer, less saline surface layer and cooler, more saline bottom waters. These patterns have been consistently observed over the baseline monitoring period.

4.1.1.2 Vertical Distribution

Farfield. As suggested previously, the density gradient ($\Delta \sigma_t$), representing the difference between the bottom and surface water σ_t , can be used as a relative indicator of a mixed or vertically stratified water column. Surface and bottom water density decreased over the course of this period throughout the farfield area (Figure 4-12). The water column was well mixed in each of the areas during the first two surveys (WF011 and WF012). During the April survey (WF014), stratified conditions $(\Delta \sigma_t \ge 1.0)$ were observed at the harbor, offshore, and boundary stations. The development of stratification at these stations was driven by a substantial decrease in surface salinity (Figure 4-13). At coastal and Cape Cod Bay stations, density and salinity decreased from early March to April, but to similar degrees in both surface and bottom waters resulting in weaker April stratification. Surface and bottom water temperatures remained relatively unchanged during the first three combined surveys (Figure 4-14). By June (WF017), surface water temperatures had increased by $>10^{\circ}$ C throughout the bays. Bottom water temperatures increased by ~8°C in the harbor, ~4°C in coastal and Cape Cod Bay waters, and by 1-2°C in the offshore and boundary areas. There continued to be a relatively large salinity gradient (~1 PSU) in June. This combined with the increase in surface temperatures led to strongly stratified ($\Delta \sigma_t \sim 3$) conditions in Cape Cod Bay and offshore and boundary areas of Massachusetts Bay. Boston Harbor and coastal waters were less stratified ($\Delta \sigma_t$ ~1.5).

The seasonal establishment of stratified conditions was also clearly illustrated in the vertical contour plots of sigma-T, salinity, and temperature (Appendix C). In February, there was little variation in these parameters over the water column, though as shown in the plot of σ_t along the Boston-Nearfield transect during WF012, the harbor exhibited slightly lower density water than the Massachusetts Bay stations (Figure 4-15a). This was due to slightly lower harbor salinity and increasing temperature from inshore to offshore (Figures 4-15b and 15c). In April (WF014), the physical characteristics of the water column suggested that the water column was becoming stratified across each of the transects, except in the nearfield where it appears that the input of freshwater from the outfall led to a

decrease in bottom water density at station N21 compared to nearby nearfield stations N20 and N16 (Figure 4-16a). The ensuing mixing of the effluent and bottom waters into the surface waters resulted in higher density water being observed in surface waters of the nearfield versus inshore coastal/harbor stations and offshore stations. The effluent signal was also observed in the salinity and slightly in the temperature data (Figures 4-16b and 4-16c). The density gradients (vertical and horizontal) were driven by relatively large gradients in salinity as the water column remained relatively cool across the bays. The discharge at the outfall appears to delay the onset of stratified conditions in the nearfield. This will be addressed in more detail in the next section focused on the higher resolution nearfield surveys.

By June (WF017), a strong pycnocline had developed throughout the region (Figure 4-17). The onset of stratification in the spring is usually related to a freshening of the surface waters and then as the surface temperatures increase the density gradient or degree of stratification increases. This was once again the case in the spring of 2001. Stratified conditions in April were the result of spring rains and runoff. In June, salinity was still a factor as the June 17th rain event led to low salinity water in Boston Harbor and offshore surface waters (Figure 4-17b). Also in June, the large temperature gradient between surface and bottom waters was a contributing factor to the strong density gradient observed (Figure 4-17c). There was no clear signal associated with the outfall discharge during the June survey. A complete set of farfield transect plots of physical water properties is provided in Appendix C.

Nearfield. The onset of stratification can be observed more clearly from the data collected in the nearfield area. The nearfield surveys are conducted on a more frequent basis and thus provide a more detailed picture of the physical characteristics of the water column. As illustrated in Figures 4-1 and 4-2, stratification was developing in the eastern nearfield in late March (WN013). Due to instrument problems and time constraints, density and salinity data are not available for most of the western half of the nearfield so it is unclear how stratification was progressing in those waters. The data from station N01 in Broad Sound suggest that the western nearfield remained well mixed in March (see Figure 4-1). The density profiles plotted over the February to June 2001 period suggest that although the pycnocline may have been developing in the nearfield in March and April, strong stratified conditions were not established at these nearfield stations until May (see Figure 4-2). These plots of the density profiles over time also indicate that there was some sort of mixing event in early April at station N21. The transect plots from WF014 suggest that this event was limited to the nearfield and may have been related to increased flow from the outfall discharge as a result of the March 30th rainfall (see Figure 4-7). By late April (WN015), the water column had become stratified across all of the nearfield area, but it was not until June that a strong density gradient ($\Delta \sigma_t > 2$) was established across the nearfield area. The physical characteristics that led to the establishment of stratified conditions are detailed below.

The gradient between surface and bottom water salinity followed a similar pattern to that of density – no gradient in February to early March, a gradient of ~1 PSU in the eastern nearfield in late March, and by early April there was a gradient of ~1 PSU across most of the nearfield area (Figure 4-18). The salinity gradient continued to increase at the outer nearfield stations reaching a maximum of ~3 PSU in June. The input of freshwater from late March rain events and runoff led to the establishment of the salinity gradient (and onset of stratification) in the nearfield and the large salinity gradient in June corresponded to the substantial rainfall on June 17^{th} .

The nearfield water column was uniform with respect to temperature during the first four surveys of 2001 and there was very little change in nearfield temperatures over this period (Figure 4-19). It was not until late April (WN015) that surface temperatures began to increase. During this survey, there

was ~4°C gradient between the surface and bottom waters (8°C versus 4°C, respectively) across the nearfield. By mid-May (WN016), surface water temperatures had increased to ~11°C throughout the nearfield, but the bottom water temperatures were not consistent. At the inshore nearfield stations N10 and N11, there was a large increase in bottom water temperatures from 5° to 10°C. This was likely due to the influence of tidal mixing. At Broad Sound station N01, bottom water temperatures had increased to about 6.5°C, while at the offshore nearfield stations bottom water temperatures were ~5°C. By June (WF017), surface temperatures had increased to 15-18°C and bottom water temperatures ranged between 6-7°C, resulting in a strong gradient of 8°C at the inshore stations and an even stronger gradient of ~12°C at the deeper offshore stations. The increased temperature gradient in June.

Higher temporal resolution salinity and temperature data are provided by USGS and presented in Figure 3-1. These mooring data are presented along with corresponding and surface data from station N21. The USGS mooring is located just to the south (1 km) of station N21 and the outfall. Unfortunately, the 20-m Seacat CTD did not function properly on the January to May deployment, but the addition of another Seacat CTD in conjunction with the MWRA WetStar fluorometer at ~13m does provide supplemental data for the late May to June period (May to June CTD data from 20 and 27m is not available at this time and will be included in 2001 annual water column report). Bottom water salinity remained relatively constant at 32.5 PSU from January to mid-March and then began to decrease. A similar, though more pronounced pattern was observed at station N21. The magnitude of bottom water variations at the mooring and station N21 were similar in April and May even though station N21 values remained ~1 PSU lower. By June, the mid-depth salinities were increasing and similar at both locations. Bottom water temperature at the USGS mooring and station N21 remained at 4°C from January to mid-May and the available data were comparable from the two sources for the entire period. The differences in bottom water salinity between the mooring and profile measurements at station N21 in April and May were likely due to the input of freshwater from the outfall.

4.1.2 Transmissometer Results

Water column beam attenuation was measured along with the other *in situ* measurements at all nearfield and farfield stations. The transmissometer determines beam attenuation by measuring the percent transmission of light over a given path length in the water. The beam attenuation coefficient (m⁻¹) is indicative of particulate concentration in the water column. The two primary sources of particles in coastal waters are biogenic material (plankton or detritus) or suspended sediments. Beam attenuation data are often evaluated in conjunction with fluorescence data to ascertain source of the particulate materials (phytoplankton versus detritus or suspended sediments).

During early February survey (WF011), surface water beam attenuation ranged from 0.58 to 2.15 m⁻¹ (Figure 4-20). The maximum value was measured in Boston Harbor at station F31 and the lowest value at boundary station F27. Elevated values were also observed in Cape Cod Bay, which corresponded to elevated chlorophyll concentrations (see Figure 4-37) and phytoplankton abundance associated with the winter/spring bloom occurring in those waters. Beam attenuation values were ~1 m⁻¹ in the nearfield and coastal waters and lower offshore in Massachusetts Bay. The slightly elevated values in the nearfield corresponded with elevated chlorophyll concentrations, though neither was as high as those observed in Cape Cod Bay. By late February, beam attenuation values had decreased to 0.57 to 1.20 m⁻¹, but the general pattern of elevated values in the harbor and Cape Cod Bay and a decrease from inshore to offshore continued.

In early April (WF014), beam attenuation had increased in the harbor, coastal, western nearfield, and boundary waters off Cape Ann and ranged from a low of 0.64 m⁻¹ at station F29 off Provincetown to 1.85 m⁻¹ at station F31 in Boston Harbor (Figure 4-21). The elevated beam attenuation values observed at stations F26 and F27 were concomitant with a minor *Phaeocystis* bloom (see Sections 4.2.2 and 5.3). Otherwise, beam attenuation values tended to decrease with distance from the harbor. During the June survey (WF017), beam attenuation in the surface water ranged from 0.73 to 2.96 m⁻¹ exhibiting a similar decrease in values from inshore to offshore stations (Figure 4-22). The usually high Boston Harbor and coastal water beam attenuation signal was higher still due to an increase in phytoplankton abundance in these waters (see Figure 5-21). The June surface water beam attenuation signal was also correlated with chlorophyll concentrations (see Appendix B).

The clear inshore to offshore horizontal gradient of decreasing beam attenuation away from Boston Harbor and the effect of the April Phaeocystis bloom can also be seen along the Boston-Nearfield transect (Figure 4-23). In February (WF011), elevated beam attenuation values were observed at harbor station F23 and coastal station F24 and decreased progressively with distance from shore. This same pattern was observed in late February (WF012). In April, the harbor signal was still seen, but the highest beam attenuation values were associated with the winter/spring Phaeocystis bloom that was most pronounced at boundary station F27. The elevated *Phaeocystis* abundances that were observed at this station and station F26 both off of Cape Ann were not found anywhere else in Massachusetts or Cape Cod Bays. This may have been an artifact of survey timing or the influence of prevailing winds/currents. The importance of the interaction of the Gulf of Maine Coast Current and prevailing winds to the transport of Alexandrium tamarense has been well documented (Anderson, 1997). The currents and winds may also play a role in the transport of *Phaeocystis*, which forms floating colonies, into the bays. Beam attenuation was lower at station N21 compared to surrounding waters. The low beam attenuation is correlated with similar differences in temperature and salinity associated with the rising /mixing effluent plume. By June (WF017), the strong harbor, coastal, and western nearfield signal dominated the inshore to offshore trends in beam attenuation along the Boston-Nearfield transect and were correlated with elevated chlorophyll concentrations.

4.2 Biological Characteristics

4.2.1 Nutrients

Nutrient data were analyzed using surface water contour maps (Appendix B) and vertical contours from select transects (Appendix C) using the nutrient data to illustrate the spatial variability of these parameters. In addition, x/y plots of nutrient depth distribution, nutrient/nutrient relationships, and nutrient/salinity relationships (Appendix D) were examined.

The nutrient data for February to June 2001 generally followed the typical progress of seasonal events in the Massachusetts and Cape Cod Bays. Maximum nutrient concentrations were observed in early February when the water column was well mixed and biological uptake of nutrients was limited. The winter/spring 'diatom bloom' reduced nutrient concentrations in Cape Cod Bay surface waters in February. Massachusetts Bay surface water nutrient concentrations decreased from early February through April, but did not reach depleted levels until June. In the nearfield, nutrient levels decreased in the surface waters following establishment of stratification. Nutrient concentrations in the surface waters were depleted throughout much of the region by late April. With the transfer of effluent discharge from the harbor outfall to Massachusetts Bay outfall, the harbor signal of elevated nutrient concentrations (especially ammonium) extending into the western nearfield that had been observed throughout the baseline period was not as intense. In 2001, elevated concentrations of NO₃ and SiO₄ continued to be observed at the inner harbor station F30, but maximum surface NH₄ and PO₄ concentrations were almost always found in the nearfield (usually at station N21). The effluent nutrient signal was clearly evident in the nearfield.

4.2.1.1 Horizontal Distribution

During this semi-annual period, the highest nutrient concentrations were consistently measured at the harbor, harbor-influenced coastal, and nearfield stations. Dissolved inorganic nutrients were generally highest in surface waters during the first survey (WF011). As observed during the fall of 2000, nearfield ammonium concentrations were consistently elevated with respect to farfield stations and compared to previous baseline monitoring years. Nutrient concentrations were lower in Cape Cod Bay than in Massachusetts Bay during the first two farfield surveys due to the winter/spring diatom bloom that occurred in Cape Cod Bay in February. By April (WF014), nutrient concentrations had increased in Cape Cod Bay and had decreased slightly in Massachusetts Bay. By June (WF017), nutrients were generally depleted in the surface waters throughout the bays, except for stations in Boston Harbor and the nearfield.

In early February (WF011), the highest nutrient values were found in Boston Harbor [phosphate] $(PO_4) = 1.46 \ \mu\text{M}$ at station F23 and silicate $(SiO_4) = 6.6 \ \mu\text{M}$ at station F30], the nearfield [ammonium] $(NH_4) = 7.30 \ \mu M$ at station N21], and along the boundary [nitrate $(NO_3) = 8.49 \ \mu M$ at station F27]. The lowest concentrations were observed in Cape Cod Bay at station F02 (SiO₄ = 0.47μ M), at boundary station F29 off Provincetown (PO₄ = 0.47 μ M and NO₃ = 1.13 μ M), and at nearfield station N05 (NH₄ = 0.12μ M). Generally there were elevated concentrations of NH₄ and PO₄ in the harbor and nearfield and elevated concentrations of NO₃ and SiO₄ in the harbor and the northeastern Massachusetts Bay stations. Slightly elevated NO₃ concentrations were also observed in nearfield surface waters (Figure 4-24). Silicate concentrations were slightly lower in the nearfield in comparison to stations further inshore and offshore. Elevated fluorescence and production (see Figures 5-4 and 5-5) in the nearfield surface waters suggests that nutrient uptake by diatoms decreased the nearfield SiO₄ concentrations. Nitrate concentrations remained elevated in those parts of the nearfield where NH₄ was plentiful due to preferential uptake of the reduced form of nitrogen (see Appendix B for plots). Nutrient concentrations were lower in Cape Cod Bay than in Massachusetts Bay due to the winter/spring diatom bloom that was evident in both the phytoplankton abundance and chlorophyll concentration data.

By late February/early March (WF012), nutrient concentrations in surface waters had decreased throughout the bays except for NH₄ and PO₄ in the nearfield (Figure 4-25). In Cape Cod Bay, nutrients had become depleted. The highest nutrient concentrations were in the nearfield at station N21 (NH4 = 9.69 μ M and PO₄ = 1.02 μ M) and at boundary stations F26 and F28 (SiO₄ = 6.75 μ M and NO₃ = 5.46 μ M, respectively). The lowest concentrations were in Cape Cod Bay at stations F01 (NO₃ = 0.24 μ M), F02 (SiO₄ = 0.49 μ M), and F03 (NH₄ = 0.16 μ M and PO₄ = 0.22 μ M). Ammonium concentrations continued to be very good tracer of the effluent plume. The low nutrient concentrations at Cape Cod Bay stations coincided with elevated chlorophyll concentrations and phytoplankton abundance (centric diatoms dominant) suggesting a continuation of the winter/spring bloom of centric diatoms observed in early February. Silicate concentrations were relatively low in late February/early March in the nearfield and southern Massachusetts Bay. This suggests uptake by diatoms, but concomitant chlorophyll and phytoplankton data do not support any increase in diatoms in these waters. The lower concentrations of NO₃ and SiO₄, however, suggest that there was an increase in utilization between early and late February.

By April (WF014), nutrient concentrations had increased over much of Massachusetts and Cape Cod Bays. The highest nutrient concentrations were still found in the nearfield ($PO_4 = 0.82 \mu M$, and

 $NH_4 = 7.73 \ \mu M$ at station N21) and Boston Harbor (NO₃ = 11.48 μ M and SiO₄ = 17.09 μ M at station F30). The high surface concentrations of NO₃ and SiO₄ at station F30 were caused by increased runoff and the corresponding increase in flow from the Charles and other tributaries to the inner harbor. Surface SiO₄ was also high (9.78 μ M) at boundary station F26 off of Cape Ann due to the spring freshet. Nitrate concentrations remained relatively high in harbor, coastal, nearfield, and southern Massachusetts Bay and had increased from the late February depleted levels in Cape Cod Bay (Figure 4-26). Low surface water NO₃, PO₄, and NH₄ concentrations were observed in northeastern Massachusetts Bay (see Figure 4-26 for NO₃). Although these low concentrations were not coincident with elevated chlorophyll concentrations, high abundances of *Phaeocystis* (1-3 million cells L⁻¹) were found in the surface and mid-depth waters at stations F26, F27, and F22. The high abundance of *Phaeocystis* at these stations and its dominance throughout Massachusetts Bay (albeit at lower abundance) likely led to the increase in SiO₄ concentrations from the late February survey when diatoms were dominant. Ammonium concentrations continued to be elevated in the nearfield area surface waters.

In June (WF017), the highest surface concentrations were once again found in the nearfield ($PO_4 = 0.59 \ \mu\text{M}$ at station N12 and NH₄ = 5.12 \ \mu\text{M} at station N14) and Boston Harbor ($NO_3 = 2.75 \ \mu\text{M}$ and SiO₄ = 9.48 \ \mu\text{M} at station F23). Nutrient concentrations outside the harbor, near-harbor coastal, and nearfield stations had decreased to relatively low levels and there was a relatively strong gradient of decreasing concentrations away from these waters (Figure 4-27). The elevated nutrient concentrations in Boston Harbor, coastal and western nearfield waters were coincident with elevated chlorophyll concentrations. Low nutrient and chlorophyll concentrations were found throughout the rest of Massachusetts and Cape Cod Bays. This is typical of stratified summer conditions. Surface NH₄ concentrations remained elevated in the nearfield even though the water column was stratified. The rain event of June 17th likely led to an increase in flow from the outfall that may have led to a localized breakdown in stratification bringing the effluent plume and NH₄ to the surface. This was not readily apparent in the salinity data and will be evaluated in more detail in the 2001 annual report.

The usefulness of NH_4 as a tracer of the effluent plume has been shown for previous monitoring periods (Libby *et al.*, 2001). Although it is not a conservative tracer due to biological utilization, NH_4 does provide a natural tracer of the effluent plume in the nearfield area especially in low light conditions where biological activity is minimal (i.e. below the pycnocline during stratified conditions and during the winter). In February, the effluent plume NH_4 signal was clearly observed over the entire water column in the nearfield with the highest concentrations in the surface waters (Figure 4-28a: WF012). This pattern continued to be observed in the nearfield in March and early April when the water column was beginning to stratify (Figure 4-28b). Increased flow at the outfall due to late March rain events may have weakened stratification in the nearfield and resulted in the surface expression of the NH_4 plume. By late April and May, the distribution of NH_4 concentrations suggests that the plume was trapped below the pycnocline (Figure 4-29a). In June, the effluent plume NH4 signal was once again observed in the nearfield surface waters (Figure 4-29b). Once again it appears that a rain event (>1.5 in on June 17^{th}) may have led to increased flow from the outfall and a destabilization of the water column with NH₄ reaching the surface waters. This will be evaluated in more detail in the 2001 annual report. Ammonium in the water column has proven to be an excellent tracer of the effluent plume in the nearfield now that the outfall is online.

4.2.1.2 Vertical Distribution

Farfield. The vertical distribution of nutrients was evaluated using vertical contours of nutrient data collected along three transects in the farfield: Boston-Nearfield, Cohassett, and Marshfield (Figure 1-3; Appendix C). During the first two surveys (WF011 and WF012), the transect contours

indicated that the water column was generally replete with nutrients. The main deviation from this pattern was the surprisingly low SiO_4 concentrations observed along each of the transects. Typically, SiO_4 decreases in the surface waters during this time of year in response to the winter/spring diatom bloom. The SiO_4 decrease is also concomitant with decreases in other nutrients. This did not occur during this period. The surprisingly low SiO_4 concentrations during WF012 are being currently being verified and will be discussed in more detail in the 2001 annual report.

By April (WF014), surface water concentrations of NO_3 and PO_4 had become depleted at the offshore stations along the Boston-Nearfield transect as these nutrients were being taken up by *Phaeocystis* in northeastern Massachusetts Bay (Figure 4-30). Silicate concentrations remained relatively high at these stations, as this nutrient is not used in substantial quantities by *Phaeocystis* in comparison to other phytoplankton taxa (*i.e.* diatoms). Nutrient concentrations at the other stations along that transect and the rest of Massachusetts and Cape Cod Bays remained elevated or had increased from late February levels. A winter/spring centric diatom bloom in Cape Cod Bay led to a decrease in nutrients in February, but the lack of a bloom later in the spring in Cape Cod and Massachusetts Bay (except at those northeastern offshore and boundary stations) resulted in the continued availability of nutrients. By June (WF017), nutrient levels in the surface waters along each of the transects were depleted except at the inshore stations along the Boston-Nearfield transect (Figure 4-31). There was a strong vertical gradient for NO_3 and PO_4 along each of the transects with very low concentrations above the pycnocline (~20 m) and higher concentrations below. Elevated concentrations of nutrients were observed in the western nearfield, coastal and Boston Harbor waters, which were coincident with higher chlorophyll concentrations along the Boston-Nearfield transect. The outfall signature was evident in contour plots of PO₄ and NH₄ along this transect during each of the farfield surveys (Figures 4-31b and 4-32).

Nutrient-salinity plots are often useful in distinguishing water mass characteristics and in examining regional linkages between water masses (Appendix D). Dissolved inorganic nitrogen (DIN) plotted as a function of salinity has been used in past reports to illustrate the transition from winter to summer conditions and back again. Typically in this region winter conditions are represented by a negative correlation between DIN and salinity as the harbor and coastal waters are a source of low salinity, nutrient rich waters and the water column is well mixed. The summer is normally characterized by a positive relationship between DIN and salinity as biological utilization and stratification reduce nutrients to low concentrations in surface waters and concentrations increase with salinity at depth. During February to June of 2001, these patterns were observed, but there was both a regional mix of relationships between DIN and salinity and a new signal of a wide range of DIN concentrations over a narrow salinity band for the nearfield due to the presence of the bay outfall.

During the February surveys (Figure 4-33), a negative relationship between DIN and salinity was observed in Boston Harbor, while a positive relationship was seen at Cape Cod Bay and boundary stations. Coastal and offshore stations exhibited a well-mixed water column and no trends in respect to DIN and salinity. In the nearfield, there was little variation in salinity, but a large range of DIN values that were primarily driven by high NH_4 concentrations in the outfall discharge. By April (WF014), the DIN versus salinity signal exhibited a strong inverse relationship at the Boston Harbor and coastal stations due to increased DIN concentrations and runoff (Figure 4-34a). Low salinity waters were also observed at boundary station F26 off of Cape Ann. Nutrient concentrations at this station were low as they were in the surface waters of the other three boundary stations on or north of Stellwagen Bank (F12, F27, and F28) due to uptake during the *Phaeocystis* bloom. The majority of DIN values were between 5 and 8 μ M over a 2 PSU range (30.5 to 32.5 PSU). Elevated DIN concentrations were once again observed at mid-salinity for the nearfield area. In June (WF017), the coastal, Cape Cod Bay, offshore and boundary stations exhibited typical summer conditions with

depleted DIN in the surface waters and increasing concentrations at depth with increasing salinity (Figure 4-34b). Elevated DIN concentrations (>10 μ M) continued to be observed in the harbor. This was due to increased runoff and nutrient inputs associated with the June 17th rainfall. Maximum DIN concentrations were found in the nearfield during this survey with many values of 10-25 μ M.

Nearfield. The nearfield surveys are conducted more frequently and provide a high resolution of the temporal variation in nutrient concentrations over the semi-annual period. In previous sections, the transition from winter to summer physical and nutrient characteristics was considered. For the nearfield, the transition from winter to summer nutrient regimes can be demonstrated by examining contour plots of NO₃ concentrations over time at three representative nearfield stations – N01, N21, and N07 (Figure 4-35). There was a slight decrease in NO₃ concentrations from early to late February, but concentrations increased by the late March nearfield survey (WN013). High NO₃ concentrations continued to be present at the nearfield stations in early April, but by the end of April surface waters were depleted with respect to NO₃ and remained so through June. The continued presence of NO₃ in the nearfield from February through late April is linked to the lack of a large winter/spring bloom in these waters in 2001 and possibly to the availability of NH₄ as a preferred source of nitrogen.

In addition to the availability of NO_3 , the discharge from the bay outfall provided a direct source of additional NH₄ and PO₄ to the nearfield in 2001. Figure 4-36 illustrates the use of NH₄ as a natural tracer of the plume during well-mixed and stratified conditions and the effect of increased flow from the outfall during storm events under stratified conditions. The transect extends diagonally across the nearfield from the southwest to the northeast corners. Even though eastern nearfield stations started to stratify in late March (see Figure 4-1), the water column remained mixed in parts of the nearfield until the mid-May survey (WN016). From early February till early April, the NH₄ pattern was similar to that seen during WF014 (Figure 4-36). Elevated NH₄ concentrations were found in the vicinity of station N21 with higher concentrations in the surface waters than at depth. Certainly NH_4 concentrations were higher in the plume near the diffuser, but the spatial extent of the plume is relatively confined at depth during these well-mixed conditions and the sampling procedure was not focused on capturing this signal at depth. By late April (WN015), the water column had become more stratified along the inshore stations of the nearfield transect, but high NH_4 concentrations were still observed in surface waters at station N15. In mid-May, the water column was stratified across the entire nearfield transect and elevated NH₄ concentrations were only found at depths below the pycnocline. This changed in June as flow from the outfall increased in response to the June 17th storm and the effluent NH₄ signal reached into the nearfield surface waters. The highest concentrations, however, were still confined to deeper waters.

An examination of the nutrient-nutrient plots showed that surface waters were generally depleted in DIN relative to PO_4 in the nearfield for the entire semi-annual period (Appendix D). The DIN:PO₄ ratio was generally less than the Redfield value of 16 at the nearfield stations from February to June, but did not become nitrogen limited until mid-May (WN016). For the first two surveys, the nearfield waters were depleted of SiO₄ versus DIN, but concentrations were not limiting. In March and April, concentrations of DIN, PO₄, and SiO₄ continued to be elevated and available to phytoplankton. Not until May did surface water concentrations reach biologically limiting concentrations.

4.2.2 Chlorophyll a

Chlorophyll concentrations (based on calibrated *in situ* fluorescence measurements) were relatively low in Massachusetts and Cape Cod Bay from February to June 2001 in comparison to baseline years. The highest chlorophyll concentrations were observed in early February in Cape Cod Bay. Boundary, offshore, and nearfield maxima were also measured in early February. The maximum mean

concentrations in coastal waters occurred in late February, while Boston Harbor chlorophyll concentrations peaked in June. The nearfield mean areal chlorophyll (basis for chlorophyll threshold) for the winter/spring (February through April) of 2001 was 68.96 mgm⁻², which is well below the seasonal caution threshold of 182 mgm⁻². This is a departure from the very high areal chlorophyll values seen winter/spring 1999 (176 mgm⁻²) and 2000 (191 mgm⁻²). The high winter/spring chlorophyll concentrations were coincident with large winter/spring diatom and *Phaeocystis* blooms of 1999 and 2000, respectively. The lack of a major winter/spring bloom in 2001 resulted in lower chlorophyll concentrations in the nearfield.

4.2.2.1 Horizontal Distribution

Surface chlorophyll concentrations were relatively high across most of the region during the two surveys in February. In early February (WF011), surface chlorophyll values were $>3 \ \mu gL^{-1}$ in the nearfield, at boundary station F26, and in Cape Cod Bay where the highest surface chlorophyll concentration was observed (9.8 μgL^{-1} at station F02; Figure 4-37). The high chlorophyll concentrations in Cape Cod Bay were coincident with high phytoplankton abundance (see Figure 5-18). Lower concentrations (<1 μgL^{-1}) were observed in Boston Harbor and coastal waters along the south shore. By late February (WF012), surface chlorophyll concentrations in Cape Cod Bay had decreased to 2-4.7 μgL^{-1} , but the highest concentrations were found at stations F26 and F27 off of Cape Ann (5.0 μgL^{-1} and 4.8 μgL^{-1} , respectively; Figure 4-38). This increase correlated with an increase in centric diatoms in surface and mid-depth waters, but total phytoplankton abundance remained relatively low at these stations (<0.5 million cells/L⁻¹) as it did throughout Massachusetts Bay. The elevated surface chlorophyll concentrations in Cape Cod Bay were coincident with low nutrient concentrations in comparison to Massachusetts Bay. Surface chlorophyll concentrations decreased from the relatively high values in northern Massachusetts Bay and Cape Cod Bay to low values in the nearfield, southern Massachusetts Bay, and Boston Harbor.

As mentioned in Section 4.2.1.1, SiO4 concentrations were relatively low during the late February survey and suggest biological uptake of the nutrient over the course of the month. The timing of the surveys may have been such that a bloom event was missed. Unfortunately, ancillary data from SeaWiFS images and the USGS mooring are scant for February 2001. Both suggest a decrease in chlorophyll concentrations from mid-February to late February. The SeaWiFS image from February 10 shows relatively high surface chlorophyll concentrations of 3-10 μ gL⁻¹ in Massachusetts Bay (higher in Cape Cod Bay; Figure 4-39). By February 26, chlorophyll concentrations had decreased to <3 μ gL⁻¹ throughout the bay (Figure 4-40). The mooring data indicated that chlorophyll concentrations at mid-depth were 3 μ gL⁻¹ on February 14 and 15 before declining to ~2 μ gL⁻¹ for the remainder of the month (see Figure 3-2). There are no high-resolution data for the surface waters. Survey, mooring, and satellite data did not capture trends in surface water chlorophyll for February and it is unclear why a large decrease in SiO₄ concentrations was observed.

During the April survey (WF014), surface chlorophyll concentrations were very low (<0.5 μ gL⁻¹) in southern Massachusetts Bay, Cape Cod Bay, and at boundary stations. The maximum surface chlorophyll concentration was at nearfield station N05 (2.28 μ gL⁻¹) and concentrations of >1 μ gL⁻¹ only occurred in the nearfield and at station F23 in Boston Harbor. The relatively low surface chlorophyll values in early April are surprising given the availability of nutrients, relatively high areal production at station N04 and N18 (highest of period), and the minor *Phaeocystis* bloom observed throughout Massachusetts Bay. Surface phytoplankton abundance was about 1 million cells L⁻¹ in the nearfield and reached 2.5 million cells L⁻¹ at boundary station F27, but there was not a commensurate increase in chlorophyll (although NO₃ and PO₄ concentrations were lower at the boundary stations indicative of more biological uptake). SeaWiFS images indicated that chlorophyll concentrations were high (~5 μ gL⁻¹) in the vicinity of Cape Ann and extending into northern Massachusetts Bay in early April (see Appendix I). Although surface chlorophyll concentrations at stations F26 and F27 were low, they increased quickly with depth to 5-7 μ gL⁻¹ in the upper 10m, which is the nominal depth for SeaWiFS. In Cape Cod Bay, chlorophyll concentrations had decreased sharply from late February to April and were essentially at detection limits. *Phaeocystis* was present in very low abundance in Cape Cod Bay during the April survey.

Nearfield surface chlorophyll remained low from early April through May. In late April (WN015), surface chlorophyll concentrations ranged from 0.14 to $2.6 \ \mu g L^{-1}$ with the highest concentration found at the inshore station N01. Surface chlorophyll remained low in May ranging from 0.13-1.6 $\ \mu g L^{-1}$ with the maximum at station N10 and values decreasing further offshore. The decrease in nearfield surface chlorophyll concentrations from early to late April was associated with a decrease in production at station N04 and N18 and a decrease in phytoplankton abundance and end of *Phaeocystis* bloom. By mid-May, chlorophyll concentrations and production remained low, but phytoplankton abundance had more than doubled primarily due to an increase in centric diatoms (see Figure 5-16).

By June (WF017), the phytoplankton assemblage throughout the farfield was dominated by microflagellates and the regional pattern in surface chlorophyll generally decreased from inshore to offshore. Chlorophyll concentrations at the Boston Harbor and near-harbor coastal stations were high reaching a maximum of $4.83 \ \mu g L^{-1}$ at station F30 and decreasing to $\sim 1 \ \mu g L^{-1}$ in the western nearfield. Chlorophyll values decreased further offshore to $<1 \ \mu g L^{-1}$ in the eastern nearfield, offshore, boundary, and Cape Cod Bay areas. This was coincident with an inshore to offshore decrease in nutrient concentrations and NO₃ depletion in the surface waters throughout the bays. The high harbor and coastal chlorophyll concentrations were coincident with the period maximum in production at station F23 and elevated phytoplankton abundance, which also exhibited an inshore to offshore decrease (see Figure 5-21).

4.2.2.2 Vertical Distribution

Farfield. The vertical distribution of chlorophyll was evaluated using vertical contours of *in situ* fluorescence data collected along three east/west transects in the farfield: Boston-Nearfield, Cohassett, and Marshfield (Figure 1-3; Appendix C). In early February (WF011), chlorophyll concentrations along the transects exhibited a similar pattern to surface chlorophyll (see Figure 4-37) with elevated concentrations at boundary stations off of Provincetown and Cape Ann and in the nearfield. The elevated chlorophyll concentrations (3-6 μ gL⁻¹) observed in the nearfield appeared to extend down to the Cohasset and Marshfield transects as well (Figure 4-41). By late February (WF012), chlorophyll concentrations had decreased to 1-3 μ gL⁻¹ along each of the transects with higher concentrations along the boundary transect. The highest concentrations (4-6 μ gL⁻¹) were found in the upper 20 meters at boundary station F26 and F27 off of Cape Ann (Figure 4-42a).

In April (WF014), surface chlorophyll concentrations had decreased substantially, but a more clearly defined subsurface chlorophyll maximum was observed along each of the transects. Along the Boston-Nearfield transect, surface chlorophyll concentrations were low ranging from 0-2 μ gL⁻¹ and were not much higher in the subsurface chlorophyll maximum in coastal and nearfield waters (Figure 4-42b). There was an increase in subsurface chlorophyll concentrations from inshore to offshore reaching a maximum of 5-7 μ gL⁻¹ at 10-20 m at boundary station F27. A similar pattern was seen along the Cohassett transect with the highest chlorophyll concentrations (2-5 μ gL⁻¹) in the subsurface chlorophyll maximum at the stations further offshore. Further to the south along the Marshfield transect, chlorophyll values were lower 0-1 μ gL⁻¹ in the surface waters and only 1-2 μ gL⁻¹ at the subsurface maximum. The chlorophyll and phytoplankton data were generally consistent with

the higher chlorophyll concentrations and phytoplankton abundance occurring at boundary stations F26 and F27 and offshore station F22 (see Figure 5-20). The phytoplankton assemblage was dominated by *Phaeocystis* at these stations and abundances and chlorophyll concentrations were higher in the subsurface chlorophyll maximum.

By June (WF017), the patterns along the transects showed the typical progression to summer conditions of elevated surface chlorophyll concentrations near Boston Harbor and coastal waters and clearly defined subsurface maxima along the pycnocline further offshore (Figure 4-42c). A pattern similar to and of the same magnitude of the chlorophyll concentrations along the Boston-Nearfield transect was observed along the Cohasset and Marshfield transects (see Appendix C). The elevated chlorophyll concentrations in the surface and mid-depth waters in Boston Harbor and at coastal stations was coincident with high phytoplankton abundance, but abundances were relatively low in the subsurface chlorophyll maximum offshore. The higher chlorophyll concentrations in the offshore subsurface maximum were likely due to a physiological response to low light rather than an indicator of biomass.

Nearfield. Chlorophyll concentrations for the surface, mid-depth, and bottom waters of all nearfield stations were averaged and plotted for each of the nearfield surveys (Figure 4-43). The mid-depth sample was collected at the subsurface chlorophyll maximum, if present. The mean chlorophyll concentrations were relatively high (~4 μ gL⁻¹) in the surface and mid-depth waters in early February and only slightly lower in the bottom water (2.75 μ gL⁻¹). The early February values were the highest measured for each depth over the February to June 2001 time period. Chlorophyll concentrations decreased from early February to late March reaching mean concentrations of $<1 \ \mu g L^{-1}$ at each depth on March 26th. By April, nearfield mean chlorophyll values had increased to 2.25 µgL⁻¹ at mid-depth, but remained around 1 μ gL⁻¹ in the surface and bottom waters. These low chlorophyll concentrations occurred despite a 2-3 fold increase in phytoplankton abundance in surface and mid-depth waters during the *Phaeocystis* bloom and seasonal peaks in production at stations N04 and N18 (see Figures 5-16 and 5-17). By late April (WN015), mid-depth chlorophyll concentrations had decreased to 2 μ gL⁻¹ and surface and bottom water concentrations to ~0.5 μ gL⁻¹. In late April following the WN015 survey, there was a sharp increase in mid-depth chlorophyll concentrations that was evident in the mooring data (see Figure 3-2). The mooring data show a 3-fold increase in chlorophyll from 2 $\mu g L^{-1}$ on April 26 to 6 $\mu g L^{-1}$ May 5 and then a subsequent decrease to 1 $\mu g L^{-1}$ over the ensuing week. These temporally high-resolution data may be indicative of either the transitory nature of chlorophyll 'events' or perhaps a deepening of the pycnocline and associated subsurface maximum. As the data are only available at one depth, it is difficult to determine which was the case during this time period.

By mid-May (WN016), chlorophyll concentrations had decreased at mid-depth to $1.5 \ \mu g L^{-1}$ and remained low (0.5 $\ \mu g L^{-1}$) in the surface and bottom waters. The low mean surface chlorophyll concentration was coincident with a >2-fold increase in phytoplankton abundance from late April to mid-May due predominantly to increases in centric diatoms. It is unclear why there was not a concomitant increase in surface chlorophyll. However, production was low during this survey. Thus the lack of an increase in chlorophyll may be due to senescent cells that have become physiologically adapted to light conditions. Logan Airport weather reports indicate that May 2001 was especially clear and sunny. Nearfield chlorophyll concentrations increased to 3 $\ \mu g L^{-1}$ in mid-depth waters by June, while remaining low in surface and bottom waters.

4.2.3 Dissolved Oxygen

Spatial and temporal trends in dissolved oxygen (DO) concentrations were evaluated for the entire region (Section 4.2.3.1) and for the nearfield area (Section 4.2.3.2). DO concentrations in 2001 were

within the range of values observed during previous years and followed typical trends. Due to the relative importance of identifying low DO conditions, bottom water DO minima were examined for the water sampling events. The minimum measured DO concentration was 7.31 mgL⁻¹ in Cape Cod Bay in June (WF017). The nearfield minimum of 8.40 mgL⁻¹ was also observed in June. DO concentrations were within the range of values observed during previous years. The June bottom water concentrations in 2001 were comparable to 2000 values for most areas and slightly higher (~1 mgL⁻¹) for the offshore and boundary waters. Although there was an extraordinary *Phaeocystis* bloom in 2000, September/October 2000 bottom water DO concentrations were relatively high in comparison to baseline data. Physical factors relating to establishment of stratified conditions and ventilation likely alleviated a potentially problematic DO situation in 2000. The lack of a substantial winter/spring bloom in 2001 and relatively high bottom water DO concentrations in June suggest that DO concentrations will not be detrimental in fall 2001 barring any anomalous summer events. It has been suggested that regional factors may play an important role in the control of nearfield bottom water DO concentrations. These regional factors are currently being evaluated and will be discussed in detail in the nutrient issues review.

4.2.3.1 Regional Trends of Dissolved Oxygen

The DO in bottom waters was compared between areas and over the course of the four combined surveys. A time series of the average bottom water DO concentration for each area is presented in Figure 4-44a. Average bottom water DO concentrations ranged from 8 to 12 mgL⁻¹. Bottom water DO concentrations were high (10.3 to 11.5 mgL^{-1}) in early February and increased in each area as of the late February survey. Lower concentrations were consistently observed at the deeper boundary and offshore areas over these two surveys. In late February, bottom water DO concentration was lowest (10.5 mgL⁻¹) in the boundary area, $\sim 11 \text{ mgL}^{-1}$ in coastal and offshore waters, 11.5 mgL⁻¹ in Boston Harbor, and highest at 11.8 mgL⁻¹ in Cape Cod Bay. By early April, bottom water DO concentrations had decreased throughout the bays. In Cape Cod Bay, bottom water DO concentrations decreased by almost 2 mgL⁻¹ from late February to early April. This was likely related to the decline of the centric diatom bloom as indicated by chlorophyll and phytoplankton data at the Cape Cod Bay stations in February. Harbor and offshore bottom water concentrations decreased by $\sim 1 \text{ mgL}^{-1}$ and coastal and boundary concentrations by $\sim 0.5 \text{ mgL}^{-1}$ over this time period. Between the April and June surveys, the decline in bottom water DO continued at Boston Harbor, coastal and Cape Cod Bay stations. In Boston Harbor and Cape Cod Bay, bottom water DO concentrations declined by ~3 mgL⁻¹ from late February to June. Coastal bottom water concentrations had declined by ~1.5 mgL⁻¹ from early April to June. In contrast, offshore bottom water DO concentrations were unchanged from April levels and concentrations actually increased by almost 1 mgL⁻¹ at the boundary stations. The decline observed in 2001 was comparable to that seen during 2000 and may be an indication that bottom water DO concentrations may not achieve very low levels as seen in the fall of 2000.

Typically, there is a trend of declining bottom water DO concentrations following the establishment of stratification and the cessation of the winter/spring bloom in the bays. This was the case in Boston Harbor, Cape Cod Bay, and coastal (and nearfield) waters, but not at the deeper offshore and boundary stations. These waters are more greatly affected by regional factors (i.e. Gulf of Maine) and the increase and stabilization of bottom water DO concentrations from April to June may have been due to influences outside of Massachusetts Bay. The distribution of bottom water DO concentrations is presented in Figure 4-45, which clearly shows the lower concentrations in Boston Harbor, nearby coastal waters, and Cape Cod Bay and the higher concentrations in northeastern Massachusetts Bay. The pattern of elevated bottom water DO concentrations suggests an offshore influence. The role of regional factors is currently being evaluated and will be discussed in detail in an upcoming nutrient issues review.

The trend of decreasing DO in the bottom waters was less apparent in the DO % saturation data (Figure 4-44b). In general, DO % saturation increased from early February to late February, decreased in each of the areas from late February to April, and then continued to decrease in the harbor, coastal and Cape Cod Bay waters, but increased in the offshore and boundary areas. Bottom waters were generally saturated to supersaturated during the February surveys and then at or below 100% saturation in April and June. The main deviation from these trends was the super saturation at boundary stations in June, which increased from 95% saturation in April to 105% in June. In June, bottom waters were slightly under saturated with respect to DO in harbor, coastal, and offshore waters with average values of ~98% saturation. The lowest DO % saturation was observed in Cape Cod Bay (92% saturation).

4.2.3.2 Nearfield Trends of Dissolved Oxygen

Dissolved oxygen concentrations and percent saturation values for both the surface and bottom waters of the 21 nearfield stations were averaged and plotted for each of the nearfield surveys. Maximum surface and bottom water DO concentrations were observed in early February (Figure 4-46a). From early February to late March, the average surface water DO concentrations for the nearfield area varied decreased from ~11.3 to almost 10.5 mgL⁻¹, while average bottom water concentration decreased from 10.9 to 10.1 mgL⁻¹. By early April (WF014), surface and bottom water DO concentrations had increased by ~0.5 mgL⁻¹ coincident with an increase in production (period maximum at both stations N04 and N18) and phytoplankton abundance during minor Phaeocystis bloom. Nearfield average DO concentrations decreased from early April to June when minima were attained in both surface and bottom waters. A combination of high surface water temperatures and low salinity due to surface runoff led to the average surface water DO concentration being lower that the bottom water concentration. The lack of a major spring bloom and the associated delivery of organic carbon to the benthos and bottom waters probably contributed to the presence of relatively high bottom water DO concentrations in June 2001.

The average DO % saturation for the surface waters followed the same decreasing trend as DO concentration from early February to late March (Figure 4-46b). The surface and bottom waters were slightly super saturated with respect to DO in February (102-106%) and decreased in March reaching under saturated levels (95-98%). By early April, surface water DO % saturation had increased to 105% saturation and bottom water had returned to 100% saturation. From early April to June, surface waters remained supersaturated at levels of $110\pm3\%$ for the rest of the time period. There was little variation in average DO % saturation for the bottom waters from late April to June ranging from 94 to 97% saturation.

4.3 Contingency Plan Thresholds

September 6, 2000 marked the end of the baseline period, completing the data set for MWRA to calculate the threshold values used to compare monitoring results to baseline conditions. Those parameters include background levels for water quality parameters chlorophyll and dissolved oxygen. Annual and seasonal chlorophyll areal concentration thresholds have been developed for the nearfield area and bottom water dissolved oxygen concentration and percent saturation minima thresholds have been designated for the nearfield and Stellwagen Basin (Table 4-1). For the first half of 2001, the only threshold to be examined is the seasonal areal chlorophyll threshold for winter/spring 2001. The winter/spring 2001 mean areal chlorophyll was 69 mg m⁻² well below the caution threshold of 182 mg m⁻² (Table 4-1). The relatively low areal chlorophyll value for winter/spring 2001 is due to

the lack of a large winter/spring bloom, which has occurred in Massachusetts Bay during 6 out of 9 years of baseline monitoring.

Parameter	Time Period	Caution Level	Warning Level	Background	2001
Bottom Water DO concentration	Survey Mean in June-October	< 6.5 mg/l (unless background lower)	< 6.0 mg/l (unless background lower)	Nearfield - 5.75 mg/l Stellwagen - 6.2 mg/l	na
Bottom Water DO %saturation	Survey Mean in June-October	< 80% (unless background lower)	< 75% (unless background lower)	Nearfield - 64.3% Stellwagen - 66.3%	na
	Annual	107 mg/m ²	143 mg/m^2		na
Chlorophyll	Winter/spring	182 mg/m^2			69 mg/m^2
	Summer	80 mg/m^2			na
	Autumn	161 mg/m^2			na

 Table 4-1. Contingency plan threshold values for water quality parameters.

4.4 Summary of Water Column Results

- Stratification was observed during the April combined survey in Boston Harbor, offshore, and boundary stations. Stratification at these stations was driven by a decrease in surface salinity due to March/April runoff, as surface and bottom water temperatures remained relatively unchanged. At coastal and Cape Cod Bay stations, density and salinity decreased from early March to April, but to similar degrees in both surface and bottom waters resulting in weaker April stratification. By June, surface water temperatures had increased by >10°C throughout the bays and there continued to be a relatively large salinity gradient. These conditions resulted in a strong density gradient in Cape Cod Bay and offshore and boundary areas of Massachusetts Bay. Boston Harbor and coastal waters were less stratified.
- In the nearfield, the water column had begun to stratify in late March at the deeper eastern nearfield stations, but remained well mixed further inshore. In early April, a localized mixing event in the nearfield was evident in the data. This may have been related to increased flow from the outfall discharge as a result of late March rain events. By late April, the water column had become stratified across all of the nearfield area, but it was not until June that a strong density gradient ($\Delta \sigma_t > 2$) was established across the nearfield area.
- The nutrient data for February to June 2001 generally followed the "typical" progress of seasonal events in the Massachusetts and Cape Cod Bays.
 - Maximum nutrient concentrations were observed in early February when the water column was well mixed and biological uptake of nutrients was limited.
 - A winter/spring 'diatom bloom' reduced nutrient concentrations in Cape Cod Bay surface waters in February.
 - The minor winter/spring *Phaeocystis* bloom in Massachusetts Bay in early April did not lead to reduced nutrient concentrations except at boundary station F26 and F27 where the *Phaeocystis* abundance was highest.

- Massachusetts Bay nutrient concentrations decreased from early February through April, but did not reach depleted levels in surface waters until June.
- The transfer of effluent discharge from the harbor outfall to Massachusetts Bay outfall reduced the harbor signal of elevated nutrient concentrations (especially NH₄) that had been observed throughout the baseline period. Elevated concentrations of NO₃ and SiO₄ were still observed at the inner harbor station F30 due to riverine inputs.
- The effluent nutrient signal was clearly evident in the nearfield as elevated NH₄ and PO₄ concentrations. Ammonium concentrations are a good tracer, albeit not a conservative tracer, of the effluent plume in the nearfield.
- Chlorophyll concentrations in the nearfield were relatively low in 2001. The nearfield mean areal chlorophyll for winter/spring 2001 of 69 mg m⁻² well below the caution threshold of 182 mg m⁻².
- Chlorophyll concentrations peaked in early February and were highest in Cape Cod Bay coincident with the winter/spring diatom bloom. There was no large increase in chlorophyll associated with the minor bloom of *Phaeocystis* in Massachusetts Bay in April.
- DO concentrations in 2001 were within the range of values observed during previous years and followed the typical trends:
 - In February, the water column was well mixed and DO concentrations were high across the entire region.
 - DO concentrations in the nearfield increased from late March to early April because of increased productivity.
 - The lack of a major winter/spring bloom in Massachusetts and regional influence of the Gulf of Maine led to relatively high bottom water DO concentrations in June. The lowest bottom water DO concentrations were found in Cape Cod Bay. This area is far from the influence of the Gulf of Maine and experienced a winter/spring diatom bloom in February.

(a) Inner Nearfield: N10, N11

Figure 4-1. Time-Series of Average Surface and Bottom Water Density $(\boldsymbol{\sigma}_t)$ in the Nearfield

Figure 4-2. Nearfield Depth vs. Time Contour Plots of Density (σ_t) for Stations N01, N21, and N07

Figure 4-3. Temperature Surface Contour Plot for Farfield Survey WF011 (Feb 01)

Figure 4-4. Salinity Surface Contour Plot for Farfield Survey WF011 (Feb 01)

Figure 4-5. Temperature Surface Contour Plot for Farfield Survey WF014 (Apr 01)

Figure 4-6. Salinity Surface Contour Plot for Farfield Survey WF014 (Apr 01)

(a) Daily Precipitation at Logan Airport

Figure 4-7. Precipitation at Logan Airport and River Discharges for the Charles and Merrimack Rivers

Figure 4-8. Temperature Surface Contour Plot for Farfield Survey WF017 (Jun 01)

Figure 4-9. Salinity Surface Contour Plot for Farfield Survey WF017 (Jun 01)

(a) WF011: February

(b) WF012: March

Figure 4-10. Temperature/Salinity Distribution for All Depths during WF011 (Feb 01) and WF012 (Feb/Mar 01) Surveys

(a) WF014: April

Salinity (PSU)

□Boston Harbor △Boundary + Cape Cod ○Coastal ● Nearfield ◇Offshore

(b) Coastal: F05, F13, F14, F18, F24, F25

Figure 4-15. Density, Salinity, and Temperature Vertical Contour Plots along Boston-Nearfield Transect for Farfield Survey WF012 (Feb/Mar 01)

Figure 4-16. Density, Salinity, and Temperature Vertical Contour Plots along Boston-Nearfield Transect for Farfield Survey WF014 (Apr 01)

Figure 4-17. Density, Salinity, and Temperature Vertical Contour Plots along Boston-Nearfield Transect for Farfield Survey WF017 (Jun 01)

Figure 4-20. Beam Attenuation Surface Contour Plot for Farfield Survey WF011 (Feb 01)

Figure 4-21. Beam Attenuation Surface Contour Plot for Farfield Survey WF014 (Apr 01)

Figure 4-22. Beam Attenuation Surface Contour Plot for Farfield Survey WF017 (Jun 01)

Figure 4-23. Beam Attenuation Vertical Contour Plots along the Boston-Nearfield Transect for Surveys WF011, WF014, and WF017

Figure 4-24. Nitrate Surface Contour Plot for Farfield Survey WF011 (Feb 01)

Figure 4-25. Ammonium Surface Contour Plot for Farfield Survey WF012 (Feb/Mar 01)

Figure 4-26. Nitrate Surface Contour Plot for Farfield Survey WF014 (Apr 01)

Figure 4-27. Nitrate Surface Contour Plot for Farfield Survey WF017 (Jun 01)

Figure 4-28. Ammonium distribution in the nearfield by depth for (a) March 1, 2001 and (b) April 4, 2001. Plots displayed from surface to bottom. Units in µM.

Figure 4-29. Ammonium distribution in the nearfield by depth for (a) May 18, 2001 and (b) June 25, 2001. Plots displayed from surface to bottom. Units in μM.

Figure 4-30. Nitrate Plus Nitrite and Phosphate Vertical Contour Plots along the Boston-Nearfield Transect for Farfield Survey WF014 (Apr 01)

Figure 4-31. Nitrate Plus Nitrite and Phosphate Vertical Contour Plots along the Boston-Nearfield Transect for Farfield Survey WF017 (Jun 01)

Figure 4-32. Ammonium Vertical Contour Plots along the Boston-Nearfield Transect for Farfield Surveys WF012, WF014, and WF017

Figure 4-33. DIN vs. Salinity for All Depths during Farfield Surveys WF011 (Feb 01) and WF012 (Feb/Mar 01)

(a) WF014

(h)	WF017
(U)	

Figure 4-34. DIN vs. Salinity for All Depths during Farfield Surveys WF014 (Apr 01) and WF017 (Jun 01)

Figure 4-35. Nearfield Depth vs. Time Contour Plots of Nitrate for Stations N01, N21, and N07

Figure 4-36. Ammonium Vertical Contour Plots along the Nearfield Transect for Surveys WF014, WN015, WN016, and WF017

Figure 4-37. Fluorescence Surface Contour Plot for Farfield Survey WF011 (Feb 01)

Figure 4-38. Fluorescence Surface Contour Plot for Farfield Survey WF012 (Feb/Mar 01)

Figure 4-39. SeaWiFS Chlorophyll image for Southwestern Gulf of Maine for February 10, 2001

Figure 4-41. Fluorescence Vertical Contour Plots along Three Transects for Farfield Survey WF011 (Feb 01)

Figure 4-42. Fluorescence Vertical Contour Plots along the Boston-Nearfield Transect for Farfield Surveys WF012, WF014, and WF017

Figure 4-43. Time-Series of Bottom, Mid-Depth, and Surface Survey Mean Chlorophyll Concentration in the Nearfield

(a) Dissolved Oxygen Concentration

(b) Dissolved Oxygen Percent Saturation

Figure 4-44. Time-Series of Bottom Water Average DO Concentration and Percentage Saturation in the Farfield

(a) Dissolved Oxygen Concentration

(b) Dissolved Oxygen Percent Saturation

Figure 4-46. Time-Series of Bottom and Surface Average DO Concentration and Percentage Saturation in the Nearfield
5.0 PRODUCTIVITY, RESPIRATION AND PLANKTON RESULTS

5.1 Productivity

Production measurements were taken at two nearfield stations (N04 and N18) and one farfield station (F23) near the entrance of Boston Harbor. All three stations were sampled on February 9 (WF011), March 1 (WF012), April 4 (WF014) and June 25 (WN017). N04 and N18 were additionally sampled on March 26 (WN013), April 26 (WN015), and May 18 (WN016). Samples were collected at five depths throughout the euphotic zone. Production was determined by measuring ¹⁴C at varying light intensities as summarized below and in Appendix A.

In addition to samples collected from the water column, productivity calculations also utilized light attenuation data from a CTD-mounted 4π sensor, and incident light time-series data from a 2π irradiance sensor located on Deer Island, MA. After collection, productivity samples were returned to the Marine Ecosystems Research Laboratory (MERL) in Rhode Island and incubated in temperature controlled incubators. The resulting photosynthesis versus light intensity (P-I) curves (Figure 5-1 and comprehensively in Appendix E) were used, in combination with light attenuation and incident light information, to determine hourly production at 15-min intervals throughout the day for each sampling depth.

For this semi-annual report, areal production (mg C m⁻² d⁻¹) and chlorophyll-specific areal production (mg C mg Chl⁻¹ d⁻¹) are presented (Figures 5-2 and 5-3). Areal productions are determined by integrating measured productivity (and chlorophyll-specific productivity) over the depth interval. Chlorophyll-specific productivity for each depth was first determined by normalizing productivity by measured chlorophyll *a*. Productivity, chlorophyll-specific productivity and chlorophyll *a* for each depth are also presented as contour plots (Figures 5-4 to 5-9).

5.1.1 Areal Production

Areal production at the nearfield stations (N04 and N18) was similar throughout much of the semiannual sampling period (Figure 5-2). Areal production at the two sites was relatively high (~ 875 – 1500 mg C m⁻² d⁻¹) during the initial cruises in February and March (WF011 and WF012). Values decreased at both sites to ~300 – 650 mg C m⁻² d⁻¹ by late March (WN013). Productivity increased to peak winter-spring bloom levels (1722 – 1876 mg C m⁻² d⁻¹) at both stations during the April survey (WF014) then decreased again to ~500 mg C m⁻² d⁻¹ by mid-May (WN016). Productivity increased again at both sites during the survey in late June (WF017).

The timing and magnitude of the maximum winter-spring productivity was similar at both stations. The maximum productivity at station N04 occurred in April with a peak production of 1876 mg C m⁻² d⁻¹. Station N18 reached its maximum seasonal value (1722 mg C m⁻² d⁻¹) on the same date. These spring peaks at both sites were considerably lower than winter-spring bloom maxima in 2000 when values of 2882 - 4017 mg C m⁻² d⁻¹ were observed. The initial productivity peaks in 2001 occurred simultaneously at both stations in early March but reached a higher level (1494 mg C m⁻² d⁻¹) at station N04 compared with N18 (1063 mg C m⁻² d⁻¹). In contrast, during June (WF017) the increase in productivity at station N18 (1336 mg C m⁻² d⁻¹) was greater than the increase at station N04 (802 mg C m⁻² d⁻¹). The minimum production at station N18 (307 mg C m⁻² d⁻¹) was observed in late March. At station N04 the minimum seasonal level was higher (490 mg C m⁻² d⁻¹)

and observed later (May 18, 2001). The patterns observed at the nearfield sites were consistent with those observed during 1999-2000 although the timing of events varied. The patterns were also consistent with patterns seen in chlorophyll distributions (Section 4.2.2).

Boston Harbor displayed a different productivity pattern in comparison with the nearfield sites. At the Boston Harbor productivity/respiration station (station F23), areal production was relatively low (~200 mg C m⁻² d⁻¹) during the initial February survey. Areal production increased markedly to ~1000 mg C m⁻² d⁻¹ by early March (WF012) then declined to moderate levels (~700 mg C m⁻² d⁻¹) in April (WF014). Areal production reached a maximal value of 1409 mg C m⁻² d⁻¹ at station F23 during the June survey (WF017). The production data are in agreement with the chlorophyll data throughout the semi-annual period. Elevated chlorophyll values during WF012 ($2.2 \mu g I^{-1}$) and WF017 ($3.08 \mu g I^{-1}$) were associated with increased productivity levels. During WF011 and WF014, average chlorophyll values at station F23 were relatively low, ranging from 1.18 to 1.25 $\mu g I^{-1}$, and associated with lower phytoplankton production.

Areal production in 2001 followed patterns typically observed in prior years. Distinct winter-spring phytoplankton blooms were observed at both nearfield stations during the sampling period (Figure 5-2). In general, nearfield stations are characterized by the occurrence of a winter-spring bloom. The winter-spring blooms observed at nearfield stations in 1995-2000 generally reached values of 1000 to 4000 mg C m⁻² d⁻¹, with blooms typically lasting 2-3 months. The bloom in 2001 reached peak values of > 1700 mg C m⁻² d⁻¹ and lasted from March through April.

In general, the Boston Harbor site (station F23) exhibits a gradual pattern of increasing areal production from winter through summer rather than the distinct winter-spring peaks observed at the nearfield sites. In 2001 the pattern for station F23 did not conform to this description. Production values increased from February through March but decreased in April before reaching the seasonal maximum in June (Figure 5-2). During 1995-2000, peak areal productions at station F23 ranged from 2000 to 5000 mg C m⁻² d⁻¹ in June-July. The peak areal production observed in 2001 was somewhat lower but also occurred in June.

5.1.2 Chlorophyll-specific Production

Depth-averaged chlorophyll-specific production was similar at both nearfield sites over time (Figure 5-3). Depth-averaged chlorophyll-specific production was relatively low (<10 mg C mg Chl $a^{-1} d^{-1}$) in February. Chlorophyll-specific production increased at both stations by early March (WF012) to values of 16-21 mg C mg Chl $a^{-1} d^{-1}$. Values decreased again during late March then increased to levels >50 mg C mg Chl $a^{-1} d^{-1}$ at both sites in early April. The seasonal nearfield maximum was reached at station N18 in early April (65.8 mg C mg Chl $a^{-1} d^{-1}$). At station N04 the seasonal maximum (54.3 mg C mg Chl $a^{-1} d^{-1}$) was observed on 26 April (WN015). Depth-averaged chlorophyll-specific production gradually declined during the mid-May and late-June sample periods at the nearfield sites. Seasonal maxima at the nearfield sites were greater than 50 mg C mg Chl $a^{-1} d^{-1}$. By comparison chlorophyll-specific rates at harbor station F23 did not exceed 25 mg C mg Chl $a^{-1} d^{-1}$ throughout the sampling cycle (Figure 5-3). The peak chlorophyll-specific rate at station F23 did coincide in time with the peak observed at stations N18 on 4 April, although at a lower rate.

Chlorophyll-specific production is an approximate measure for the efficiency of production and frequently reflects nutrient conditions at the sampling sites. The distribution of chlorophyll-specific production indicates that the efficiency of production was high relative to the amount of biomass present at the nearfield stations. At both stations N04 and N18 the peak chlorophyll-specific

production occurred during or close to the winter-spring production peak. By contrast, efficiency of production was low at the Harbor site relative to biomass availability.

5.1.3 Production at Specified Depths

The spatial and temporal distribution of production, chlorophyll and chlorophyll-specific production on a volumetric basis were summarized by showing contoured values over the sampling period (Figures 5-4 to 5-9). Chlorophyll-specific productions (daily production normalized to chlorophyll concentration at each depth) were calculated to compare production with chlorophyll concentrations. Chlorophyll-specific production can be used as an indicator of the optimal conditions necessary for photosynthesis.

The areal productivity peaks reported during early February - April 2001 at stations N04 and N18 were concentrated in the upper 15 m of the water column (Figures 5-4 and 5-5). At station N04, production was highest (113 mg C m⁻³ d⁻¹) in the surface water on February 9 while a mid-surface to mid-depth (6 – 13.5 m) productivity maximum (78 – 85 mg C m⁻³ d⁻¹) was observed on April 4. At station N04 productivity tended to decrease following the spring peak values. At station N18, productivity also decreased following the spring phytoplankton bloom but increased again in June. Peak production (110 mg C m⁻³ d⁻¹) at station N18 occurred in the surface water on February 9 and was similar to the level observed at N04. Depth-specific production at station N18 was further characterized by a subsurface productivity maximum located at mid-surface and mid-water depths during the winter-spring bloom peak. Elevated production values tended to be correlated with the occurrence of the highest chlorophyll *a* measurements during the initial winter-spring bloom period (Figures 5-7 and 5-8). However, the seasonal maxima in production at both nearfield sites occurred during a period of lower chlorophyll *a* concentrations suggesting an increase in the efficiency of production at this time.

The productivity pattern at specified depths observed in 2001 was similar to that observed in prior years. At station N04 productivity as high as 45 mg C m⁻³ d⁻¹ occurred to depths of 20 m. At station N18 productivity >30 mg C m⁻³ d⁻¹ was rarely observed at depths >20 m. Unlike prior years, elevated productivity (>20 mg C m⁻³ d⁻¹) in the Harbor was detected at depths >20 m. Productivity in the harbor has generally been restricted to the upper 10 m of the water column.

Chlorophyll-specific productions at N04 and N18 tended to be concentrated in the upper portions of the water column (Figures 5-8 and 5-9). Chlorophyll-specific productions increased throughout the sampling season reaching peak depth-specific values at station N04 in late April and during May - June 2001 at station N18. At station N04, the peak depth-specific production per unit chlorophyll *a* coincided with the peak chlorophyll-specific areal production. At station N18 the peak chlorophyll-specific areal productivity occurred in early April (Figure 5-3), when elevated production per unit chlorophyll a was distributed throughout the upper 18 m of the water column. The seasonal maxima observed during May-June at station N18 were confined to the upper 6 m. The increased chlorophyll-specific production observed during April 2001 at station N04 and May-June 2001 at station N18 did not lead to elevated phytoplankton biomass (Figures 5-6 and 5-7). When the efficiency of photosynthesis is high but not reflected in higher phytoplankton biomass (measured as total chlorophyll *a*) it suggest that other processes (such as predation by zooplankton) are important in controlling the patterns observed.

5.2 Respiration

Respiration measurements were made at the same nearfield (N04 and N18) and farfield (F23) stations as productivity and at an additional station in Stellwagen Basin (F19). All four stations were sampled during each of the combined farfield/nearfield surveys. Stations N04 and N18 were also sampled during the three nearfield only surveys. Respiration samples were collected from three depths (surface, mid-depth, and bottom) and were incubated in the dark at *in situ* temperatures for 8±1 days.

Both respiration (in units of μ MO₂ hr⁻¹) and carbon-specific respiration (μ MO₂ μ MC⁻¹ hr⁻¹) rates are presented in the following sections. Carbon-specific respiration was calculated by normalizing respiration rates to the coincident particulate organic carbon (POC) concentrations. Carbon-specific respiration rates provide a relative indication of the biological availability (labile) of the particulate organic material for microbial degradation.

5.2.1 Water Column Respiration

During the surveys conducted in February and March (WF011, WF012 and WN013), respiration rates were low in both the nearfield and farfield areas (<0.10 μ MO₂hr⁻¹; Figures 5-10 and 5-11). In April (WF014), respiration rates remained low in both the nearfield and farfield with all values <0.10 μ MO₂hr⁻¹ except for the surface water at station F19 that was slightly higher (0.14 μ MO₂hr⁻¹). Rates in the surface waters at nearfield stations N04 and N18 were >0.10 μ MO₂hr⁻¹ in late April, but decreased to <0.10 μ MO₂hr⁻¹ in May. Bottom and mid-depth water respiration rates remained <0.10 μ MO₂hr⁻¹ through May. The low respiration rates during the winter/spring of 2001 are likely due to the lack of a major bloom in Massachusetts Bay and thus less organic material to respire. POC concentrations remained at or below 20 μ M in the nearfield from February to May (Figure 5-12a). The winter/spring 2001 respiration rates and POC concentrations in the nearfield were about half the values measured in 2000, which had a major winter-spring *Phaeocystis* bloom.

By June (WF017), respiration rates had increased at each of the stations, but most substantially at station N18. Surface water respiration increase to $0.13 \ \mu MO_2 hr^{-1}$ at station N18, which was comparable the rates in the surface and mid-depth waters at station N04. At station N18, mid-depth respiration increased to almost $0.3 \ \mu MO_2 hr^{-1}$ and to $0.4 \ \mu MO_2 hr^{-1}$ in the bottom waters. Respiration rates remained relatively low in Boston Harbor ranging from 0.12 in the bottom waters to 0.17 at mid-depth. At station F19, bottom and mid-depth rates remained < $0.1 \ \mu MO_2 hr^{-1}$ in June, but surface water respiration increased to $0.22 \ \mu MO_2 hr^{-1}$. It is unclear why respiration rates were so much higher at station N18 compared to station N04 and the farfield stations. In comparison to stations N04 and F19, station N18 is shallower and had warmer bottom water temperatures and was more strongly stratified than these deeper stations, which may have contributed to higher respiration rates. Station N18 is also ~2km downstream of the diffuser and more likely to be impacted by particles in the effluent, and the BOD drain it might put on the system. The potential influence of effluent on nearfield POC concentrations and respiration rates will be investigated further in the 2001 annual report.

5.2.2 Carbon-Specific Respiration

Carbon-specific respiration accounts for the effect variations in the size of the particulate organic carbon (POC) pool have on respiration. Differences in carbon-specific respiration result from variations in the quality of the available particulate organic material or from environmental conditions such as temperature. Particulate organic material that is more easily degraded (more labile) will result in higher carbon-specific respiration. In general, newly produced organic material is the most labile. Water temperature is the main physical characteristic that controls the rate of microbial

oxidation of organic material – the lower the temperature the lower the rate of oxidation. When stratified conditions exist, the productive, warmer surface and/or mid-depth waters usually exhibit higher carbon-specific respiration rates and bottom waters have lower carbon-specific respiration rates due to both lower water temperature and lower substrate quality due to the degradation of particulate organic material during sinking.

POC concentrations were relatively low ($\sim 20 \text{ }\mu\text{M}$) in the nearfield from February to mid-May (Figure 5-12). During this time period nearfield POC concentrations peaked in the surface waters at 26 and 27 μ M, in early February and late April, respectively. In Boston Harbor (station F23), POC concentrations were similarly low in February and by April had only increased to 26 µM in surface and bottom waters and 29 µM at mid-depth (Figure 5-13). At offshore station F19, low concentrations were observed during the two February surveys, but there was a larger increase in POC in April. Bottom water concentration remained relatively low (24 μ M), but POC concentration at mid-depth had increased to 36.5 µM and in the surface waters POC concentration had reached 65 μ M. The carbon-specific respiration rates were low ($\leq 0.005 \mu$ MO₂ μ MC⁻¹hr⁻¹) in the nearfield from early February to early April increasing to $>0.005 \mu MO_2 \mu MC^{-1}hr^{-1}$ in surface and bottom waters at station N18 in late April and in at mid-depth at station N04 in May (Figure 5-14). At the farfield stations during the February and April surveys, carbon specific respiration rates were at a maximum during the early February survey (>0.005 μ MO₂ μ MC⁻¹hr⁻¹ in surface waters at station F23 and in middepth and bottom waters at station F19; Figure 5-15). Carbon specific respiration rates remained $<0.005 \mu$ MO₂ μ MC⁻¹hr⁻¹ from late February to June at Boston Harbor station F23. At station F19, the high POC concentrations in April did not translate into elevated respiration rates and carbon specific respiration for both the February and April surveys was $\leq 0.003 \ \mu MO_2 \mu MC^{-1}hr^{-1}$. The elevated POC concentrations at station F19 during the April survey was likely due to the *Phaeocystis* bloom for which the highest abundances were observed at the boundary and northern offshore stations (F22, F26, and F27). Surface water temperatures remained low in this area ($<5^{\circ}$ C) and likely inhibited respiration.

POC concentrations increased at station N18 from $\sim 20 \,\mu\text{M}$ at each depth in May to 34 μM in surface, 48μ M in mid-depth, and 62μ M in bottom waters. This increase occurred even though there was a decrease in phytoplankton abundance in surface and mid-depth waters at station N18 from mid-May to June (see Figures 5-16 and 5-17). Given the proximity to the diffuser, it is likely that effluent contributed input to the increase in POC at station N18. The increase in POC at station N18 did coincide with the large increase in respiration and an increase in carbon specific respiration to 0.006 and 0.007 μ MO₂ μ MC⁻¹hr⁻¹ in mid-depth and bottom waters, respectively. The availability of organic carbon and the increasing temperatures in mid-depth and bottom waters contributed to the increase in respiration at station N18 in June. A smaller increase in POC concentrations was observed at station N04 from $<20 \mu$ M in May to 21 to 44 μ M in June, which also coincided with a decrease in phytoplankton abundance. In Boston Harbor, POC concentrations increased slightly over the entire water column from April to June, while there was a sharp decrease in POC concentration at all depths at station F19 (Figure 5-13). Carbon specific respiration rates remained low $(<0.005 \text{ uMO}_2\text{uMC}^{-1}\text{hr}^{-1})$ in Boston Harbor in June, but there was a large increase in carbon specific respiration in the surface water at station F19 from 0.003 μ MO₂ μ MC⁻¹hr⁻¹ in April to $0.012 \mu MO_2 \mu MC^{-1}hr^{-1}$ in June. Overall, carbon-specific respiration in the harbor and nearfield was relatively low during this time period. The only time carbon specific respiration exceeded $0.01 \mu MO_2 \mu MC^{-1}hr^{-1}$ was in the surface waters at station F19 in June. These low numbers suggest that there were limited supplies of labile POC available during the winter/spring of 2001, which is congruent with the lack of a major winter/spring bloom in Massachusetts Bay in 2001.

5.3 Plankton Results

Plankton samples were collected on each of the seven surveys conducted during this reporting period. Phytoplankton and zooplankton samples were collected at two stations during each nearfield survey (N04 and N18) and at 13 farfield and the two nearfield stations (total = 15) during the farfield surveys. Two additional stations were sampled for zooplankton in Cape Cod Bay (F32 and F33) during the first three farfield surveys (WF011, WF012, and WF014). Phytoplankton samples included both whole-water and 20 μ m-mesh screened samples, from the surface and subsurface chlorophyll maximum depths. Zooplankton samples were collected by vertical/oblique tows with 102 μ m-mesh nets. Methods of sample collection and analyses are detailed in Albro *et al.* (1998).

In this section, the seasonal trends in plankton abundance and regional characteristics of the plankton assemblages are evaluated. Total abundance and relative abundances of major taxonomic groups are presented for each phytoplankton and zooplankton community. Tables in the appendices provide data on cell and animal densities and relative abundance for all dominant plankton species (>5% abundance): Appendix F – whole water phytoplankton, Appendix G – 20- μ m screened phytoplankton, and Appendix H – zooplankton.

5.3.1 Phytoplankton

5.3.1.1 Seasonal Trends in Total Phytoplankton Abundance

Total phytoplankton abundances in nearfield whole water samples (surface and mid-depth) were variable from February through June (Table 5-1; Figures 5-16 and 5-17). Total abundances were low and varied between approximately $0.26 - 0.57 \times 10^6$ cells L⁻¹ in February- March. Abundances increased somewhat in April (WF014 and WN015) to levels of 0.65-1.56 x 10⁶ cells L⁻¹. Abundances increased in May to levels of 0.84-2.27 x 10⁶ cells L⁻¹, declining slightly to levels of 0.34-1.33 x 10⁶ cells L⁻¹ in June.

Total phytoplankton abundance in farfield whole water samples (surface and mid-depth) showed similar low abundances in February and early March with levels of 0.18-1.61 x 10^6 cells L⁻¹ during surveys WF011 and WF012 (Table 5-1; Figures 5-18 and 5-19). The highest abundances were observed at Cape Cod Bay stations F01 and F02. By early April (WF014) farfield abundances jumped to 0.31-3.38 x 10^6 cells L⁻¹ (Figure 5-20). By June (WF017) phytoplankton abundances had declined, to levels of < 2.0 x 10^6 cells L⁻¹, except at stations in Boston Harbor (stations F23, F30, and F31) and in the coastal domain (stations F13, F24, and F25), where levels at some stations approached 4.42 x 10^6 cells L⁻¹ (Figure 5-21).

Total abundances of dinoflagellates, silicoflagellates and protozoans in 20 μ m-mesh-screened water samples were considerably lower than those recorded for total phytoplankton in whole-water samples, due to the screening technique which selects for larger, albeit rarer cells. Dinoflagellates and silicoflagellates in nearfield and farfield screened phytoplankton samples were < 2.37 x 10³ cells L⁻¹ from February through early March, remaining at levels < 2.83 x 10³ cells L⁻¹ during late April, rebounding to values as high as > 18.8 x 10³ cells L⁻¹ by late June (Table 5-2).

Survey	Dates (2001)	Nearfield Mean	Nearfield Range	Farfield Mean	Farfield Range
WF011	2/7-9, 2/12	0.52	0.37-0.57	0.59	0.24-1.61
WF012	2/27-28, 3/1-2	0.35	0.26-0.44	0.41	0.18-1.02
WN013	3/26	0.44	0.37-0.49	_	—
WF014	4/4-6, 4/9	1.21	1.08-1.56	1.07	0.31-3.38
WN015	4/26	0.79	0.65-0.99	_	_
WN016	5/18	1.33	0.84-2.27	_	_
WF017	6/19-21, 6/25	0.7	0.34-1.33	1.67	0.07-4.42

Table 5-1. Nearfield and farfield averages and ranges of abundance (10⁶ cells/l) of whole-water phytoplankton

Table 5-2.	Nearfield and farfield average and ranges of abundance (cells/l) for >20 µm-screened
	dinoflagellates

Survey	Dates (2001)	Nearfield Mean	Nearfield Range	Farfield Mean	Farfield Range
WF011	2/7-9, 2/12	1448	998-1968	759	166-2373
WF012	2/27-28, 3/1-2	642	498-983	520	158-1205
WN013	3/26	194	125-255	—	—
WF014	4/4-6, 4/9	634	403-863	453	143-1225
WN015	4/26	1598	365-2830	_	_
WN016	5/18	3299	1314-5899	—	—
WF017	6/19-21, 6/25	8471	4043-17035	5190	1125-18865

5.3.1.2 Nearfield Phytoplankton Community Structure

Whole-Water Phytoplankton – In February to early March (WF011and WF012), nearfield wholewater phytoplankton assemblages from both depths were dominated by unidentified microflagellates < 10 μ m in diameter, cryptomonads, centric diatoms such as *Thalassiosira* spp. 10 - 20 μ m in diameter and other centric diatoms such as *Thalassiosira nordenskioldii* and *Guinardia delicatula* (Figures 5-16 and 5-17). In late March (WN013) microflagellates, to a lesser extent cryptomonads, and centric diatoms such as *Thalassiosira nordenskioldii* and *Chaetoceros debilis* were dominant in the nearfield. In early April (WF014), *Phaeocystis pouchetii* became dominant, comprising 52 - 77% of total cells in the nearfield (marked as "Other" in Figures 5-16 and 5-17). Microflagellates accounted for the remainder of cells recorded. By late April (WN015) *Phaeocystis* had disappeared, and from May through June there was increasing abundance and dominance of microflagellates < 10 μ m in diameter, cryptomonads, and centric diatoms such as *Skeletonema costatum*, and *Thalassiosira* sp. In June (WF017), microflagellates dominated in the nearfield (68-81%), with lesser contributions by cryptomonads, and at subsurface depths, the dinoflagellate *Ceratium longipes* (5-10%) and various centric diatoms, including *Chaetoceros compressus*.

Screened Phytoplankton - In early February (WF011), nearfield screened samples were dominated by the thecate dinoflagellates *Prorocentrum micans* and *Ceratium tripos*, and the silicoflagellate *Distephanus speculum*. In late February – early March (WF012) dominants were the dinoflagellates *Ceratium fusus, C. longipes, C. tripos, Prorocentrum micans* and a large (up to 80 µm in longest dimension) species of the dinoflagellate genus *Protoperidinium*, as well as the silicoflagellate

Distephanus speculum. In late March (WN013), these same taxa were abundant in varying proportions, as well as an unidentified athecate dinoflagellate, and the thecate dinoflagellates Dinophysis norvegica, and a small (< 40 μ m in longest dimension) species of the dinoflagellate genus Protoperidinium. The same taxa were abundant in early April (WF014). By late April (WN015), Ceratium longipes, C. tripos, other species of the genus Ceratium, Protocentrum minimum, Protoperidinium spp. and other thecate and athecate dinoflagellates were dominant.

By early May (WN016), *Ceratium longipes*, *C. tripos*, and *Prorocentrum minimum* were dominant. In June (WF017) there was continued dominance by *C. fusus*, *C. longipes* and *C. tripos*, and various other species of the genus *Ceratium*.

5.3.1.3 Regional Phytoplankton Assemblages

Whole-Water Phytoplankton - Whole-water phytoplankton assemblages at farfield stations were generally similar to those in the nearfield during the same time periods, in terms of composition, abundance, and the major *Phaeocystis* bloom in April.

During early February (WF011), most farfield station assemblages were dominated at both depths by the same assemblages that dominated nearfield stations. These included unidentified microflagellates, cryptomonads, and diatoms of the genus *Thalassiosira, Chaetoceros,* and at some stations *Skeletonema costatum* and *Thalassionema nitzschoides* (Figure 5-18), and at station F23, the diatom *Eucampia cornuta*. During late February and early March (WF012) most farfield stations were dominated by microflagellates and the same diatoms as during WF011 (Figure 5-19). A winter/spring bloom of centric diatoms was observed in Cape Cod Bay, but not in Massachusetts Bay.

In April (WF014), most farfield stations were overwhelmingly dominated by *Phaeocystis pouchetii* (Figure 5-20), accounting for up to 85% and 93% of cells recorded for surface and subsurface depths, respectively (means = 43% for the surface and 52% for the subsurface depths). The remainder of cells counted included comparatively minor contributions by unidentified microflagellates (5-86%), with much lesser contributions by cryptomonads, centric diatoms, and at station F01 at the surface, a small < 20 μ m dinoflagellate of the genus *Gymnodinium*. The *Phaeocystis* bloom occurred in Cape Cod Bay, but in small proportions compared to the overwhelming dominance in Massachusetts Bay (Figure 5-20).

By June (WF017), assemblages at both depths at most farfield stations were dominated by the same microflagellates and cryptomonads that dominated the nearfield (Figure 5-21). Subdominant diatom taxa were the same as those recorded for the nearfield during this period (*Skeletonema costatum*, *Chaetoceros* spp., and the dinoflagellates *Ceratium longipes* and a small *Gymnodinium* sp.).

Screened Phytoplankton - Screened-water dinoflagellate assemblages at farfield stations were similar to those in the nearfield during the same time periods.

In early February (WF001), 20 µm-screened surface phytoplankton samples from the farfield were dominated by *Ceratium tripos*, *Prorocentrum micans* and *Distephanus speculum*, as in the nearfield, although the silicoflagellate *Dictyocha fibula* was also moderately abundant at some sub-surface stations. During late February – early March (WF012) farfield assemblages were dominated by these same taxa, as well as those recorded for the nearfield.

In April (WF014), farfield assemblages were dominated by *Ceratium tripos, C. fusus*, and *C. longipes*, and *Dictyocha fibula* with lesser contributions by *Dinophysis norvegica* and

Protoperidinium spp. and the silicoflagellate *Distephanus speculum* at some stations. Screened farfield samples in June (WF017) were dominated by the same assemblages as in the nearfield, including species of the dinoflagellate genus *Ceratium (fusus, longipes, tripos)*.

5.3.1.4 Nuisance Algae

The major bloom of harmful or nuisance phytoplankton species in Massachusetts and Cape Cod Bays during February – July 2001 was the April bloom of *Phaeocystis pouchetii*. At cell concentrations of $0 - 3.13 \times 10^6$ cells L⁻¹ (mean = 0.67×10^6 cells L⁻¹), the 2001 *Phaeocystis pouchetii* bloom did not begin to approach the levels of the 2000 bloom ($0.233-12.258 \times 10^6$ cells L⁻¹; mean = 6.2×10^6 cells L⁻¹). Also, the occurrence of back-to-back *Phaeocystis* blooms in 2000 and 2001 is a break from the pattern that had been observed during baseline monitoring of these blooms occurring in cycles of about 3 years – 1992, 1994, 1997, and 2000 (Libby *et al*, 2001). This departure from the pattern observed during baseline monitoring will be evaluated in more detail in the 2001 Annual Water Column Report.

The toxic dinoflagellate *Alexandrium tamarense* was only sporadically recorded in trace levels. Single cells were recorded for whole-water samples from station N04 during WF014, and station N18 during WF017. There was a single recording of *A. tamarense* from screened-water samples, at 2.5 cells L^{-1} from station N04 during WN015. There were a few additional occurrences of "*Alexandrium* spp." in screened samples that were not positively identified as *A. tamarense*. These included abundances of 15 cells L^{-1} , once in April (WF015), once in May (WN016) at an abundance of 4.3 cells L^{-1} at station N18, and at abundances of 2.5 – 35 cells L^{-1} , at 5 stations (N04, N16, N18, F13, F25, F26) during the June survey (WF017). Thus, abundance of *Alexandrium tamarense* plus *Alexandrium* spp. in screened samples in 2001 was typically low, as in most previous years. Levels since 1994 have not approached those of 1993.

Pseudo-nitzschia pungens was also found sporadically in low abundance, and it never comprised > 5% of cells counted in a given sample. During WF011, *P. pungens* was recorded for 25 samples from 14 stations, but never at abundances > 20,600 cells L⁻¹. During WF012, *P. pungens* was recorded for 18 samples from 12 stations. Half of these were for a single cell only. Abundances never exceeded 24,300 cells L⁻¹. During WN013, *P. pungens* was recorded for all 4 samples from both nearfield stations, but at < 3,800 cells L⁻¹. During WF014, *P. pungens* was recorded for 27 samples from 14 stations at abundances < 14,700 cells L⁻¹. Thereafter, during WN015, WN016, and WF017, *P. pungens* was recorded for 2 samples in each survey, at abundances < 8,400 cells L⁻¹. In summary, nominal *P. pungens* (which could include some toxic *P. multiseries*) was frequently present in the first half of 2001, but never abundant.

Although *Phaeocystis, Alexandrium tamarense and Pseudo-nitzshia* were all observed in February to June 2001, none of their abundances exceeded the caution threshold values.

5.3.2 Zooplankton

5.3.2.1 Seasonal Trends in Total Zooplankton Abundance

Total zooplankton abundance at nearfield stations generally remained low ($< 10.7 - 29.7 \times 10^3$ animals m⁻³) from February through April (Table 5-3; Figure 5-22). Values increased somewhat in May, but declined again in June at station N18 (Figure 5-22a). The May increase was more dramatic at station N04, before a similar June decline (Figure 5-22c). The low zooplankton abundance values in the first half of 2001 were in stark contrast to values for the same period in the previous year. The

maximum 2000 nearfield values of $146-290 \times 10^3$ animals m⁻³ recorded in June and July (WF007, WN008 and WN009) were among the highest during the entire 1992-2000 baseline period.

Total zooplankton abundance at farfield stations in February was generally low (with 3 exceptions, $< 20 \times 10^3$ animals m⁻³ for WF011 and with 2 exceptions $> 20 \times 10^3$ animals m⁻³ for WF012; Figure 5-23). By April (WF014), total zooplankton abundance at farfield stations had increased slightly, with values at 3 of the stations of $> 30 \times 10^3$ animals m⁻³, but most were $< 20 \times 10^3$ animals m⁻³ (Figure 5-24a). Zooplankton abundance in Boston Harbor had increased by June (WF017) to include 2 stations with levels $>60 \times 10^3$ animals m⁻³ but most values elsewhere in the farfield remained $< 30 \times 10^3$ animals m⁻³ (Figure 5-24b).

Survey	Dates (2001)	Nearfield Mean	Nearfield Range	Farfield Mean	Farfield Range
WF011	2/7-9, 2/12	21.1	14.9-28.4	12.0	2.9-23.1
WF012	2/27-28, 3/1-2	12.1	10.7-13.4	12.0	2.0-23.5
WN013	3/26	19.4	16.2-22.7	_	_
WF014	4/4-6, 4/9	14.4	12.2-16.0	20.7	4.2-41.5
WN015	4/26	25.5	21.4-29.7	_	_
WN016	5/18	43.3	32.0-54.7	—	_
WF017	6/19-21, 6/25	10.8	9.7-11.9	30.9	9.0-82.6

 Table 5-3. Nearfield and farfield average and ranges of abundance (10³ animals/m³) for zooplankton

5.3.2.2 Nearfield Zooplankton Community Structure

Nearfield zooplankton assemblages (Figure 5-22) during early February (WF011) were dominated by copepod nauplii (45-46%), as well as copepodites of *Oithona similis* (40-45%). In late February – early March (WF012), the same patterns occurred with dominance by copepod nauplii (37-39%) and *Oithona similis* (37-38%) and barnacle nauplii (up to 11%) and *Pseudocalanus* spp. (6%) copepodites. A similar assortment was also found in late March (WN013) with nearfield dominance by copepod nauplii (52-55%), *Oithona similis* copepodites (15-18%) and *Pseudocalanus* spp. (6%) copepodites.

At nearfield stations during early April (WF014), zooplankton assemblages were dominated by copepod nauplii (39-47%) and copepodites of *Oithona similis* (18%) and copepodites of *Calanus finmarchicus* (10-14%), *Oikopleura dioica* (8-10%) and gastropod veligers (up to 19%). In late April, during WN015 and early May (WN016), nearfield zooplankton assemblages continued to be dominated by the combination of copepod nauplii (18-39%), copepodites of *Oithona similis* (19-27%), and *Pseudocalanus* spp. copepodites (9-11%), with minor contributions (< 10-15%) by bivalve and gastropod veligers, and *Temora longicornis* and *Calanus finmarchicus* copepodites. At nearfield stations during June (WF017), zooplankton assemblages were dominated by copepod nauplii (12-14%) copepodites of *Oithona similis* (15-17%), and *Pseudocalanus* spp. (11-20%).

5.3.2.3 Regional Zooplankton Assemblages

Zooplankton assemblages at farfield stations during early February (WF011) were generally similar to those in the nearfield (Figure 5-23a). Abundant taxa throughout the area included copepod nauplii (17-56%) and *Oithona similis* copepodites and females (12-60% for all stations except F30 and F31 in Boston Harbor). Minor contributions (< 10%) at certain stations came from copepodites of

Pseudocalanus spp. and *Centropages* spp. At stations F30 and F31 in Boston Harbor barnacle nauplii comprised 33-63% of total counts. In late February (WF012; Figure 5-23b), copepod nauplii were dominant (26-67%), followed by *Oithona similis* copepodites and females (12-51%) throughout the study area, except for stations F31 and F23 in Boston Harbor. Barnacle nauplii sporadically comprised up to 11-42% of animals counted at various stations outside Boston Harbor, but 29-86% of total counts at stations F23, F30 and F31 inside the harbor. There were also sporadic contributions at some stations by polychaete larvae (up to 5-14%) and *Pseudocalanus* spp. copepodites (6-11%).

In early April (WF014; Figure 5-24a), copepod nauplii were dominant at all farfield stations (27-50%), as were *Oithona similis* copepodites (8-26%) at all stations except station F30 in Boston Harbor. *Calanus finmarchicus* comprised up to 8-17% of abundance at most stations. There were sporadic contributions at several stations by *Oikopleura dioica* (up to 5-16%) and *Pseudocalanus* spp. copepodites (up to 5-20%). Sporadic minor (< 10%) contributions came from various meroplankters, including bivalve and gastropod veligers, barnacle nauplii, and echinoderm plutei, but polychaete larvae comprised 9-39% of total abundance at stations F30 and F31 in Boston Harbor.

During June (WF017), farfield zooplankton assemblages (Figure 5-24b) were again dominated by copepod nauplii (14-37% for all stations except F22), copepodites of *Oithona similis* (10-57% for all stations except in Boston Harbor), and *Pseudocalanus* spp. (up to 10-24% at 7 stations where present). There were also sporadic contributions at some stations from bivalve veligers (up to 17-27%), *Calanus finmarchicus* copepodites (17% at station F27), *Centropages* spp. copepodites (up to 5-19%), and *Evadne nordmani* (5% at station F26). *Acartia* spp. adults and copepodites accounted for 52 and 64% of total abundance at stations F23 and F30, respectively, in Boston Harbor, and *Acartia* spp. copepodites comprised 9% of abundance at station F31 in Boston Harbor.

In summary, zooplankton assemblages during the first half of 2001 were comprised of taxa typically recorded for the same time of year in previous years.

5.4 Summary of Biological Results

- Areal production peaked (~1900 mg C m⁻² d⁻¹) at station N18 in the nearfield in early April, but 2001 winter/spring peak production rates were considerably lower than winter-spring bloom maxima for 2000 when values of 2882 4017 mg C m⁻² d⁻¹ were observed.
- Boston Harbor station F23 did not conform to the typical pattern of a gradual increase in areal production from winter through summer as production values increased from February through March but decreased in April before reaching the seasonal maximum in June (1409 mg C m⁻² d⁻¹).
- During previous years (1995-2000), peak areal productions at station F23 ranged from 2000 to 5000 mg C m⁻² d⁻¹ in June-July. The peak areal production observed in 2001 was lower but the time of the peak (June) was the same.
- Respiration rates in 2001 were much lower than those measured in 1999 and 2000. The low respiration rates during the winter/spring of 2001 were related to the low concentrations of organic carbon and expected low rate of transfer of carbon to bottom waters because of the lack of a substantial bloom in 2001.
- The main exception to the trend towards low respiration and low POC concentrations was the elevated rates and concentrations at station N18 in June. This may have been due to the influence of effluent from the nearby outfall.

- Whole-water phytoplankton assemblages were dominated by unidentified microflagellates and several species of centric diatoms except during the April *Phaeocystis* bloom. This is typical for the first half of the year in terms of taxonomic composition.
- A centric diatom bloom occurred in Cape Cod Bay in February, but was not observed in Massachusetts Bay.
- The *Phaeocystis pouchetii* bloom in April, 2001 was much less abundant than the bloom of this species during the same period the previous year. The 2001 *Phaeocystis* bloom was also a departure from the 3-year cycle for these blooms that had been observed during the baseline period (1992-2000).
- There were no blooms of harmful or nuisance phytoplankton species in Massachusetts and Cape Cod Bays during February June, 2001, other than the April bloom of *Phaeocystis pouchetii*. While the dinoflagellate *Alexandrium tamarense* and the diatom of *Pseudonitzschia pungens* were recorded, they were only present in very low abundance. None of the nuisance algae caution thresholds were exceeded during this period.
- Total zooplankton abundance did not increase from February through July as usual, and zooplankton counts were considerably lower than for the same period in the previous year. Zooplankton assemblages during the first half of 2001 were comprised of taxa recorded for the same time of year in previous years.
- Zooplankton assemblages during the first half of 2001 were comprised of taxa recorded for the same time of year in previous years.

Figure 5-1. An example photosynthesis irradiance curve from station N04 collected February 2001

Figure 5-2. Time series of areal production (mg C m⁻² d⁻¹) for stations N04, N18 and F23

Figure 5-3. Time series of depth-averaged chlorophyll-specific production (mg C mg Chl a⁻¹ d⁻¹) for stations N04, N18 and F23

Daily Production at Station N04

Figure 5-4. Time-series of contoured daily production (mgCm⁻³d⁻¹) over depth at station N04

Daily Production at Station N18

Figure 5-5. Time-series of contoured daily production (mgCm⁻³d⁻¹) over depth at station N18

Chlorophyll a at Station N04

Figure 5-6. Time-series of contoured chlorophyll *a* concentration (µgL⁻¹) over depth at station N04

Chlorophyll a at Station N18

Figure 5-7. Time-series of contoured chlorophyll *a* concentration (µgL⁻¹) over depth at station N18

Chlorophyll-Specific Production at Station N04

Chlorophyll-Specific Production at Station N18

(a) Station N18

Figure 5-10. Time-series plots of respiration $(\mu MO_2hr^{\text{-}1}) stations N18$ and N04

(a) Station F23

Figure 5-11. Time-series plots of respiration $(\mu MO_2hr^{\text{-}1})$ stations F23 and F19

(a) Station N18

(b) Station N04

Figure 5-12. Time-series plots of POC (μMC) at stations N18 and N04

(a) Station F23

(b) Station F19

Figure 5-13. Time-series plots of POC (μMC) at stations F23 and F19

(a) Station N18

Figure 5-14. Time-series plots of carbon-specific respiration $(\mu MO_2\mu MC^{\text{-1}}hr^{\text{-1}})$ at stations N18 and N04

(a) Station F23

Figure 5-15. Time-series plots of carbon-specific respiration $(\mu MO_2\mu MC^{-1}hr^{-1})$ at stations F23 and F19

Figure 5-16. Phytoplankton Abundance by Major Taxonomic Group, Nearfield Surface Samples

Figure 5-17. Phytoplankton Abundance by Major Taxonomic Group, Nearfield Mid-Depth Samples

Figure 5-18. Phytoplankton Abundance by Major Taxonomic Group – WF011 Farfield Survey Results (February 7 – 12)

Figure 5-19. Phytoplankton Abundance by Major Taxonomic Group – WF012 Farfield Survey Results (February 27 – March 2)

Figure 5-20. Phytoplankton Abundance by Major Taxonomic Group – WF014 Farfield Survey Results (April 4 – 9)

Figure 5-21. Phytoplankton Abundance by Major Taxonomic Group – WF017 Farfield Survey Results (June 19 – 25)

Figure 5-22. Zooplankton abundance by major taxonomic group at stations N18, N16 and N04.

Figure 5-23. Zooplankton abundance by major taxonomic group during (a) WF011 and (b) WF012 farfield surveys

Figure 5-24. Zooplankton abundance by major taxonomic group during (a) WF014 and (b) WF017 farfield surveys
6.0 SUMMARY OF MAJOR WATER COLUMN EVENTS

The winter to spring transition in Massachusetts and Cape Cod Bays is characterized by a typical series of physical, biological, and chemical events: seasonal stratification, the winter/spring phytoplankton bloom, and nutrient depletion. This was generally the case in 2001 although no major phytoplankton bloom was observed in Massachusetts Bay. There was, however, a winter/spring bloom of centric diatoms in Cape Cod Bay and a minor bloom of *Phaeocystis pouchetii* that was most prominent in northeastern Massachusetts Bay. With the lack of a major bloom, productivity and chlorophyll concentrations remained relatively low throughout this time period and surface waters across much of the region were not depleted with respect to nutrients until June. This section presents a summary of these events and the integrated physical, biological, and chemical trends discussed in previous sections.

In the nearfield, the water column had begun to stratify in late March at the deeper eastern nearfield stations, but remained well mixed further inshore. Stratification was observed during the April combined survey in Boston Harbor, offshore, and boundary stations. The development of stratification at these stations was driven by a decrease in surface salinity due to March/April runoff, as surface and bottom water temperatures remained relatively unchanged. At coastal and Cape Cod Bay stations, density and salinity decreased from early March to April, but to similar degrees in both surface and bottom waters resulting in weaker April stratification. In early April, a localized mixing event in the nearfield was observed and may have been related to increased flow from the outfall discharge as a result of late March rain events. By late April, the water column had become weakly stratified across all of the nearfield area. By June, surface water temperatures had increased by >10°C throughout the bays and there continued to be a relatively large salinity gradient. These conditions resulted in a strong density gradient in Cape Cod Bay and offshore and boundary areas of Massachusetts Bay.

The nutrient data for February to June 2001 generally followed the "typical" progress of seasonal events in Massachusetts and Cape Cod Bays. Maximum nutrient concentrations were observed in early February when the water column was well mixed and biological uptake of nutrients was limited. The winter/spring 'diatom bloom' reduced nutrient concentrations in Cape Cod Bay surface waters in February. The minor winter/spring *Phaeocystis* bloom in Massachusetts Bay in early April did not lead to reduced nutrient concentrations except at boundary station F26 and F27 where the *Phaeocystis* abundance was highest. Massachusetts Bay nutrient concentrations decreased from early February through April, but did not reach depleted levels in surface waters until June.

The transfer of effluent discharge from the harbor outfall to the Massachusetts Bay outfall on September 6, 2000 reduced the harbor signal of elevated nutrient concentrations (especially NH_4) that had been observed throughout the baseline period. Elevated concentrations of NO_3 and SiO_4 were still observed at the inner harbor station F30 due to riverine inputs. The effluent nutrient signal was clearly evident in the nearfield as elevated NH_4 and PO_4 concentrations. Ammonium concentrations continue to be a good tracer, albeit not a conservative tracer, of the effluent plume in the nearfield. High flow rates due to late March and June rain events appear to have influenced water quality measurements in the nearfield. In early April, the nearfield was less stratified than surrounding waters and elevated NH_4 concentrations were present in surface waters. In June, no anomalous salinity or density signal was observed in the nearfield, but elevated NH_4 (and PO_4) concentrations were measured in the surface waters suggesting that the plume had reached the surface. Chlorophyll concentrations in the nearfield were relatively low in 2001 and the nearfield mean areal chlorophyll for winter/spring 2001 of 69 mg m⁻² well below the caution threshold of 182 mg m⁻². Chlorophyll concentrations peaked in early February and were highest in Cape Cod Bay coincident with the winter/spring diatom bloom. Areal production at the two nearfield stations was relatively high during February surveys. Chlorophyll concentrations increased and productivity peaked (~1900 mg C m⁻² d⁻¹) in the nearfield in early April, but there was no large increase in chlorophyll associated with the minor bloom of *Phaeocystis* in Massachusetts Bay. The 2001 winter/spring peak production rates were considerably lower than winter-spring bloom maxima for 2000 when values of 2882 – 4017 mg C m⁻² d⁻¹ were observed.

In general, Boston Harbor exhibits a gradual pattern of increasing areal production from winter through summer rather than the distinct winter-spring peaks observed at the nearfield sites. In 2001 the pattern for station F23 did not conform to this description as production values increased from February through March but decreased in April before reaching the seasonal maximum in June (1409 mg C m⁻² d⁻¹). During previous years (1995-2000), peak areal productions at station F23 ranged from 2000 to 5000 mg C m⁻² d⁻¹ in June-July. The peak areal production observed in 2001 was lower but the time of the peak (June) was the same.

DO concentrations in 2001 were within the range of values observed during previous years and followed the typical trends. Maximum concentrations occurred in February when the water column was well mixed. There was a slight increase in surface DO concentrations in April coincident with the peak in productivity. DO concentrations reached minima for this time period in June in most of Massachusetts and Cape Cod Bays, but bottom water DO concentrations in June 2001 were higher than those measured during the two previous years. There was an increase in bottom water DO concentrations at the boundary stations from April to June due to an influx of waters from the Gulf of Maine. The lack of a major winter/spring bloom in Massachusetts Bay and the regional influence of the Gulf of Maine led to relatively high bottom water DO concentrations in June. The lowest bottom water DO concentrations were found in Cape Cod Bay, which is not strongly influenced by the Gulf of Maine and had a winter/spring diatom bloom in February. Respiration rates in 2001 were low compared to 1999 and 2000, which is not surprising as both years had significant winter/spring blooms. The low respiration rates observed during the winter/spring of 2001 were likely related to the relatively low concentrations of organic carbon and expected low rate of transfer of carbon to bottom waters because of the lack of a substantial bloom in 2001. The main exception to the low respiration rates was observed in June at station N18 where bottom water respiration was $0.4 \,\mu\text{M}$ O₂ hr⁻¹. This was coincident with a very high POC concentration (62 μ M) resulting in a relatively high carbon-specific respiration rate. This indicates that not only was POC available, but it was also more labile. The elevated POC concentrations may have been due to effluent from the nearby $(\sim 2 \text{ km})$ outfall. The effect of these physical and biological factors and the influence of the outfall on nearfield respiration rates will be evaluated in more detail in the 2001 Annual Report.

Whole-water phytoplankton assemblages were dominated by unidentified microflagellates and several species of centric diatoms except during the April *Phaeocystis* bloom. This is typical for the first half of the year in terms of taxonomic composition. The *Phaeocystis pouchetii* bloom in April 2001 was much less abundant than the bloom of this species during the same period the previous year. The 2001 *Phaeocystis* bloom was also a departure from the 3-year cycle for these blooms that had been observed during the baseline period (Libby *et al.*, 2001). There were no blooms of harmful or nuisance phytoplankton species in Massachusetts and Cape Cod Bays during this time period, other than the April bloom of *Phaeocystis pouchetii*. While the dinoflagellate *Alexandrium tamarense* and the diatom of *Pseudo-nitzschia pungens* were recorded, they were present in very low abundance.

Total zooplankton abundance did not increase from February through July as has usually been the case, and zooplankton counts were considerably lower than for the same period the previous year. The relatively low abundance of zooplankton may have been due to bottom-up control because phytoplankton was relatively sparse. Zooplankton assemblages during the first half of 2001 were comprised of taxa recorded for the same time of year in previous years.

September 6, 2000 marked the end of the baseline period, completing the data set for MWRA to calculate the threshold values used to compare monitoring results to baseline conditions. The water quality parameters included as thresholds are annual and seasonal chlorophyll levels in the nearfield, dissolved oxygen concentrations and percent saturation in bottom waters of the nearfield and Stellwagen Basin, and nuisance algae (*Alexandrium, Phaeocystis*, and *Pseudo-nitzschia*). For the winter/spring of 2001, data are only compared versus the thresholds for winter/spring areal chlorophyll and the nuisance algae. The nearfield mean areal chlorophyll value was 69 mg m⁻² for winter/spring 2001, which is well below the caution threshold of 182 mg m⁻² and none of the nuisance algae thresholds were exceeded for winter/spring 2001.

A number of topics were called out in this report that will be discussed in greater detail in the 2001 annual water column report and the nutrient issues review including the following:

- Effect of physical, biological, and regional factors on bottom water DO concentrations in Massachusetts Bay. This will be evaluated in detail in the nutrient issues review and results will be included in the annual report to describe trends during this monitoring year.
- Continued observation of elevated ammonium concentrations and the potential effect on biological processes in the nearfield. Including the potential for incursions of the effluent plume into surface waters during stratified conditions.
- Potential influence of outfall on nearfield bottom water respiration rates and subsequent affect on dissolved oxygen concentrations.
- Evaluation of controlling factors inhibiting or contributing to the occurrence of winter/spring blooms in Massachusetts Bay.
- The departure from the apparent 3-year cycle of *Phaeocystis* blooms that was observed in Massachusetts Bay during the baseline period and the regional expression of these blooms (*i.e.* Gulf of Maine).

7.0 REFERENCES

Albro CS, Trulli HK, Boyle JD, Sauchuk S, Oviatt CA, Zimmerman C, Turner JT, Borkman D, Tucker J. 2002. In prep. Combined work/quality assurance plan for baseline water column monitoring: 1998-2001, Revision 1. Boston: Massachusetts Water Resources Authority. Report ENQUAD ms-048. 121 p.

Anderson DM. 1997. Bloom dynamics of toxic Alexandrium species in the northeastern U.S. Limnology & Oceanography 42: 1009-1022.

Libby PS, Hunt CD, McLeod LA, Geyer WR, Keller AA, Oviatt CA, Borkman D, Turner JT. 2001. 2000 Annual Water Column Monitoring Report. Boston: Massachusetts Water Resources Authority. Report ENQUAD 2001-XX. 179 p.

MWRA. 1997. Massachusetts Water Resources Authority effluent outfall monitoring plan: Phase II post discharge monitoring. Boston: Massachusetts Water Resources Authority. Report ENQUAD ms-044. 61 p.

MWRA. 2001. Massachusetts Water Resources Authority Contingency Plan Revision 1. Boston: Massachusetts Water Resources Authority. Report ENQUAD ms-071. 47 p.

APPENDIX A

Productivity Methods

METHODS

URI conducted a study of the reliability of using reduced sample volumes to measure primary productivity using ¹⁴C. The study found that analyses using 5-mL samples could produce results that were comparable to analyses using larger sample volumes. A summary of the study is in Appendix E of the Combined work/quality assurance plan for baseline water quality monitoring: 1998-2000 (Albro *et. al.*, 1998).

URI also measured the effects of sample holding time and increased incubation time on measurements of primary productivity using the photosynthetrons at URI. The results, summarized below, show that sample analysis must begin within 6 h of sample collection and incubation between 0.5 h and 2 h produce comparable results.

Incubation Time			
Time (b)	Productivity (g/C/m²/h)		
0.5	0.195		
1	0.207		
1.5	0.182		
2	0.212		

Holding Time			
Time (h)	Productivity (g/C/m²/h)		
0	0.207		
4	0.182		
6	0.210		
8	0.177		

Based on the results of these tests the following method has been used to collect and analyze water samples for productivity.

Primary Analysis by ¹⁴C – Field Procedures

From each of 5 depths at each productivity station, samples are obtained by filtration through $300-\mu$ m-mesh screen (to remove large zooplankton) from the Rosette sampling bottle into opaque 1-L polyethylene bottles. The bottles are rinsed twice prior to filling. The samples are then placed in a cooler and transferred to the URI laboratory within 5 hours of water sampling. Productivity samples are taken from the same bottles and depths as the other analyses.

Primary Analysis by ¹⁴C – Laboratory Procedures

Under subdued green light, each depth is processed separately starting with the surface water sample. Each sample is mixed thoroughly and then poured into a repipette set to deliver 5 mL. The repipette is rinsed twice with sample prior to use. The delivery tip of the repipette is flushed three times and 5 mL of sample will be pipetted into 20 mL borosilicate vials. A total of 16 bottles (14-16 light bottles, 2 dark bottles) are filled for each depth. These vials are incubated in a light and temperature controlled incubator. Light bottles from each depth are incubated at 14 to 16 light intensities (250 w Tungsten-halogen lamps attenuated with neutral density filters, range 0 to 2000 μ E m⁻² s⁻¹) and all bottles are incubated within 2°C of the *in situ* temperature.

The 5 mL samples are incubated with 100 μ L of 10 μ Ci/mL (1 μ Ci for 5 mL sample) Carbon-14 (¹⁴C) stock solution. All vials are then placed in the incubator for two hours. Time and temperature are recorded at the start and end of the incubation period. The light intensity within the incubator is measured before and after the incubation period. Temperature is constantly monitored throughout the incubation period and the location of each vial in the incubator is recorded. Upon removal from the incubator, 100 μ L of 0.05N HCl, is added to each vial. Vials will remain loosely capped while shaken overnight. The following morning 15 mL Ecolume is

added to each vial, which is again loosely capped and shaken overnight. Two days following the cruise, vials are tightly capped and placed on the Beckman LS 3801 to be counted.

Calculation of Primary Production. Volume-specific primary production is calculated using equations similar to that of Strickland and Parsons (1972) as follows:

$$P(i) = \frac{1.05(DPM(i))DIC}{A_{sp}T}$$
$$P(d) = \frac{1.05(DPM(d))DIC}{A_{sp}T}$$
$$A_{sp} = DMP(sa) - DPM(back)$$

where:

P(i) = primary production rate at light intensity i (μ gC L⁻¹h⁻¹ or mgC m⁻³h⁻¹) P(d) = dark production, (μ gC L⁻¹h⁻¹ or mgC m⁻³h⁻¹) DPM(i) = dpm in sample incubated at light intensity i DPM(d) = dpm in dark incubated sample DPM(back) = background dpm in vial containing only scintillation cocktail DPM(sa) = specific activity added to incubation samples (DPM) T = incubation time (h) DIC = concentration of dissolved inorganic carbon (μ g/mL)

Table A-1 shows the frequency that primary productivity measurements and calculations are performed per vial, depth, station, and survey.

Measurement/ Calculation	Vial	Depth	Station	Survey
DPM(i)	 ✓ 			
P(i)	v			
DIC		~		
P(d)		~		
DPM(d)		~		
Asp		·····	 ✓ 	
Т			V	
DPM(sa)			 ✓ 	
DPM(back)				 ✓

Table A-1. Measurement frequency for variables involved in calculation of primary
production.

P-I curves. For each of the 5 depths for each photosynthesis station a P–I curve is obtained from the data P(I) = P(i)-P(d) vs. the irradiance $(I, \mu E m^{-2}s^{-1})$ to which the incubating sample is exposed. The P-I curves are fit via one of two possible models, depending upon whether or not significant photo-inhibition occurs. In cases where photoinhibition is evident the model of Platt *et al.* (1980) is fit (SAS 1985) to obtain the theoretical maximum production, and terms for light-dependent rise in production and degree of photoinhibition:

$$P(I) = P_{sb}(1 - e^{-a})e^{-b}$$

where:

P(I) = primary production at irradiance I, corrected for dark fixation (P(i)-P(d)) $P_{sb} = \text{theoretical maximum production without photoinhibition}$ $a = \frac{\alpha I}{P_{sb}} \text{ and } \alpha \text{ is the initial slope, the light-dependent rise in production}$ $b = \frac{\beta I}{P_{sb}} \text{ and } \beta \text{ is a term relaying the degree of photoinhibition}$

If β is not significantly different from zero, an alternative model of Webb *et al.* (1974) is similarly fit to obtain the maximum production and the term for light-dependent rise in production:

$$P(I) = P_{\max}(1 - e^{-a'})$$

where:

P(I) = primary production at irradiance I corrected for dark fixation (P(i)-P(d)) P_{max} = light saturated maximum production $a' = \frac{\alpha I}{P_{\text{max}}}$ and α is the initial slope the light-dependent rise in production

 P_{max} and P_{sb} are not equivalent but they are mathematically related using the equation:

$$P_{max} = P_{sb} \left[\alpha / (\alpha + \beta) \right] \left[\beta / (\alpha + \beta) \right]^{\beta / \alpha}$$

Light vs. Depth Profiles. To obtain a numerical representation of the light field throughout the water column averaged CTD light profiles (0.5 m intervals) are fit (SAS 1985) to an empirical sum of exponentials equation of the form:

$$I_{Z} = A_{1}e^{-a_{1}Z} + A_{2}e^{-a_{2}Z} + \dots$$

which is an expansion of the standard irradiance vs. depth equation:

$$I_Z = I_0 e^{-kZ}$$

where:

 I_Z = light irradiance at depth Z

 I_0 = incident irradiance (Z = 0)

k = extinction coefficient

 $A_1, A_2 \dots$ = factors relating to incident irradiance ($I_0 = A_1 + A_2 + \dots$)

 $a_1, a_2 \dots$ = coefficients relating to the extinction coefficient ($k = a_1 + a_2 + \dots$)

The expanded equation is used in most instances as spectral shifts, pigment layering and other factors result in deviation from the idealized standard irradiance vs. depth equation. The simplest form of the expanded equation is implemented to adequately model the light field, which in the large majority of cases is the sum of two exponentials.

Daily Incident Light Field. Incident light data are collected and recorded at 15 min intervals using a Biospherical scalar sensor located at nearby Deer Island. These data are used as the photoperiod incident light (I_o) time series described in a following section. The light intensity measured in the incubator is collected with a cosine sensor. The cosine values are converted to 4 π readings using an empirically determined equation:

 $4\pi = 17.58 + 1.0529 (\cos) - 0.00008 (\cos)^2$

with both 4π and cosine light intensity in units of $\mu E m^{-2} \sec^{-1}$. The r² for the empirical equation is 0.99. The light data measured in the incubator are converted to 4π values using the above empirical equation prior to fitting the P-I curves. During normal CTD hydrocasts the incident light field is also routinely measured via a deck light sensor at high temporal resolution.

Calculation of Daily Primary Production. Given the best fit parameters (P_{sb} or P_{max} , α , β) of the P-I curves obtained for each of the five sampling depths, the in situ light intensity $(i.e., I_2)$ at each depth determined from the sum of exponential fits on the in situ light field, and the photoperiod incident light (I_0) time series, it is possible to compute daily volumetric production for each depth. To do this at a given depth, hourly production is determined for the in situ light intensity computed for each 15 min interval of the photoperiod (6 AM to 6 PM), using the appropriate P-I parameters and in situ irradiance. Daily production ($\mu g C L^{-1} d^{-1}$) is obtained by integration of the determined activity throughout the 12-hour photoperiod. An advantage of this approach is that seasonal changes in photoperiod length are automatically incorporated into the integral computation. For example, during winter months computed early morning and late afternoon production contributes minimally to whole day production, whereas during summer months the relative contribution during these hours is more significant. The investigator does not have to decide which factor to employ when converting hourly production to daily production. The primary assumption of the approach is that the P-I relationship obtained at the time of sample procurement (towards the middle of the photoperiod) is representative of the majority of production occurring during the photoperiod, which should be the case.

Calculation of Daily Areal Production. Areal production (mg C $m^{-2} d^{-1}$) is obtained by trapezoidal integration of daily volumetric production vs. depth down to the 1% light level.

Calculation of Chlorophyll-Specific Parameters. Chlorophyll-specific measures of the various parameters (including the P-I parameters) is determined by dividing by the appropriate chlorophyll term obtained from independent measurements.

References

Albro CS, Trulli HK, Boyle JD, Sauchuk SA, Oviatt CA, Keller AA, Zimmerman C, Turner J, Borkman D, Tucker J. 1998. Combined work/quality assurance plan for baseline water quality monitoring 1998-2000. Boston: Massachusetts Water Resources Authority. Report ENQUAD ms-48. 121 p.

Platt T, CL Gallegos, and WG Harrison. 1980 Photoinhibition of photosynthesis and light for natural assemblages of coastal marine phytoplankton. J. Mar. Res. 38:687-701.

SAS. 1985. SAS Users Guide: Statistics. SAS Institute, Inc., Cary, NC. 956 pp.

Webb WL, M Newron, and D Starr. 1974. Carbon dioxide exchange of Alnus rubra: a mathematical

APPENDIX B

Surface Contour Plots – Farfield Surveys

.

Surface Contour Plots – Farfield Surveys

All contour plots were created using data from the surface bottle sample (A) Each plot is labeled with the survey number (WF011 through WN017), and parameter. The minimum and maximum value, and the station where the value was measured are provided for each plot, as well as the contour interval and parameter units.

Figure B-1. Temperature Surface Contour Plot for Farfield Survey WF011 (Feb 01)

Figure B-2. Temperature Surface Contour Plot for Farfield Survey WF012 (Feb 01)

February, 2002

Figure B-3. Temperature Surface Contour Plot for Farfield Survey WF014 (Apr 01)

Figure B-5. Salinity Surface Contour Plot for Farfield Survey WF011 (Feb 01)

~

Figure B-6. Salinity Surface Contour Plot for Farfield Survey WF012 (Feb 01)

Figure B-9. Fluorescence Surface Contour Plot for Farfield Survey WF011 (Feb 01)

February, 2002

Figure B-10. Fluorescence Surface Contour Plot for Farfield Survey WF012 (Feb 01)

February, 2002

Figure B-11. Fluorescence Surface Contour Plot for Farfield Survey WF014 (Apr 01)

Figure B-12. Fluorescence Surface Contour Plot for Farfield Survey WF017 (Jun 01)

Figure B-14. DIN Surface Contour Plot for Farfield Survey WF012 (Feb 01)

Figure B-15. DIN Surface Contour Plot for Farfield Survey WF014 (Apr 01)

Figure B-16. DIN Surface Contour Plot for Farfield Survey WF017 (Jun 01)

Figure B-18. Silicate Surface Contour Plot for Farfield Survey WF012 (Feb 01)

February, 2002

Figure B-19. Silicate Surface Contour Plot for Farfield Survey WF014 (Apr 01)

February, 2002

Figure B-20. Silicate Surface Contour Plot for Farfield Survey WF017 (Jun 01)

February, 2002

Figure B-21. Phosphate Surface Contour Plot for Farfield Survey WF011 (Feb 01)

Figure B-22. Phosphate Surface Contour Plot for Farfield Survey WF012 (Feb 01)

February, 2002

Figure B-23. Phosphate Surface Contour Plot for Farfield Survey WF014 (Apr 01)

Figure B-25. Nitrate Surface Contour Plot for Farfield Survey WF011 (Feb 01)

Figure B-26. Nitrate Surface Contour Plot for Farfield Survey WF012 (Feb 01)

Figure B-27. Nitrate Surface Contour Plot for Farfield Survey WF014 (Apr 01)

0.04

0.46

0.22

41° 50' N

42° 00' N

Sampling Depth: Surface Last Survey Day: 6/25/2001 Sampling Event: WF017 Minimum Value 0.01 µM at N05

Maximum Value 2.75 µM at F23

10

kilometers

15

Contour interval =1 μ M

5

0

Figure B-28. Nitrate Surface Contour Plot for Farfield Survey WF017 (Jun 01)

20

February, 2002

Figure B-29. Beam Attenuation Surface Contour Plot for Farfield Survey WF011 (Feb 01)

February, 2002

Figure B-30. Beam Attenuation Surface Contour Plot for Farfield Survey WF012 (Feb 01)

February, 2002

Figure B-31. Beam Attenuation Surface Contour Plot for Farfield Survey WF014 (Apr 01)

Semiannual Water Column Monitoring Report (February – July 2001) Appendix B

February, 2002

Figure B-32. Beam Attenuation Surface Contour Plot for Farfield Survey WF017 (Jun 01)

APPENDIX C

Transect Plots

Transect Plots – Farfield Surveys

Data were contoured relative to water depth and distance between stations as shown on the transects (Figure 1-3) Distances between stations and water depth at each station is shown on the transect. Water depth is labeled with negative values in meters, with zero depth at the sea surface. The depth to the seabed is shown by the solid shading at the bottom of each plot. Three transects (Boston-Nearfield, Cohasset, and Marshfield) are provided on each plot, as well as shaded contour levels on the scale bar at the bottom of the plot. Contour units are as noted on the plot. Each plot is labeled on the bottom left with the parameter, survey number, and last day of the survey date. The data used for the contours were based on high-resolution *in situ* hydrographic casts and individual data points as noted below.

Parameter	Data Used
Density (Sigma-T)	High-resolution in situ data
Temperature	High-resolution in situ data
Salinity	High-resolution in situ data
Transmissivity	High-resolution in situ data
Nitrate plus Nitrite	Individual data points based on discrete water column
Phosphate	Individual data points based on discrete water column
Silicate	Individual data points based on discrete water column
Ammonium	Individual data points based on discrete water column
Fluorescence	High-resolution in situ data
Dissolved Oxygen	High-resolution in situ data

Figure C-1. Density Transect Plots (West - East) for Farfield Survey WF011 (Feb 01)

Figure C-2. Density Transect Plots (North - South) for Farfield Survey WF011 (Feb 01)

Figure C-4. Density Transect Plots (North - South) for Farfield Survey WF012 (Feb 01)

Figure C-5. Density Transect Plots (West - East) for Farfield Survey WF014 (Apr 01)

Figure C-6. Density Transect Plots (North - South) for Farfield Survey WF014 (Apr 01)

Figure C-7. Density Transect Plots (West - East) for Farfield Survey WF017 (Jun 01)

Figure C-8. Density Transect Plots (North - South) for Farfield Survey WF017 (Jun 01)

Figure C- 10. Temperature Transect Plots (North - South) for Farfield Survey WF011 (Feb 01)

for Farfield Survey WF012 (Feb 01)

Figure C-12. Temperature Transect Plots (North - South) for Farfield Survey WF012 (Feb 01)

Figure C-14. Temperature Transect Plots (North - South) for Farfield Survey WF014 (Apr 01)

Farfield Survey WF017 (Jun 01)

Figure C-16. Temperature Transect Plots (North - South) for Farfield Survey WF017 (Jun 01)

Figure C-17. Salinity Transect Plots (West - East) for Farfield Survey WF011 (Feb 01)

Figure C-18. Salinity Transect Plots (North - South) for Farfield Survey WF011 (Feb 01)

Figure C-19. Salinity Transect Plots (West - East) for Farfield Survey WF012 (Feb 01)

Figure C-20. Salinity Transect Plots (North - South) for Farfield Survey WF012 (Feb 01)

Figure C-21. Salinity Transect Plots (West - East) for Farfield Survey WF014 (Apr 01)

Figure C-22. Salinity Transect Plots (North - South) for Farfield Survey WF014 (Apr 01)

Figure C-24. Salinity Transect Plots (North - South) for Farfield Survey WF017 (Jun 01)

Figure C-26. Beam Attenuation Transect Plots (North - South) for Farfield Survey WF011 (Feb 01)
ţ

Figure C-32. Beam Attenuation Transect Plots (North - South) for Farfield Survey WF017 (Jun 01)

Figure C-37. Phosphate Transect Plots (West - East) for Farfield Survey WF011 (Feb 01)

Figure C-40. Phosphate Transect Plots (West - East) for Farfield Survey WF017 (Jun 01)

Figure C-41. Silicate Transect Plots (West - East) for Farfield Survey WF011 (Feb 01)

Figure C-42. Silicate Transect Plots (West - East) for Farfield Survey WF012 (Feb 01)

Figure C-43. Silicate Transect Plots (West - East) for Farfield Survey WF014 (Apr 01)

Farfield Survey WF014 (Apr 01)

Farfield Survey WF011 (Feb 01)

Farfield Survey WF012 (Feb 01)

Farfield Survey WF017 (Jun 01)

Figure C-60. Dissolved Oxygen Transect Plots (North - South) for Farfield Survey WF012 (Feb 01)

Figure C-62. Dissolved Oxygen Transect Plots (North - South) for Farfield Survey WF014 (Apr 01)

Figure C-64. Dissolved Oxygen Transect Plots (North - South) for Farfield Survey WF017 (Jun 01)

APPENDIX D

Nutrient Scatter Plots for Each Survey

□Boston Harbor △Boundary + Cape Cod O Coastal ● Nearfield ◇ Offshore

Figure D-2. Depth vs. Nutrient Plots for Farfield Survey WF011, (Feb 01)

□Boston Harbor △Boundary + Cape Cod O Coastal ● Nearfield ♦ Offshore

Figure D-3. Depth vs. Nutrient Plots for Farfield Survey WF011, (Feb 01)

□Boston Harbor △Boundary + Cape Cod O Coastal ● Nearfield ◇ Offshore

(b)

Figure D-4. Depth vs. Nutrient Plots for Farfield Survey WF011, (Feb 01)

Figure D-5. Nutrient vs. Nutrient Plots for Farfield Survey WF011, (Feb 01)

Figure D-7. Nutrient vs. Nutrient Plots for Farfield Survey WF011, (Feb 01)

	Boston Harbor	Δ	Boundary	+ Cape Cod	0	Coastal
٠	Nearfield	\diamond	Offshore	Ratio = 16	:1	- Ratio = 4:1

Figure D-10. Nutrient vs. Nutrient Plots for Farfield Survey WF011, (Feb 01)

	Boston Harbor	Δ	Boundary	+ Cape Cod	0	Coastal
. •	Nearfield	\diamond	Offshore	Ratio = 16:1	<u> </u>	- Ratio = 4:1

Figure D-13. Nutrient vs. Salinity Plots for Farfield Survey WF011, (Feb 01)

□Boston Harbor △Boundary + Cape Cod O Coastal ● Nearfield ♦ Offshore

40

60

8

Depth (m)

Figure D-17. Depth vs. Nutrient Plots for Farfield Survey WF012, (Feb 01)

□Boston Harbor △Boundary + Cape Cod O Coastal ●Nearfield ♦Offshore

(

Figure D-19. Depth vs. Nutrient Plots for Farfield Survey WF012, (Feb 01)

(a)

Figure D-20. Nutrient vs. Nutrient Plots for Farfield Survey WF012, (Feb 01)

Figure D-21. Nutrient vs. Nutrient Plots for Farfield Survey WF012, (Feb 01)

Figure D-22. Nutrient vs. Nutrient Plots for Farfield Survey WF012, (Feb 01)

Figure D-25. Nutrient vs. Nutrient Plots for Farfield Survey WF012, (Feb 01)

Figure D-26. Nutrient vs. Nutrient Plots for Farfield Survey WF012, (Feb 01)

Figure D-27. Nutrient vs. Nutrient Plots for Farfield Survey WF012, (Feb 01)

(

Figure D-28. Nutrient vs. Salinity Plots for Farfield Survey WF012, (Feb 01)

Figure D-30. Nutrient vs. Salinity Plots for Farfield Survey WF012, (Feb 01)

Figure D-31. Depth vs. Nutrient Plots for Nearfield Survey WN013, (Mar 01)

(b)

2.0

4

2

0

0.0

Nearfield -

•

PO4 (µM)

Ratio = 16:1 ---- Ratio = 4:1

Figure D-36. Nutrient vs. Nutrient Plots for Nearfield Survey WN013, (Mar 01)

Figure D-37. Nutrient vs. Nutrient Plots for Nearfield Survey WN013, (Mar 01)

Ĺ

(a)

□Boston Harbor △Boundary + Cape Cod O Coastal ● Nearfield ♦ Offshore

Figure D-47. Depth vs. Nutrient Plots for Farfield Survey WF014, (Apr 01)

□Boston Harbor △Boundary + Cape Cod O Coastal ● Nearfield ◇ Offshore

(b)

Figure D-49. Depth vs. Nutrient Plots for Farfield Survey WF014, (Apr 01)

Figure D-50. Nutrient vs. Nutrient Plots for Farfield Survey WF014, (Apr 01)

1

Figure D-51. Nutrient vs. Nutrient Plots for Farfield Survey WF014, (Apr 01)

Boston Harbor	Δ	Boundary	+ Cape Cod	O Coastal
Nearfield	٥	Offshore	Ratio = 2:1	Ratio = 1:2

(b)

1

Figure D-57. Nutrient vs. Nutrient Plots for Farfield Survey WF014, (Apr 01)

Figure D-61. Depth vs. Nutrient Plots for Nearfield Survey WN015, (May 01)

100

(b)

.

Figure D-76. Depth vs. Nutrient Plots for Nearfield Survey WN016, (May 01)

7

(b)

7

Figure D-81. Nutrient vs. Nutrient Plots for Nearfield Survey WN016, (May 01)

Figure D-92. Depth vs. Nutrient Plots for Farfield Survey WF017, (Jun 01)

□Boston Harbor △Boundary + Cape Cod O Coastal ● Nearfield ◇ Offshore

Figure D-93. Depth vs. Nutrient Plots for Farfield Survey WF017, (Jun 01)

□ Boston Harbor △ Boundary + Cape Cod O Coastal ● Nearfield ◇ Offshore

Figure D-94. Depth vs. Nutrient Plots for Farfield Survey WF017, (Jun 01)

Figure D-95. Nutrient vs. Nutrient Plots for Farfield Survey WF017, (Jun 01)

	Boston Harbor	Δ	Boundary	+ Cape Cod	o Coastal
•	Nearfield	٥	Offshore	Ratio = 2:1	

Figure D-96. Nutrient vs. Nutrient Plots for Farfield Survey WF017, (Jun 01)

Figure D-97. Nutrient vs. Nutrient Plots for Farfield Survey WF017, (Jun 01)

DOP (µM) 0.8 0.6 0.4 0.2 6 Δ 0.0 200 100 300 500 600 700 0 400 800 900 DOC (µM) Boston Harbor Boundary Cape Cod 0 Coastal Δ + Offshore Ratio = 1:50 Ratio = 1:150 Nearfield ٥ •

Figure D-98. Nutrient vs. Nutrient Plots for Farfield Survey WF017, (Jun 01)

	Boston Harbor	Δ	Boundary	+ Cape Cod	0	Coastal
•	Nearfield		Offshore	——— Ratio = 16:1		- Ratio = 4:1

Figure D-100. Nutrient vs. Nutrient Plots for Farfield Survey WF017, (Jun 01)

Figure D-103. Nutrient vs. Salinity Plots for Farfield Survey WF017, (Jun 01)

□ Boston Harbor △ Boundary + Cape Cod O Coastal ● Nearfield ◇ Offshore

APPENDIX E

Photosynthesis-Irradiance (P-I) Curves

ć

Photosynthesis-Irradiance (P-I) Curves

Productivity (Prod, mg C m⁻³ hr⁻¹) versus irradiance (Light, μ E m⁻² sec⁻¹) curves for the period 3 February to 20 July 2001. Comprehensive data are presented for each cruise by station (N04, N18, and F23) and by depth (surface, mid-surface, middle, mid-bottom and bottom). Productivity calculations (Appendix A) utilized light attenuation data from a CTD-mounted 4- π sensor and incident light timeseries data from a 2- π irradiance sensor located on Deer Island, MA. After collection of the productivity samples, they were transported to the Marine Ecosystems Research Laboratory (MERL) where they were incubated in temperature controlled incubators. Hourly productivity measurements were converted to daily values by fitting the measured hourly rates and light data to one of two P-I models (with or without photoinhibition). Using the fitted parameters, the measured incident light, and the light attenuation data, production rates were calculated for each 15-minute interval over the daylight period (centered from 6 AM to 6 PM), summed for each sampling depth, then integrated over depth to give areal production for each station.

WF011

WF011

6.0 4.0 2.0 0.0

0

500 1000 1500 2000

Light (µ E m⁻² sec⁻¹)

Figure E-7. Photosynthesis-Irradiance (P-I) Curves for Station N04 from Nearfield Survey WN013 (Mar 01).

Light (µ E m⁻² sec⁻¹)

Figure E-10. Photosynthesis-Irradiance (P-I) Curves for Station N18 from Farfield Survey WF014 (Apr 01).

Figure E-12. Photosynthesis-Irradiance (P-I) Curves for Station N04 from Nearfield Survey WN015 (May 01).

WN015

Figure E-15. Photosynthesis-Irradiance (P-I) Curves for Station N18 from Nearfield Survey WN016 (May 01).

Figure E-16. Photosynthesis-Irradiance (P-I) Curves for Station N04 from Farfield Survey WF017 (Jun 01).

Figure E-17. Photosynthesis-Irradiance (P-I) Curves for Station N18 from Farfield Survey WF017 (Jun 01).

APPENDIX F

Abundance of Prevalent Phytoplankton Species in Whole Water Surface and Chlorophyll-A Maximum Samples

			F01	F02	F06	F13	F22	F23	F24
CENTRIC DIATOM SP. GROUP 1 DIAM <10 MICRONS	CD	%				7.093	5.213		5.629
CENTRIC DIATOM SP. GROUP 1 DIAM <10 MICRONS	CD	E6CELLS/L				0.033	0.031		0.019
CHAETOCEROS COMPRESSUS	Ð	%	12.027	23.401					
CHAETOCEROS COMPRESSUS	9	E6CELLS/L	0.183	0.310					
CHAETOCEROS SOCIALIS	9	%		5.418					
CHAETOCEROS SOCIALIS	9	E6CELLS/L		0.072					
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	СY	%				9.457			6.098
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	СY	E6CELLS/L				0.044			0.021
SKELETONEMA COSTATUM	9	%		5.764					
SKELETONEMA COSTATUM	G	E6CELLS/L		0.076					
THALASSIONEMA NITZSCHIOIDES	PD	%			9.082				
THALASSIONEMA NITZSCHIOIDES	DD	E6CELLS/L			0.031				
THALASSIOSIRA NORDENSKIOLDII	9	%	13.319	21.557					
THALASSIOSIRA NORDENSKIOLDII	9	E6CELLS/L	0.202	0.286					
THALASSIOSIRA SP. GROUP 3 10-20 MICRONS LENGTH	G	%			21.534	16.375	11.276		10.186
THALASSIOSIRA SP. GROUP 3 10-20 MICRONS LENGTH	CD	E6CELLS/L			0.074	0.075	0.068		0.034
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	%	42.216	24.942	47.543	58.518	59.578	5.874	68.018
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	E6CELLS/L	0.641	0.331	0.163	0.269	0.358	0.258	0.230

Abundance of Prevalent Species (>5% Total Count) in Surface Sample Whole Water Phytoplankton, Survey WF011

bundance of Prevalent Species (>5% Total Count) in Surface Sample Whole Water Phytoplankton, Survey WF011 (continued)

			F25	F26	F27	F30	F31	N04	91N	N18
CENTRIC DIATOM SP. GROUP 1 DIAM <10 MICRONS	G	%	7.765				11.914			7.493
CENTRIC DIATOM SP. GROUP 1 DIAM <10 MICRONS	CD	E6CELLS/L	0.033				0.038			0.041
CHAETOCEROS COMPRESSUS	CD	%								
CHAETOCEROS COMPRESSUS	CD	E6CELLS/L								
CHAETOCEROS SOCIALIS	Ð	%								
CHAETOCEROS SOCIALIS	G	E6CELLS/L								
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	СУ	%	11.876			11.483	11.169			
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	СҮ	E6CELLS/L	0.050			0.047	0.035			
SKELETONEMA COSTATUM	Ð	%								
SKELETONEMA COSTATUM	Ð	E6CELLS/L								
THALASSIONEMA NITZSCHIOIDES	PD	%								
THALASSIONEMA NITZSCHIOIDES	DD	E6CELLS/L								
THALASSIOSIRA NORDENSKIOLDII	9	%								
THALASSIOSIRA NORDENSKIOLDII	9	E6CELLS/L								
THALASSIOSIRA SP. GROUP 3 10-20 MICRONS LENGTH	G	%	13.794	8.885		6.812	11.275	20.261	17.127	23.220
THALASSIOSIRA SP. GROUP 3 10-20 MICRONS LENGTH	CD	E6CELLS/L	0.058	0.034		0.028	0.036	0.115	0.063	0.128
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	%	57.097	74.296	82.016	70.398	60.315	52.391	50.651	50.576
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	E6CELLS/L	0.240	0.284	0.306	0.290	0.191	0.298	0.187	0.278

			F01	F02	F06	F13	F22	F23	F24
CENTRIC DIATOM SP. GROUP 1 DIAM <10 MICRONS	G	%		6.994			6.642		
CENTRIC DIATOM SP. GROUP 1 DIAM <10 MICRONS	CD	E6CELLS/L		0.037			0.022		
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	СҮ	%				5.239			
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	CY	E6CELLS/L				0.011			
GUINARDIA DELICATULA	CD	%			5.062				5.539
GUINARDIA DELICATULA	CD	E6CELLS/L			0.018				0.021
THALASSIONEMA NITZSCHIOIDES	Δd	%			6.425		7.970		
THALASSIONEMA NITZSCHIOIDES	DD	E6CELLS/L			0.023		0.026		
THALASSIOSIRA NORDENSKIOLDII	9	%	5.603	5.505	17.524	25.891	20.775	31.318	32.207
THALASSIOSIRA NORDENSKIOLDII	CD	E6CELLS/L	0.050	0.029	0.063	0.056	0.069	0.105	0.120
THALASSIOSIRA SP. GROUP 3 10-20 MICRONS LENGTH	CD	%	14.889	12.218			8.546	5.950	
THALASSIOSIRA SP. GROUP 3 10-20 MICRONS LENGTH	CD	E6CELLS/L	0.132	0.065			0.028	0.020	
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	%	49.713	51.645	55.000	47.678	41.177	50.820	50.550
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	E6CELLS/L	0.440	0.276	0.199	0.103	0.137	0.171	0.188

Abundance of Prevalent Species (>5% Total Count) in Surface Sample Whole Water Phytoplankton, Survey WF012

			F25	F26	F27	F30	F31	N04	N16	N18
CENTRIC DIATOM SP. GROUP 1 DIAM <10 MICRONS	CD	%								
CENTRIC DIATOM SP. GROUP 1 DIAM <10 MICRONS	CD	E6CELLS/L								
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	СY	%	8.074		5.484				6.443	
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	СҮ	E6CELLS/L	0.018		0.026				0.022	
GUINARDIA DELICATULA	G	%						5.271		7.740
GUINARDIA DELICATULA	Ð	E6CELLS/L						0.013		0.023
THALASSIONEMA NITZSCHIOIDES	PD	%							7,437	
THALASSIONEMA NITZSCHIOIDES	DD	E6CELLS/L							0.025	
THALASSIOSIRA NORDENSKIOLDII	ß	%	21.968	32.905	25.420	29.907	30.794	19.828	18 492	27 441
THALASSIOSIRA NORDENSKIOLDII	G	E6CELLS/L	0.048	0.150	0.120	0.113	0.085	0.051	0.062	0.083
THALASSIOSIRA SP. GROUP 3 10-20 MICRONS LENGTH	CD	%		11.311	15.252					
THALASSIOSIRA SP. GROUP 3 10-20 MICRONS LENGTH	9	E6CELLS/L		0.051	0.072					
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	%	53.668	35.364	34.081	52.265	49.918	52.797	51.945	46.046
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	E6CELLS/L	0.118	0.161	0.161	0.197	0.138	0.135	0.176	0.139

Abundance of Prevalent Species (>5% Total Count) in Surface Sample Whole Water Phytoplankton, Survey WF012 (continued)

Semiannual Water Column Monitoring Report (February – July 2001) Appendix F

Abundance of Prevalent Species (>5% Total Count) in Surface Sample Whole Water Phytoplankton, Survey WN013

			N04	N18
CHAETOCEROS DEBILIS	CD	%	11.457	14.
CHAETOCEROS DEBILIS	CD	E6CELLS/L	0.050	
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	CY	%	5.672	20.908
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	CY	E6CELLS/L	0.025	0.103
THALASSIOSIRA NORDENSKIOLDII	CD	%	10.041	7.523
THALASSIOSIRA NORDENSKIOLDII	CD	E6CELLS/L	0.044	0.037
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	%	62.912	60.463
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	E6CELLS/L	0.273	0.298

			F01	F02	F06	F13	F22	F23	F24
CENTRIC DIATOM SP. GROUP 1 DIAM <10 MICRONS	9	%	10.591						
CENTRIC DIATOM SP. GROUP 1 DIAM <10 MICRONS	Ð	E6CELLS/L	0.095						
CHAETOCEROS DEBILIS	Ð	%							
CHAETOCEROS DEBILIS	G	E6CELLS/L							
CHAETOCEROS SP. GROUP 2 DIAM 10-30 MICRONS	Ð	%	5.808						
CHAETOCEROS SP. GROUP 2 DIAM 10-30 MICRONS	9	E6CELLS/L	0.052			-			
CRYPTOMONAS SP. GROUP I LENGTH <10 MICRONS	СY	%	8.237	23.483			-		
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	СY	E6CELLS/L	0.074	0.076					
GYMNODINIUM SP. GROUP 1 5-20 MICRONS WIDTH, 10-20 MICRONS									
LENGTH	DF	%	5.099			-			
GYMNODINIUM SP. GROUP 1 5-20 MICRONS WIDTH, 10-20 MICRONS									
LENGTH	DF	E6CELLS/L	0.046						
PHAEOCYSTIS POUCHETII	Н	%			33.025	46.715	68.171	52.661	52.873
PHAEOCYSTIS POUCHETII	Н	E6CELLS/L			0.193	0.326	0.848	0.620	0.489
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	%	62.366	65.591	57.044	36.818	24.325	26.705	32.538
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	E6CELLS/L	0.560	0.213	0.334	0.257	0.303	0.315	0.301

Abundance of Prevalent Species (>5% Total Count) in Surface Sample Whole Water Phytoplankton, Survey WF014

F-7

			F25	F26	F27	F30	F31	N04	N16	N18
CENTRIC DIATOM SP. GROUP 1 DIAM <10 MICRONS	9	%								
CENTRIC DIATOM SP. GROUP 1 DIAM <10 MICRONS	CD	E6CELLS/L								
CHAETOCEROS DEBILIS	CD	%	5.401							
CHAETOCEROS DEBILIS	9	E6CELLS/L	0.039							
CHAETOCEROS SP. GROUP 2 DIAM 10-30 MICRONS	9	%								
CHAETOCEROS SP. GROUP 2 DIAM 10-30 MICRONS	CD	E6CELLS/L								
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	СY	%	7.144			10.030	8.270			
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	CY	E6CELLS/L	0.051			0.042	0.039			
GYMNODINIUM SP. GROUP 1 5-20 MICRONS WIDTH, 10-20 MICRONS										
LENGTH	DF	%								
GYMNODINIUM SP. GROUP 1 5-20 MICRONS WIDTH, 10-20 MICRONS										
LENGTH	DF	E6CELLS/L								
PHAEOCYSTIS POUCHETII	Н	%	34.039	68.941	84.860	29.373	17.091	72.120	70.467	68.277
PHAEOCYSTIS POUCHETII	Н	E6CELLS/L	0.245	0.608	2.211	0.122	0.081	1.126	0.812	0.738
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	%	44.545	22.599	11.231	49.433	60.709	18.758	22.443	21.008
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	E6CELLS/L	0.321	0.199	0.293	0.205	0.317	0.293	0.259	0.227

Abundance of Prevalent Species (>5% Total Count) in Surface Sample Whole Water Phytoplankton, Survey WF014 (continued)

F-8

Abundance of Prevalent Species (>5% Total Count) in Surface Sample Whole Water Phytoplankton, Survey WN015

			N04	N18
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	CY	%	7.495	6.591
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	CY	E6CELLS/L	0.061	0.065
SKELETONEMA COSTATUM	CD	%	5.530	
SKELETONEMA COSTATUM	CD	E6CELLS/L	0.045	
THALASSIOSIRA SP. GROUP 3 10-20 MICRONS LENGTH	CD	%	5.449	5.507
THALASSIOSIRA SP. GROUP 3 10-20 MICRONS LENGTH	CD	E6CELLS/L	0.044	0.055
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	%	65.170	75.371
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	E6CELLS/L	0.527	0.748

Abundance of Prevalent Species (>5% Total Count) in Surface Sample Whole Water Phytoplankton, Survey WN016

			N04	N18
SKELETONEMA COSTATUM	CD	%	57.453	66.815
SKELETONEMA COSTATUM	CD	E6CELLS/L	0.718	1.518
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	%	36.030	24.177
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	E6CELLS/L	0.450	0.549

			F01	F02	F06	- F13	F22	F23	F24
CHAETOCEROS COMPRESSUS	CD	%							
CHAETOCEROS COMPRESSUS	G	E6CELLS/L							
CHAETOCEROS SP. GROUP 2 DIAM 10-30 MICRONS	CD	%							
CHAETOCEROS SP. GROUP 2 DIAM 10-30 MICRONS	G	E6CELLS/L							
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	СҮ	%	8.998					14.535	15.816
CRYPTOMONAS SP. GROUP I LENGTH <10 MICRONS	СҮ	E6CELLS/L	0.093					0.302	0.479
GYMNODINIUM SP. GROUP 1 5-20 MICRONS WIDTH, 10-20 MICRONS									
LENGTH	DF	%	-	7.550		-	-		
GYMNODINIUM SP. GROUP 1 5-20 MICRONS WIDTH, 10-20 MICRONS									
LENGTH	DF	E6CELLS/L		0.079					
SKELETONEMA COSTATUM	G	%					5.889		31 722
SKELETONEMA COSTATUM	CD	E6CELLS/L					0.101		0.961
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	%	81.982	79.835	85.044	85.735	76.343	72.080	42.775
UNID. MICRO-PHYTOFLAG SP. GROUP I LENGTH < 10 MICRONS	MF	E6CELLS/L	0.848	0.840	0.792	0.956	1.309	1.497	1.295

Abundance of Prevalent Species (>5% Total Count) in Surface Sample Whole Water Phytoplankton, Survey WF017

			F25	F26	F27	F30	F31	N04	9IN	N18
CHAETOCEROS COMPRESSUS	G	%		19.594	26.835					
CHAETOCEROS COMPRESSUS	CD	E6CELLS/L		0.244	0.402					
CHAETOCEROS SP. GROUP 2 DIAM 10-30 MICRONS	CD	%			5.037					
CHAETOCEROS SP. GROUP 2 DIAM 10-30 MICRONS	CD	E6CELLS/L			0.075					
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	СY	%		8.575		22.795	11.188			6.499
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	СҮ	E6CELLS/L		0.107		0.405	0.301			0.087
GYMNODINIUM SP. GROUP 1 5-20 MICRONS WIDTH, 10-20	1									
MICRONS LENGTH	DF	%								
GYMNODINIUM SP. GROUP 1 5-20 MICRONS WIDTH, 10-20				-						
MICRONS LENGTH	DF	E6CELLS/L								
SKELETONEMA COSTATUM	G	%	57.891		7.101		40.308		9.243	
SKELETONEMA COSTATUM	G	E6CELLS/L	2.272		0.106		1.084		0.060	
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	%	33.426	58.880	49.459	62.181	35.251	81.643	70.693	81.037
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	E6CELLS/L	1.312	0.734	0.741	1.105	0.948	0.813	0.459	1.080

Abundance of Prevalent Species (>5% Total Count) in Surface Sample Whole Water Phytoplankton, Survey WF017 (continued)

Semiannual Water Column Monitoring Report (February – July 2001) Appendix F

F-12

CENTRIC DIATOM SP. GROUP 1 DIAM <10 MICRONS	TTRIC DIATOM SP. GROUP I DIAM <10 MICRONS TTRIC DIATOM SP. GROUP I DIAM <10 MICRONS AETOCEROS COMPRESSUS AETOCEROS COMPRESSUS AETOCEROS SP. GROUP 2 DIAM 10-30 MICRONS AETOCEROS SP. GROUP 2 DIAM 10-30 MICRONS (PTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	8888885	% E6CELLS/L			-				
CENTRIC DIATOM SP. GROUP 1 DIAM <10 MICRONSCDEGCELLS/L0.073CHAETOCEROS COMPRESSUSCD%14.196CHAETOCEROS COMPRESSUSCD%6.5830.228CHAETOCEROS SP. GROUP 2 DIAM 10-30 MICRONSCD%6.5830.228CHAETOCEROS SP. GROUP 2 DIAM 10-30 MICRONSCD%6.5830.228CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	TTRIC DIATOM SP. GROUP I DIAM <10 MICRONS AETOCEROS COMPRESSUS AETOCEROS COMPRESSUS AETOCEROS SP. GROUP 2 DIAM 10-30 MICRONS AETOCEROS SP. GROUP 2 DIAM 10-30 MICRONS (PTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	5 8 8 8 8 X	E6CELLS/L	5.024			6.241	7.054	7.685	F24
CHAETOCEROS COMPRESSUS CD % 14.196 14.196 CHAETOCEROS COMPRESSUS CD BECELLS/L 0.228 14.196 CHAETOCEROS SP. GROUP 2 DIAM 10-30 MICRONS CD % 6.583 0.228 1 CHAETOCEROS SP. GROUP 1 LENGTH <10 MICRONS	AETOCEROS COMPRESSUS AETOCEROS COMPRESSUS AETOCEROS SP. GROUP 2 DIAM 10-30 MICRONS AETOCEROS SP. GROUP 2 DIAM 10-30 MICRONS (PTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	C C C C C C C C		0.073			0.025	0.035	0.029	
CHAETOCEROS COMPRESSUSCDEGCELLS/L0.228CHAETOCEROS SP. GROUP 2 DIAM 10-30 MICRONSCD%6.5830.228CHAETOCEROS SP. GROUP 1 DAM 10-30 MICRONSCD%6.5830.242CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	AETOCEROS COMPRESSUS AETOCEROS SP. GROUP 2 DIAM 10-30 MICRONS AETOCEROS SP. GROUP 2 DIAM 10-30 MICRONS (PTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	CY CD CD	%		14.196	-				5.709
CHAETOCEROS SP. GROUP 2 DIAM 10-30 MICRONSCD%6.583CHAETOCEROS SP. GROUP 1 LENGTH <10 MICRONS	AETOCEROS SP. GROUP 2 DIAM 10-30 MICRONS AETOCEROS SP. GROUP 2 DIAM 10-30 MICRONS (PTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	CD CY	E6CELLS/L		0.228					0.021
CHAETOCEROS SP. GROUP 2 DIAM 10-30 MICRONSCDE6CELLS/L0.096CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	AETOCEROS SP. GROUP 2 DIAM 10-30 MICRONS (PTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	CY CY	%	6.583						
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONSCY%9.442CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	(PTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	CY	E6CELLS/L	0.096						
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONSCYE6CELLS/L0.047SKELETONEMA COSTATUMCD%11.0945.9590SKELETONEMA COSTATUMCD%0.1620.0965THALASSIONEMA NITZSCHIOIDESPD%6.1536.153THALASSIONEMA NITZSCHIOIDESPD%0.0470.031THALASSIONEMA NITZSCHIOIDESPD%13.89721.496			%		· .	9.442	9.153			
SKELETONEMA COSTATUM CD % 11.094 5.959 5 SKELETONEMA COSTATUM CD E6CELLS/L 0.162 0.096 5 THALASSIONEMA NITZSCHIOIDES PD % 0.162 0.096 5 THALASSIONEMA NITZSCHIOIDES PD % 0.162 0.031 THALASSIONEMA NITZSCHIOIDES PD % 0.13897 21.496	(PTOMONAS SP. GROUP 1 LENGTH <10 MICRONS)	СҮ	E6CELLS/L			0.047	0.037			
SKELETONEMA COSTATUMCDE6CELLS/L0.1620.096THALASSIONEMA NITZSCHIOIDESPD%6.153THALASSIONEMA NITZSCHIOIDESPD66CELLS/L6.153THALASSIONEMA NITZSCHIOIDESPD66CELLS/L6.153THALASSIONEMA NITZSCHIOIDESPD7013.89721.496	ELETONEMA COSTATUM	CD	%	11.094	5.959					
THALASSIONEMA NITZSCHIOIDESPD%6.153THALASSIONEMA NITZSCHIOIDESPDE6CELLS/L0.031THALASSIOSIRA NORDENSKIOLDIICD%13.89721.496	ELETONEMA COSTATUM	CD	E6CELLS/L	0.162	0.096					
THALASSIONEMA NITZSCHIOIDES PD E6CELLS/L 0.031 THALASSIOSIRA NORDENSKIOLDII CD % 13.897 21.496	ALASSIONEMA NITZSCHIOIDES	PD	%			6.153				
THALASSIOSIRA NORDENSKIOLDII CD 76 13.897 21.496	ALASSIONEMA NITZSCHIOIDES	PD	E6CELLS/L			0.031				
	ALASSIOSIRA NORDENSKIOLDII	CD	%	13.897	21.496					
THALASSIOSIRA NORDENSKIOLDII 0.203 0.346	ALASSIOSIRA NORDENSKIOLDII	CD	E6CELLS/L	0.203	0.346					
THALASSIOSIRA SP. GROUP 3 10-20 MICRONS LENGTH CD % 20.030	ALASSIOSIRA SP. GROUP 3 10-20 MICRONS LENGTH	CD	%			20.030	20.975	13.604	11.508	
THALASSIOSIRA SP. GROUP 3 10-20 MICRONS LENGTH CD E6CELLS/L 0.100	ALASSIOSIRA SP. GROUP 3 10-20 MICRONS LENGTH	CD	E6CELLS/L			0.100	0.084	0.068	0.043	
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS MF % 44.168 38.731 50.881	ID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	%	44.168	38.731	50.881	49.509	62.205	70.700	12.348
UNID. MICRO-PHYTOFLAG SP. GROUP I LENGTH <10 MICRONS MF E6CELLS/L 0.646 0.623 0.254	D. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	E6CELLS/L	0.646	0.623	0.254	0.199	0.309	0.265	0.045

Abundance of Prevalent Species (>5% Total Count) in Chlorophyll a Maximum Sample Whole Water Phytoplankton, Survey WF011

			F25	F26	F27	F30	F31	N04	N16	N18
CENTRIC DIATOM SP. GROUP 1 DIAM <10 MICRONS	CD	%		5.374	10.282	6.308	7.260	6.911		
CENTRIC DIATOM SP. GROUP 1 DIAM <10 MICRONS	CD	E6CELLS/L		0.029	0.024	0.026	0.032	0.038		
CHAETOCEROS COMPRESSUS	CD	%								
CHAETOCEROS COMPRESSUS	CD	E6CELLS/L								
CHAETOCEROS SP. GROUP 2 DIAM 10-30 MICRONS	CD	%								
CHAETOCEROS SP. GROUP 2 DIAM 10-30 MICRONS	CD	E6CELLS/L							+	
CRYPTOMONAS SP. GROUP I LENGTH <10 MICRONS	СҮ	%	17.257			8.411	17.545	5.654	6.507	
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	СҮ	E6CELLS/L	0.058			0.034	0.076	0.031	0.037	
SKELETONEMA COSTATUM	Ð	2 2 20		-						
SKELETONEMA COSTATUM	Ð	E6CELLS/L								
THALASSIONEMA NITZSCHIOIDES	PD	%								T
THALASSIONEMA NITZSCHIOIDES	DD	E6CELLS/L								
THALASSIOSIRA NORDENSKIOLDII	CD	%								
THALASSIOSIRA NORDENSKIOLDII	CD	E6CELLS/L								
THALASSIOSIRA SP. GROUP 3 10-20 MICRONS LENGTH	G	%	14.805	13.144		6.157	9.462	16.935	11.910	22.046
THALASSIOSIRA SP. GROUP 3 10-20 MICRONS LENGTH	CD	E6CELLS/L	0.050	0.072		0.025	0.041	0.093	0.068	0.109
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	%	56.624	68.785	76.090	70.790	59.894	55.288	53.685	48.031
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	E6CELLS/L	0.190	0.378	0.180	0.287	0.260	0.303	0.307	0.237
								-		

			F01	F02	F06	F13	F22	F23	F24
CENTRIC DIATOM SP. GROUP 1 DIAM <10 MICRONS	CD	%		5.637		5.871	5.405		
CENTRIC DIATOM SP. GROUP 1 DIAM <10 MICRONS	ß	E6CELLS/L		0.010		0.029	0.016		
CHAETOCEROS COMPRESSUS	G	%	7.957						
CHAETOCEROS COMPRESSUS	e	E6CELLS/L	0.082						
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	СY	%			7.164	5.871			6.293
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	сY	E6CELLS/L			0.020	0.029			0.027
GUINARDIA DELICATULA	Ð	%			6.914				
GUINARDIA DELICATULA	9	E6CELLS/L			0.019				
THALASSIONEMA NITZSCHIOIDES	PD	%			7.152				
THALASSIONEMA NITZSCHIOIDES	Δd	E6CELLS/L			0.019				
THALASSIOSIRA NORDENSKIOLDII	ß	%	14.440	5.876	18.834	13.919	21.910	27.872	18.846
THALASSIOSIRA NORDENSKIOLDII	9	E6CELLS/L	0.148	0.011	0.051	0.069	0.065	0.081	0.082
THALASSIOSIRA SP. GROUP 3 10-20 MICRONS LENGTH	9	%		8.110			9.810	6.660	
THALASSIOSIRA SP. GROUP 3 10-20 MICRONS LENGTH	CD	E6CELLS/L		0.015			0.029	0.019	
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	%	46.934	55.706	53.016	60.173	47.660	55.838	56.004
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	E6CELLS/L	0.481	0.102	0.144	0.297	0.142	0.162	0.242

Abundance of Prevalent Species (>5% Total Count) in Chlorophyll a Maximum Sample Whole Water Phytoplankton, Survey WF012

Semiannual Water Column Monitoring Report (February – July 2001) Appendix F

F-17

			F25	F26	F27	F30	F31	N04	N16	N18
CENTRIC DIATOM SP. GROUP 1 DIAM <10 MICRONS	CD	%	5.402		8.764					
CENTRIC DIATOM SP. GROUP 1 DIAM <10 MICRONS	CD	E6CELLS/L	0.016		0.053					
CHAETOCEROS COMPRESSUS	CD	%								
CHAETOCEROS COMPRESSUS	CD	E6CELLS/L								
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	СY	%	9.604				5.212			6 178
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	СҮ	E6CELLS/L	0.029				0.019			0.023
GUINARDIA DELICATULA	Ð	g/o			7.929				5.370	
GUINARDIA DELICATULA	CD	E6CELLS/L			0.048				0.024	
THALASSIONEMA NITZSCHIOIDES	DD	%						5.898		
THALASSIONEMA NITZSCHIOIDES	Δd	E6CELLS/L						0.022		
THALASSIOSIRA NORDENSKIOLDII	CD	%	20.175	26.161	10.624	30.694	30.958	16.171	24.579	19.017
THALASSIOSIRA NORDENSKIOLDII	CD	E6CELLS/L	0.061	0.103	0.065	0.122	0.111	0.060	0.108	0.072
THALASSIOSIRA SP. GROUP 3 10-20 MICRONS LENGTH	CD	%		16.351	17.186					
THALASSIOSIRA SP. GROUP 3 10-20 MICRONS LENGTH	CD	E6CELLS/L		0.065	0.105					
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	%	52.224	41.491	42.985	50.524	49.512	60.221	51.309	58.348
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	E6CELLS/L	0.158	0.164	0.262	0.201	0.177	0.225	0.225	0.221
		-								

Abundance of Prevalent Species (>5% Total Count) in Chlorophyll a Maximum Sample Whole Water Phytoplankton, Survey WF012 (continued)

Semiannual Water Column Monitoring Report (February – July 2001) Appendix F
Abundance of Prevalent Species (>5% Total Count) in Chlorophyll a Maximum Sample Whole Water Phytoplankton, Survey WN013

			N04	N18
CHAETOCEROS DEBILIS	CD	%	14.371	
CHAETOCEROS DEBILIS	CD	E6CELLS/L	0.053	
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	CY	%		6.730
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	CY	E6CELLS/L		0.032
THALASSIOSIRA NORDENSKIOLDII	CD	%	13.505	7.747
THALASSIOSIRA NORDENSKIOLDII	CD	E6CELLS/L	0.049	0.037
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	%	54.793	73.286
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	E6CELLS/L	0.201	0.353

			F01	F02	F06	F13	F22	F23	F24
CHAETOCEROS DEBILIS	G	%							6.521
CHAETOCEROS DEBILIS	G	E6CELLS/L							0.071
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	СY	%		8.576				5.866	
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	СY	E6CELLS/L		0.037				0.062	
PHAEOCYSTIS POUCHETII	H	%	6.553	15.314	37.121	69.271	81.116	40.770	53.984
PHAEOCYSTIS POUCHETII	Н	E6CELLS/L	0.046	0.065	0.236	0.572	1.462	0.429	0.589
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	%	85.848	64.320	52.634	17.830	12.529	36.664	29.580
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	E6CELLS/L	0.602	0.275	0.334	0.147	0.226	0.386	0.323

Abundance of Prevalent Species (>5% Total Count) in Chlorophyll a Maximum Sample Whole Water Phytoplankton, Survey WF014

			F25	F26	F27	F30	F31	N04	91N	N18
CHAETOCEROS DEBILIS	CD	%				9.271				
CHAETOCEROS DEBILIS	CD	E6CELLS/L				0.047				
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	СҮ	%					7.651			
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	СҮ	E6CELLS/L					0.024			
PHAEOCYSTIS POUCHETII	Η	%	43.989	92.621	90.546	41.683	19.674	52.537	76.793	59.953
PHAEOCYSTIS POUCHETII	Η	E6CELLS/L	0.294	3.130	2.996	0.210	0.061	0.641	0.867	0.659
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	%	36.063	5.288	6.567	35.303	59.570	33.690	14.168	30.498
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	E6CELLS/L	0.241	0.179	0.217	0.178	0.185	0.411	0.160	0.335

Abundance of Prevalent Species (>5% Total Count) in Chlorophyll a Maximum Sample Whole Water Phytoplankton, Survey WF014 (continued)

Semiannual	Water Column Monitoring Report (February -	– July 2001)
Appendix F		

Abundance of Prevalent Species (>5% Total Count) in Chlorophyll a Maximum Sample Whole Water Phytoplankton, Survey WN015

			N04	N18
CENTRIC DIATOM SP. GROUP 1 DIAM <10 MICRONS	CD	%	10.095	
CENTRIC DIATOM SP. GROUP 1 DIAM <10 MICRONS	CD	E6CELLS/L	0.071	
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	CY	%		7.630
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	CY	E6CELLS/L		0.050
THALASSIOSIRA SP. GROUP 3 10-20 MICRONS LENGTH	CD	%	1. A.	5.302
THALASSIOSIRA SP. GROUP 3 10-20 MICRONS LENGTH	CD	E6CELLS/L		0.035
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	%	73.085	75.405
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	E6CELLS/L	0.514	0.492

Abundance of Prevalent Species (>5% Total Count) in Chlorophyll a Maximum Sample Whole Water Phytoplankton, Survey WN016

			N04	N18
SKELETONEMA COSTATUM	CD	%	13.005	23.125
SKELETONEMA COSTATUM	CD	E6CELLS/L	0.109	0.222
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	%	76.273	65.692
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	E6CELLS/L	0.639	0.631

	F01	F02	F06	F13	F22	F23	F24
CD %	7.97	3					
CD E6CELI	S/L 0.07	5					
DF %			10.823		5.956		
DF E6CELI	S/L		0.049		0.027		
CD %			12.152		23.336		
CD E6CELI	S/L		0.055		0.108		
CD %							
CD E6CELI	S/L						
CY %	15.09	2 6.865				19.942	19.528
CY E6CELI	S/L 0.14	2 0.047				0.453	0.204
CD %							7 849
CD E6CELI	S/L						0.082
MF %	66.34	7 73.899	63.335	84.099	63.377	67.827	64.164
MF E6CELI	S/L 0.62	6 0.510	0.285	0.914	0.292	1.540	0.669
CD % CD E6CELI DF % DF E6CELI CD % CD 66CELI CD % CD 66CELI CY % CD 86CELI CD 8 CELI CD 8 6CELI CD 8 6CELI CD 8 6CELI	S/L S/L S/L S/L S/L S/L	7.97 0.07 0.14 0.66.34 0.62	7.973 0.075 0.075 15.092 6.865 0.142 0.047 0.626 0.510	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Abundance of Prevalent Species (>5% Total Count) in Chlorophyll a Maximum Sample Whole Water Phytoplankton, Survey WF017

			F25	F26	F27	F30	F31	N04	N16	N18
CENTRIC DIATOM SP. GROUP 1 DIAM <10 MICRONS	CD	%								5 464
CENTRIC DIATOM SP. GROUP 1 DIAM <10 MICRONS	CD	E6CELLS/L								0.028
CERATIUM LONGIPES	DF	%			38.379			10.263		5 260
CERATIUM LONGIPES	DF	E6CELLS/L			0.027			0.036		0.077
CHAETOCEROS COMPRESSUS	CD	%		25.634	17.291			10.395		9.236
CHAETOCEROS COMPRESSUS	CD	E6CELLS/L		0.075	0.012			0.036		0.048
CHAETOCEROS SP. GROUP 2 DIAM 10-30 MICRONS	CD	%			12.231			7.381		
CHAETOCEROS SP. GROUP 2 DIAM 10-30 MICRONS	CD	E6CELLS/L			0.009			0.026		
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	СҮ	%		5.135		19,000	15.038		5 596	
CRYPTOMONAS SP. GROUP 1 LENGTH <10 MICRONS	СҮ	E6CELLS/L		0.015		0.457	0.664		0.019	
SKELETONEMA COSTATUM	CD	%	46.326				33.636			
SKELETONEMA COSTATUM	CD	E6CELLS/L	1.789				1.486			
UNID. MICRO-PHYTOFLAG SP. GROUP 1 LENGTH <10 MICRONS	MF	%	40.116	60.524	26.755	68.531	38.976	66.429	88.733	71.528
UNID. MICRO-PHYTOFLAG SP. GROUP I LENGTH <10 MICRONS	MF	E6CELLS/L	1.549	0.177	0.019	1.649	1.722	0.232	0.300	0.369

Abundance of Prevalent Species (>5% Total Count) in Chlorophyll a Maximum Sample Whole Water Phytoplankton, Survey WF017 (continued)

Semiannual Water Column Monitoring Report (February – July 2001) Appendix F

APPENDIX G

Abundance of Prevalent Phytoplankton Species in Screened Water Surface and Chlorophyll-A Maximum Samples

			F01	F02	F06	F13	F22	F23	F24
ATHECATE DINOFLAGELLATE	DF	%	5.1	5.8					
ATHECATE DINOFLAGELLATE	DF	CELLS/L	15.0	35.0					
CERATIUM FUSUS	DF	%						5.6	7.3
CERATIUM FUSUS	DF	CELLS/L						29.1	24.0
CERATIUM LINEATUM	DF	%							
CERATIUM LINEATUM	DF	CELLS/L							
CERATIUM LONGIPES	DF	%	9.3						
CERATIUM LONGIPES	DF	CELLS/L	27.5						
CERATIUM TRIPOS	DF	%	23.7	6.6	20.5	6.2		76.6	19.5
CERATIUM TRIPOS	DF	CELLS/L	70.0	40.0	480.0	32.5		394.3	64.0
DICTYOCHA FIBULA	CR	%	8.5		5.1				
DICTYOCHA FIBULA	CR	CELLS/L	25.0		120.0				
DINOPHYSIS ACUMINATA	DF	%		8.6					
DINOPHYSIS ACUMINATA	DF	CELLS/L		52.5					
DINOPHYSIS NORVEGICA	DF	%	11.9						
DINOPHYSIS NORVEGICA	DF	CELLS/L	35.0						
DISTEPHANUS SPECULUM	CR	%	16.1	6.2	43.1	13.9	69.3		
DISTEPHANUS SPECULUM	CR	CELLS/L	47.5	37.5	1010.0	72.5	1140.0		
PROROCENTRUM MICANS	DF	%		58.0	27.5	61.7	21.1	9.7	67.7
PROROCENTRUM MICANS	DF	CELLS/L		352.5	645.0	322.5	347.5	49.8	222.0
PROTOPERIDINIUM SP. GROUP 1 10-30 MICRONS WIDTH, 10-40									
MICRONS LENGTH	DF	%		6.6		8.6			
PROTOPERIDINIUM SP. GROUP 1 10-30 MICRONS WIDTH, 10-40									
MICRONS LENGTH	DF	CELLS/L		40.0		45.0			
PROTOPERIDINIUM SP. GROUP 2 31-75 MICRONS WIDTH, 41-80									
MICRONS LENGTH	DF	%	5.1						
PROTOPERIDINIUM SP. GROUP 2 31-75 MICRONS WIDTH, 41-80									
MICRONS LENGTH	DF	CELLS/L	15.0						
THECATE DINOFLAGELLATE SPP.	DF	%	10.2						
THECATE DINOFLAGELLATE SPP.	DF	CELLS/L	30.0						

Abundance Of Prevalent Species (>5% Total Count) in Surface Sample Screened Phytoplankton, Survey WF011

			F25	F26	F27	F30	F31	N04	N16	N18
ATHECATE DINOFLAGELLATE	DF	%								
ATHECATE DINOFLAGELLATE	DF	CELLS/L								
CERATIUM FUSUS	DF	%							11.0	
CERATIUM FUSUS	DF	CELLS/L							110.7	
CERATIUM LINEATUM	DF	%				7.1				
CERATIUM LINEATUM	DF	CELLS/L				11.7				
CERATIUM LONGIPES	DF	%		9.3						
CERATIUM LONGIPES	DF	CELLS/L		60.09						T
CERATIUM TRIPOS	DF	%	13.0	15.1	28.1			11.4	26.0	16.0
CERATIUM TRIPOS	DF	CELLS/L	65.0	97.5	327.5			225.2	262.4	290.0
DICTYOCHA FIBULA	CR	%			23.8		18.9			
DICTYOCHA FIBULA	CR	CELLS/L	-		277.5		34.3			
DINOPHYSIS ACUMINATA	DF	%								
DINOPHYSIS ACUMINATA	DF	CELLS/L								
DINOPHYSIS NORVEGICA	DF	%					5.4			
DINOPHYSIS NORVEGICA	DF	CELLS/L					9.8			Γ
DISTEPHANUS SPECULUM	CR	%	28.5	9.9	29.2	24.7	56.8	38.5	26.4	38.2
DISTEPHANUS SPECULUM	CR	CELLS/L	142.5	42.5	340.0	41.0	102.9	757.4	266.5	695.0
PROROCENTRUM MICANS	DF	%	54.0	62.5	13.7	49.4	17.6	36.6	27.6	40.3
PROROCENTRUM MICANS	DF	CELLS/L	270.0	405.0	160.0	81.9	31.9	720.2	278.8	732.5
PROTOPERIDINIUM SP. GROUP 1 10-30 MICRONS WIDTH, 10-40										
MICRONS LENGTH	DF	%								
PROTOPERIDINIUM SP. GROUP 1 10-30 MICRONS WIDTH, 10-40 MICPONS I ENCITH	Ľ									
	Τ	CELLS/L								
MICRONS LENGTH	DF	%				5.0				
PROTOPERIDINIUM SP. GROUP 2 31-75 MICRONS WIDTH, 41-80						3				
	P	CELLS/L				9.8				
THECATE DINOFLAGELLATE SPP.	ЪF	%								
THECATE DINOFLAGELLATE SPP.	DF	CELLS/L								

			F01	F02	F06	F13	F22	F23	F24
ATHECATE DINOFLAGELLATE	DF	%						22.2	7.1
ATHECATE DINOFLAGELLATE	DF	CELLS/L						35.4	23.9
CERATIUM FUSUS	DF	%		7.5					
CERATIUM FUSUS	DF	CELLS/L		90.06					
CERATIUM LONGIPES	DF	%							
CERATIUM LONGIPES	DF	CELLS/L							
CERATIUM TRIPOS	DF	%	8.2	14.1	24.3	8.5	52.5	17.5	13.4
CERATIUM TRIPOS	DF	CELLS/L	61.9	170.0	115.0	29.7	348.5	27.8	45.1
DICTYOCHA FIBULA	CR	%							
DICTYOCHA FIBULA	CR	CELLS/L							
DINOPHYSIS NORVEGICA	DF	%			5.8				
DINOPHYSIS NORVEGICA	DF	CELLS/L			27.5				
DISTEPHANUS SPECULUM	ß	%	20.1	23.9	9.6	34.5		12.7	9.4
DISTEPHANUS SPECULUM	CR	CELLS/L	151.0	287.5	42.5	121.3		20.2	31.8
PROROCENTRUM MICANS	DF	%	30.3	31.3	16.4	39.4	15.6	14.3	15.0
PROROCENTRUM MICANS	DF	CELLS/L	227.7	377.5	77.5	138.6	103.5	22.7	50.4
PROTOPERIDINIUM SP. GROUP 1 10-30 MICRONS WIDTH, 10-40									
MICRONS LENGTH	DF	%			8.5		6.1		18.9
PROTOPERIDINIUM SP. GROUP 1 10-30 MICRONS WIDTH, 10-40 MICRONS LENGTH	DF	CELLS/L			40.0		40.4		63.6
PROTOPERIDINIUM SP. GROUP 2 31-75 MICRONS WIDTH, 41-80									0.00
MICRONS LENGTH	DF	%	19.4	15.8	19.0	11.3		14.3	24.4
PROTOPERIDINIUM SP. GROUP 2 31-75 MICRONS WIDTH, 41-80									
MICRONS LENGTH	DF	CELLS/L	146.0	190.0	90.06	39.6		22.7	82.2
PROTOPERIDINIUM SP. GROUP 3 76-150 MICRONS WIDTH, 81-150									
MICRONS LENGTH	DF	%	5.3						5.5
PROTOPERIDINIUM SP. GROUP 3 76-150 MICRONS WIDTH, 81-150									
MICRONS LENGTH	DF	CELLS/L	39.6						18.6
THECATE DINOFLAGELLATE SPP.	DF	%					7.2	19.0	
THECATE DINOFLAGELLATE SPP.	DF	CELLS/L					48.0	30.3	

Abundance of Prevalent Species (>5% Total Count) in Surface Sample Screened Phytoplankton, Survey WF012

			F25	F26	F27	F30	F31	N04	91N	N18
ATHECATE DINOFLAGELLATE	DF	%	7.3	7.7	9.1	153	12.7			0
ATHECATE DINOFLAGELLATE	DF	CELLS/L	22.5	40.0	90.06	27.8	22.5			52.0
CERATIUM FUSUS	DF	<i>%</i>	6.5		8.4	19.4		9.6		
CERATIUM FUSUS	DF	CELLS/L	20.0		82.5	35.4		97.5		
CERATIUM LONGIPES	DF	%		5.3						
CERATIUM LONGIPES	DF	CELLS/L		27.5						
CERATIUM TRIPOS	DF	<i>%</i>	41.5	39.9	37.0	19.4	14.1	16.8	21.9	37.4
CERATIUM TRIPOS	DF	CELLS/L	127.5	207.5	365.0	35.4	25.0	165.0	120.0	212.9
DICTYOCHA FIBULA	CR	<i>%</i>		5.8						
DICTYOCHA FIBULA	ß	CELLS/L		30.0						
DINOPHYSIS NORVEGICA	DF	%								
DINOPHYSIS NORVEGICA	DF	CELLS/L								
DISTEPHANUS SPECULUM	CR	9%	5.7			5.6		29.3	21.0	
DISTEPHANUS SPECULUM	CR	CELLS/L	17.5			10.1		287.5	115.0	
PROROCENTRUM MICANS	DF	9%	9.6	11.5	10.9		23.9	31.6	31.5	24.3
PROROCENTRUM MICANS	DF	CELLS/L	30.0	60.09	107.5		42.5	310.0	172.5	138.6
PROTOPERIDINIUM SP. GROUP 1 10-30 MICRONS WIDTH, 10-40 MICRONS LENGTH	ΩË	ď,								
PROTOPERIDINIUM SP. GROUP 1 10-30 MICRONS WIDTH, 10-40	5	2								
MICRONS LENGTH	DF	CELLS/L								
PROTOPERIDINIUM SP. GROUP 2 31-75 MICRONS WIDTH, 41-80 MICRONS I BNGTH	J.	E		6	c t					
PROTOPERIDINIUM SP. GROUP 2 31-75 MICRONS WIDTH 41-80	7	9/	14.0	7.0	<u>;</u>	7.6	18.5		12.8	5.2
MICRONS LENGTH	DF	CELLS/L	45.0	42.5	72.5	17.7	32.5		70.0	7 0 2
PROTOPERIDINIUM SP. GROUP 3 76-150 MICRONS WIDTH, 81-150									2.01	
MICRONS LENGTH	DF	%								
PROTOPERIDINIUM SP. GROUP 3 76-150 MICRONS WIDTH, 81-150										
MICRONS LENGTH	DF	CELLS/L								
THECATE DINOFLAGELLATE SPP.	DF	%	9.8	10.6	8.1	22.2	15.5			6.5
THECATE DINOFLAGELLATE SPP.	DF	CELLS/L	30.0	55.0	80.0	40.4	27.5			37.1

Abundance of Prevalent Species (>5% Total Count) in Surface Sample Screened Phytoplankton, Survey WF012 (continued)

G-5

			N04	N18
ATHECATE DINOFLAGELLATE	DF	%		35.8
ATHECATE DINOFLAGELLATE	DF	CELLS/L		60.0
CERATIUM FUSUS	DF	%	9.6	
CERATIUM FUSUS	DF	CELLS/L	24.5	
CERATIUM LONGIPES	DF	%	22.1	
CERATIUM LONGIPES	DF	CELLS/L	56.4	
CERATIUM SPP.	DF	%		7.5
CERATIUM SPP.	DF	CELLS/L		12.5
CERATIUM TRIPOS	DF	%	34.6	28.4
CERATIUM TRIPOS	DF	CELLS/L	88.2	47.5
DINOPHYSIS NORVEGICA	DF	%	18.3	
DINOPHYSIS NORVEGICA	DF	CELLS/L	46.6	
PROROCENTRUM MICANS	DF	%		9.0
PROROCENTRUM MICANS	DF	CELLS/L		15.0
PROTOPERIDINIUM SP. GROUP 1 10-30 MICRONS				
WIDTH, 10-40 MICRONS LENGTH	DF	%	7.7	
PROTOPERIDINIUM SP. GROUP 1 10-30 MICRONS				
WIDTH, 10-40 MICRONS LENGTH	DF	CELLS/L	19.6	

Abundance of Prevalent Species (>5% Total Count) in Surface Sample Screened Phytoplankton, Survey WN013

			E01	E0.7	EDC	E13	50C	COT.	
ATHECATE DINOFI AGELI ATE	au	10		LVE	00.T	CTJ	F 46	1 40	14
ATHRCATE DINORI AGRI I ATF	52	0/2 0/2 0/2			2.0			18.2	12.3
	3				C.12			0.00	C./1
CEKATIUM FUSUS	DF	%		5.3		14.7			17.5
CERATIUM FUSUS	DF	CELLS/L		17.5		40.0			25.0
CERATIUM LONGIPES	DF	%	17.7	20.6	44.1	13.8	27.0	23.1	17.5
CERATIUM LONGIPES	ΡF	CELLS/L	65.0	67.5	205.0	37.5	290.0	82.5	25.0
CERATIUM SPP.	DF	%		6.1					
CERATIUM SPP.	DF	CELLS/L		20.0					
CERATIUM TRIPOS	DF	%	62.6	35.9	26.3	34.9	51.5	17.5	28.1
CERATIUM TRIPOS	DF	CELLS/L	230.0	117.5	122.5	95.0	552.5	62.5	40.0
DINOPHYSIS ACUMINATA	DF	%		6.1					
DINOPHYSIS ACUMINATA	DF	CELLS/L		20.0					
DINOPHYSIS NORVEGICA	DF	%	5.4	15.3		7.3		-	7.0
DINOPHYSIS NORVEGICA	DF	CELLS/L	20.0	50.0		20.0		-	10.0
DISTEPHANUS SPECULUM	g	%						9.8	
DISTEPHANUS SPECULUM	CR	CELLS/L						35.0	
PROTOPERIDINIUM DEPRESSUM	ΡF	%				7.3		7.7	
PROTOPERIDINIUM DEPRESSUM	DF	CELLS/L				20.0		27.5	
PROTOPERIDINIUM SP. GROUP 1 10-30 MICRONS WIDTH, 10-40									
MICRONS LENGTH	DF	%							5.3
PROTOPERIDINIUM SP. GROUP 1 10-30 MICRONS WIDTH, 10-40									
MICRONS LENGTH	DF	CELLS/L							7.5
PROTOPERIDINIUM SP. GROUP 2 31-75 MICRONS WIDTH, 41-80									
MICRONS LENGTH	DF	%			7.0	8.3		7.0	12.3
PROTOPERIDINIUM SP. GROUP 2 31-75 MICRONS WIDTH, 41-80									
MICRONS LENGTH	DF	CELLS/L			32.5	22.5		25.0	17.5
THECATE DINOFLAGELLATE SPP.	DF	%		6.1		10.1		8.4	
THECATE DINOFLAGELLATE SPP.	DF	CELLS/L		20.0		27.5		30.0	

Abundance of Prevalent Species (>5% Total Count) in Surface Sample Screened Phytoplankton, Survey WF014

	~		
	F31	12.0	
	F30		
ample	F27		i
Surface S 4	F26		
Count) in ey WF01	F25		
ance of Prevalent Species (>5% Total C Screened Phytoplankton, Surv (continued)		DF %	
Abunda			

			F25	F26	F27	F30	F31	N04	9IN	N18
ATHECATE DINOFLAGELLATE	DF	%					12.0			
ATHECATE DINOFLAGELLATE	DF	CELLS/L					40.0			
CERATIUM FUSUS	DF	%		5.9	12.3	11.5	53		67	
CERATIUM FUSUS	DF	CELLS/L		72.5	77.5	25.0	17.5		575	
CERATIUM LONGIPES	DF	%	8.0	46.1	22.5	10.3	10.5	13.0	020	16.8
CERATIUM LONGIPES	DF	CELLS/L	45.0	565.0	142.5	22.5	35.0	105.0	2175	0.01 5
CERATIUM SPP.	DF	%		5.3			0.6	0.001	C: 1 17	5.2
CERATIUM SPP.	DF	CELLS/L		65.0			30.0			30.05
CERATIUM TRIPOS	DF	%	27.0	24.1	47.0	33.3	12.0	53.4	9 67	565
CERATIUM TRIPOS	DF	CELLS/L	152.5	295.0	297.5	72.5	40.0	432.5	2775	3775
DINOPHYSIS ACUMINATA	DF	%								
DINOPHYSIS ACUMINATA	DF	CELLS/L								
DINOPHYSIS NORVEGICA	DF	%	21.2			19.5	17.8	11 7		6 2
DINOPHYSIS NORVEGICA	DF	CELLS/L	120.0			42.5	47.5	050		30.05
DISTEPHANUS SPECULUM	g	%						2.2		2.00
DISTEPHANUS SPECULUM	g	CELLS/L								
PROTOPERIDINIUM DEPRESSUM	DF	%								
PROTOPERIDINIUM DEPRESSUM	Ę	CELLS/L								T
PROTOPERIDINIUM SP. GROUP 1 10-30 MICRONS WIDTH, 10-40										
MICRONS LENGTH	DF	%	9.7							
PROTOPERIDINIUM SP. GROUP 1 10-30 MICRONS WIDTH, 10-40										
MICRONS LENGTH	DF	CELLS/L	55.0							
PROTOPERIDINIUM SP. GROUP 2 31-75 MICRONS WIDTH, 41-80										
MICRONS LENGTH	DF	%	13.7		5.5	10.3	12.8			
PROTOPERIDINIUM SP. GROUP 2 31-75 MICRONS WIDTH, 41-80										
MICRONS LENGTH	DF	CELLS/L	77.5		35.0	22.5	42.5			
THECATE DINOFLAGELLATE SPP.	DF	%	7.1		5.1	8.0	17.3			5.6
THECATE DINOFLAGELLATE SPP.	DF	CELLS/L	40.0		32.5	175	575			2.0
						2				16.40

			N04	N18
CERATIUM FUSUS	DF	%	7.6	
CERATIUM FUSUS	DF	CELLS/L	185.0	
CERATIUM LONGIPES	DF	%	29.0	23.8
CERATIUM LONGIPES	DF	CELLS/L	702.5	672.5
CERATIUM SPP.	DF	%	10.9	5.7
CERATIUM SPP.	DF	CELLS/L	265.0	162.5
CERATIUM TRIPOS	DF	%	45.2	64.0
CERATIUM TRIPOS	DF	CELLS/L	1095.0	1810.0

Abundance of Prevalent Species (>5% Total Count) in Surface Sample Screened Phytoplankton, Survey WN015

			N04	N18
CERATIUM LONGIPES	DF	%	32.0	21.4
CERATIUM LONGIPES	DF	CELLS/L	679.3	281.7
CERATIUM SPP.	DF	%	6.4	6.1
CERATIUM SPP.	DF	CELLS/L	135.4	79.6
CERATIUM TRIPOS	DF	%	34.3	52.7
CERATIUM TRIPOS	DF	CELLS/L	726.8	692.3
PROROCENTRUM MINIMUM	DF	%	23.5	12.4
PROROCENTRUM MINIMUM	DF	CELLS/L	498.8	163.4

Abundance of Prevalent Species (>5% Total Count) in Surface Sample Screened Phytoplankton, Survey WN016

ole	
face Samp	
nt) in Sur VF017	
Abundance of Prevalent Species (>5% Total Cou Screened Phytoplankton, Survey ¹	

J

			F01	F02	F06	F13	F22	F23	F24
CERATIUM FUSUS	DF	%	22.2	10.2	9.1	14.2	83	14.7	11 8
CERATIUM FUSUS	DF	CELLS/L	320.0	527.5	820.0	535.0	613.3	140.0	257.5
CERATIUM LONGIPES	DF	%	8.3	19.7	19.7	18.9	12.9	23.1	21.0
CERATIUM LONGIPES	DF	CELLS/L	120.0	1017.5	1780.0	715.0	953.3	220.0	457 5
CERATIUM SPP.	DF	%				52	99	8 1	86
CERATIUM SPP.	DF	CELLS/L				195.0	486.7	77 5	187.5
CERATIUM TRIPOS	DF	%	58.3	63.9	65.6	57.2	69.7	42.3	53.4
CERATIUM TRIPOS	DF	CELLS/L	840.0	3300.0	5920.0	2160.0	5146.7	402.5	1165.0
						121221	1.01 7.0	2.1	COTT

Abundance of Prevalent Species (>5% Total Count) in Surface Sample Screened Phytoplankton, Survey WF017 (continued)

4

			F25	F26	F27	F30	F31	N04	9IN	N18
CERATIUM FUSUS	DF	%	13.7		13.6	8.6	16.0	13.3	5.4	17.6
CERATIUM FUSUS	DF	CELLS/L	380.0		157.5	170.0	180.0	1140.0	215.0	1157.5
CERATIUM LONGIPES	DF	%	14.4	27.1	32.8		19.6	9.6	26.6	14.4
CERATIUM LONGIPES	DF	CELLS/L	397.5	1520.0	380.0		220.0	820.0	1057.5	950.0
CERATIUM SPP.	DF	%	12.6	13.5		41.7	0 1	10.3		
CERATIUM SPP.	DF	CELLS/L	347.5	760.0		825.0	102.5	885.0		
CERATIUM TRIPOS	DF	%	57.1	53.1	42.7	39.4	46.2	6.09	62.0	61.4
CERATIUM TRIPOS	DF	CELLS/L	1580.0	2977.5	495.0	780.0	520.0	5225.0	2460.0	4040.0
									2.22.2	2.2.2

			F01	F02	F06	F13	F22	F23	F24
CERATIUM FUSUS	DF	%							
CERATIUM FUSUS	DF	CELLS/L							
CERATIUM SPP.	DF	%							
CERATIUM SPP.	DF	CELLS/L							
CERATIUM TRIPOS	DF	%	7.8	25.3	21.0	14.1	19.7	8.1	9.3
CERATIUM TRIPOS	DF	CELLS/L	46.8	218.4	497.5	107.5	247.4	14.5	22.5
DICTYOCHA FIBULA	CR	%	5.2						
DICTYOCHA FIBULA	CR	CELLS/L	31.2						
DISTEPHANUS SPECULUM	CR	%	15.5		32.6	28.0	54.1	20.9	57.4
DISTEPHANUS SPECULUM	CR	CELLS/L	93.6		772.5	212.5	681.4	37.4	139.5
PROROCENTRUM MICANS	DF	₩	64.2	63.6	35.2	50.7	9.2	50.0	29.6
PROROCENTRUM MICANS	DF	CELLS/L	387.4	548.0	835.0	385.0	116.4	89.2	72.0
PROTOPERIDINIUM SP. GROUP 2 31-75 MICRONS									
WIDTH, 41-80 MICRONS LENGTH	DF	%							
PROTOPERIDINIUM SP. GROUP 2 31-75 MICRONS									
WIDTH, 41-80 MICRONS LENGTH	DF	CELLS/L							
THECATE DINOFLAGELLATE SPP.	DF	%						12.8	
THECATE DINOFLAGELLATE SPP.	DF	CELLS/L						22.8	

			F25	F26	F27	F30	F31	N04	N16	N18
CERATIUM FUSUS	DF	%							7.5	
CERATIUM FUSUS	DF	CELLS/L							95.0	
CERATIUM SPP.	DF	%					6.2			
CERATIUM SPP.	DF	CELLS/L					18.0			
CERATIUM TRIPOS	DF	%	20.3	17.6	18.9			17.6	18.0	
CERATIUM TRIPOS	DF	CELLS/L	94.5	93.6	227.5			286.7	227.5	
DICTYOCHA FIBULA	CR	%		12.2	16.2		14.7			5.6
DICTYOCHA FIBULA	CR	CELLS/L		64.8	195.0		42.8			55.9
DISTEPHANUS SPECULUM	CR	%	40.1	37.8	39.3	39.9	48.1	35.8	33.4	73.9
DISTEPHANUS SPECULUM	CR	CELLS/L	186.4	201.6	472.5	210.6	139.5	583.1	422.5	737.5
PROROCENTRUM MICANS	DF	%	31.6	28.8	17.9	55.7	17.1	37.1	37.7	17.5
PROROCENTRUM MICANS	DF	CELLS/L	147.0	153.6	215.0	294.5	49.5	605.2	477.5	174.2
PROTOPERIDINIUM SP. GROUP 2 31-75 MICRONS										
WIDTH, 41-80 MICRONS LENGTH	DF	%					5.4			
PROTOPERIDINIUM SP. GROUP 2 31-75 MICRONS										
WIDTH, 41-80 MICRONS LENGTH	DF	CELLS/L					15.8			
THECATE DINOFLAGELLATE SPP.	DF	%								
THECATE DINOFLAGELLATE SPP.	DF	CELLS/L								

Semiannual Water Column Monitoring Report (February - July 2001) Appendix G

Abundance of Prevalent Species (>5% Total Count) in Chlorophyll a Maximum Sample Screened Phytoplankton, Survey WF011 (continued)

			F01	F02	F06	F13	F22	F23	F24
ATHECATE DINOFLAGELLATE	DF	%	8.1					1.11	9.4
ATHECATE DINOFLAGELLATE	DF	CELLS/L	56.1					17.5	45.0
CERATIUM FUSUS	DF	%	7.7					12.7	7.8
CERATIUM FUSUS	DF	CELLS/L	53.6					20.0	37.5
CERATIUM LONGIPES	DF	%							
CERATIUM LONGIPES	DF	CELLS/L							
CERATIUM SPP.	DF	%				6.4			5.7
CERATIUM SPP.	DF	CELLS/L				28.1			27.5
CERATIUM TRIPOS	DF	%	11.1	23.4	32.5	15.6	33.9	15.9	18.8
CERATIUM TRIPOS	DF	CELLS/L	76.5	227.5	330.8	68.9	157.5	25.0	90.06
DINOPHYSIS NORVEGICA	DF	%			7.0				
DINOPHYSIS NORVEGICA	DF	CELLS/L			71.1				
DISTEPHANUS SPECULUM	CR	%	5.9		8.2	27.2	31.7		
DISTEPHANUS SPECULUM	CR	CELLS/L	40.8		83.3	119.9	147.5		
GYMNODINIUM SP. GROUP 2 21-40 MICRONS WIDTH, 21-50									
MICRONS LENGTH	DF	%							
GYMNODINIUM SP. GROUP 2 21-40 MICRONS WIDTH, 21-50									
MICRONS LENGTH	DF	CELLS/L							
PROROCENTRUM MICANS	DF	%	52.4	55.5	29.3	33.5	15.1	19.0	38.5
PROROCENTRUM MICANS	DF	CELLS/L	362.1	540.0	298.9	147.9	70.0	30.0	185.0
PROTOPERIDINIUM SP. GROUP 1 10-30 MICRONS WIDTH, 10-40									
MICRONS LENGTH	DF	%						6.3	
PROTOPERIDINIUM SP. GROUP 1 10-30 MICRONS WIDTH, 10-40									
MICRONS LENGTH	DF	CELLS/L						10.0	
PROTOPERIDINIUM SP. GROUP 2 31-75 MICRONS WIDTH, 41-80									
MICRONS LENGTH	DF	%				11.0		20.6	11.5
PROTOPERIDINIUM SP. GROUP 2 31-75 MICRONS WIDTH, 41-80									
MICRONS LENGTH	DF	CELLS/L				48.5		32.5	55.0
THECATE DINOFLAGELLATE SPP.	DF	%		7.5	7.9			14.3	
THECATE DINOFLAGELLATE SPP.	DF	CELLS/L		72.5	80.9			22.5	

lance of Prevalent Species (>5% Total Count) in Chlorophyll a Maximum Sample	Screened Phytoplankton, Survey WF012	(continued)
Abundance of		

.

			TO A C	- Ver	200	001				
			C7 J	L 20	171	F.30	F31	N04	91N	N18
ATHECATE DINOFLAGELLATE	DF	%	8.2	5.4		9.7	9.0		21.1	
ATHECATE DINOFLAGELLATE	DF	CELLS/L	32.5	22.7		35.4	26.5		105.0	
CERATIUM FUSUS	DF	<i>‰</i>	7.6		13.5	5.6	11.7	15.5		
CERATIUM FUSUS	DF	CELLS/L	30.0		90.06	20.2	34.5	80.0		
CERATIUM LONGIPES	DF	%		5.4				6.8		
CERATIUM LONGIPES	DF	CELLS/L		22.7				35.0		
CERATIUM SPP.	DF	%	5.1							
CERATIUM SPP.	DF	CELLS/L	20.0							
CERATIUM TRIPOS	DF	<i>%</i>	40.5	34.9	33.1	9.7	15.3	48.1	13.1	38.7
CERATIUM TRIPOS	DF	CELLS/L	160.0	146.5	220.0	35.4	45.1	247.5	65.0	285.8
DINOPHYSIS NORVEGICA	DF	%								
DINOPHYSIS NORVEGICA	DF	CELLS/L								
DISTEPHANUS SPECULUM	CR	%	7.6	7.2		5.6			8.0	
DISTEPHANUS SPECULUM	CR	CELLS/L	30.0	30.3		20.2			40.0	
GYMNODINIUM SP. GROUP 2 21-40 MICRONS WIDTH, 21-50										
MICRONS LENGTH	DF	%							7 0	
GYMNODINIUM SP. GROUP 2 21-40 MICRONS WIDTH, 21-50									2	
MICRONS LENGTH	DF	CELLS/L							35.0	<u> </u>
PROROCENTRUM MICANS	DF	%	5.1	16.9	18.4	27.1	23.4	6.8	29.1	28.6
PROROCENTRUM MICANS	DF	CELLS/L	20.0	70.7	122.5	98.5	68.9	35.0	145.0	2112
PROTOPERIDINIUM SP. GROUP 1 10-30 MICRONS WIDTH, 10-40								2		
MICRONS LENGTH	DF	%			11.3	11.8	7.2	7.8		
PROTOPERIDINIUM SP. GROUP 1 10-30 MICRONS WIDTH, 10-40										
MICRONS LENGTH	DF	CELLS/L			75.0	42.9	21.2	40.0	-	
PROTOPERIDINIUM SP. GROUP 2 31-75 MICRONS WIDTH, 41-80										
MICRONS LENGTH	DF	%	8.9	6.6	8.3	14.6	17.1		8.5	10.1
PROTOPERIDINIUM SP. GROUP 2 31-75 MICRONS WIDTH, 41-80 MICRONS LENGTH	DF	CELLS/L	35.0	27.8	55.0	53.0	50.4		3 CV	
THECATE DINOFLAGELLATE SPP.	DF	%	12.0	72	2	0.6	10.8		2	e a
THECATE DINOFLAGELLATE SPP.	DF	CELLS/L	47.5	30.3		32.8	31.8			50.7
					-	2.42	2.12			17.4

Semiannual Water Column Monitoring Report (February – July 2001) Appendix G

			N04	N18
ATHECATE DINOFLAGELLATE	DF	%	8.0	
ATHECATE DINOFLAGELLATE	DF	CELLS/L	10.0	
CERATIUM FUSUS	DF	%	34.0	
CERATIUM FUSUS	DF	CELLS/L	42.5	
CERATIUM LONGIPES	DF	%	32.0	13.2
CERATIUM LONGIPES	DF	CELLS/L	40.0	30.0
CERATIUM SPP.	DF	%		26.4
CERATIUM SPP.	DF	CELLS/L		60.0
CERATIUM TRIPOS	DF	%	10.0	
CERATIUM TRIPOS	DF	CELLS/L	12.5	
DINOPHYSIS NORVEGICA	DF	%	6.0	
DINOPHYSIS NORVEGICA	DF	CELLS/L	7.5	
DISTEPHANUS SPECULUM	CR	%		34.1
DISTEPHANUS SPECULUM	CR	CELLS/L		77.5
PROROCENTRUM MICANS	DF	%		15.4
PROROCENTRUM MICANS	DF	CELLS/L		35.0
PROTOPERIDINIUM SP. GROUP 2 31-75 MICRONS				
WIDTH, 41-80 MICRONS LENGTH	DF	%	8.0	6.6
PROTOPERIDINIUM SP. GROUP 2 31-75 MICRONS				
WIDTH, 41-80 MICRONS LENGTH	DF	CELLS/L	10.0	15.0

Abundance of Prevalent Species (>5% Total Count) in Chlorophyll a Maximum Sample Screened Phytopolankton, Survey WN013

Abundance of Prevalent Species (> 5% Tot Screened Phytopla	al Cour nkton, S	at) in Chloro Survey WF01	phyll a Ma 4	ximum Sa	mple				
			F01	F02	F06	F13	F22	F23	F24
ATHECATE DINOFLAGELLATE	DF	%				7.5		10.8	
ATHECATE DINOFLAGELLATE	DF	CELLS/L				25.0		47.5	
CERATIUM FUSUS	DF	%		18.6	10.3		7.2		
CERATIUM FUSUS	DF	CELLS/L		107.5	32.5		28.1		
CERATIUM LONGIPES	DF	d ₀	12.1	13.4	8.7	12.0	11.1	16.5	
CERATIUM LONGIPES	DF	CELLS/L	37.5	77.5	27.5	40.0	43.4	72.5	
CERATIUM SPP.	DF	%	12.9			9.8			
CERATIUM SPP.	DF	CELLS/L	40.0			32.5			
CERATIUM TRIPOS	DF	%	23.4	30.7	48.4	30.8	58.2	23.3	51.9
CERATIUM TRIPOS	DF	CELLS/L	72.5	177.5	152.5	102.5	227.0	102.5	402.5
DINOPHYSIS NORVEGICA	DF	%	8.9	12.6		10.5		17.6	12.3
DINOPHYSIS NORVEGICA	DF	CELLS/L	27.5	72.5		35.0		77.5	95.0
GONYAULAX SPP.	DF	%	5.6						
GONYAULAX SPP.	DF	CELLS/L	17.5						
GYRODINIUM SP. GROUP 2 21-40 MICRONS WIDTH, 21-50 MICRONS LENGTH	ЪF	07,0		17					
GYRODINIUM SP. GROUP 2 21-40 MICRONS WIDTH 21-50 MICRONS	5	2		1.0			T		
TENGTH	DF	CELLS/L		35.0					
GYRODINIUM SPIRALE	DF	%						5.7	
GYRODINIUM SPIRALE	DF	CELLS/L						25.0	
PROROCENTRUM MICANS	DF	%							
PROROCENTRUM MICANS	DF	CELLS/L							
PROTOPERIDINIUM PUNCTULATUM	DF	%							6.8
PROTOPERIDINIUM PUNCTULATUM	DF	CELLS/L							52.5
PROTOPERIDINIUM SP. GROUP 1 10-30 MICRONS WIDTH, 10-40 MICRONS LENGTH	DF	ď	65						
PROTOPERIDINIUM SP. GROUP 1 10-30 MICRONS WIDTH, 10-40 MICRONS		2	22						
LENGTH	DF	CELLS/L	20.0						
PROTOPERIDINIUM SP. GROUP 2 31-75 MICRONS WIDTH, 41-80 MICRONS LENGTH	DF	%	14.5	9.5		12.8	5 2		
PROTOPERIDINIUM SP. GROUP 2 31-75 MICRONS WIDTH, 41-80 MICRONS									
ITENGTH	DF	CELLS/L	45.0	55.0		42.5	20.4		
THECATE DINOFLAGELLATE SPP.	DF	%	10.5	6.1	6.3	14.3	6.5	6.8	
THECATE DINOFLAGELLATE SPP.	DF	CELLS/L	32.5	35.0	20.0	47.5	25.5	30.0	

Semiannual Water Column Monitoring Report (February – July 2001) Appendix G

a Maximum Sample	·	
Abundance of Prevalent Species (> 5% Total Count) in Chlorophyl	Screened Phytoplankton, Survey WF014	(continued)

e of Prevalent Species (> 5% Total Count) in Chlorophyll a Maximum Sample Screened Phytoplankton, Survey WF014 (continued)	R25 R26 R27 R30 R31 N04 N16 N18	DF % 5.7 14.4 6.1 5.0	DF CELLS/L 20.0 40.0 17.5 35.7	DF % 11.4 7.9 6.8 100	DF CELLS/L 52.5 22.5 27.5 550	DF % 12.9 14.1 21.3 9.0 13.2 9.3 13.7	DF CELLS/L 45.0 65.0 82.5 25.0 37.5 37.5 75.0	DF % 9.6 6.8 6.4	DF CELLS/L 27.5 40.8 35.0	DF % 28.6 35.3 49.7 18.0 25.4 50.2 35.4 40.2	DF CELLS/L 100.0 162.5 192.5 50.0 72.5 303.5 142.5 220.0	DF % 13.6 8.2 26.1 9.7 5.6	DF CELLS/L 47.5 37.5 72.5 58.7 22.5	DF %	DF CELLS/L	H, 21-50 MICRONS 6.0 6.0	H, 21-50 MICRONS	DF CELLS/L 27.5	DF %	DF CELLS/L	DF % 5.2	DF CELLS/L 20.0	DF %	DF CELLS/L	WIDTH, 10-40 MICRONS DF % 6.4 6.4	WIDTH, 10-40 MICRONS DE CEITION 22 6 12 6	WIDTH 41-80 MICRONS	DF % 15.0 15.2 14.4 11.4 5.1 16.8 5.5	WIDTH, 41-80 MICRONS DF CELT S7 5 70.0 40.0 37.5 70.0	DF (2, 10, 157 7, 73, 140 56, 10, 01, 20, 01, 20, 01, 20, 01, 20, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1	
ll a Maxi	F26			11.4	52.5	14.]	65.(35.3	162.5	8.2	37.5			61	5	27.5										15.2	JOL	2	
ılorophyl NF014	F25	5.7	20.0			12.9	45.0			28.6	100.0	13.6	47.5												6.4	3 66	C-77	15.0	575	157	25.0
Count) in Ch ton, Survey V nued)		%	CELLS/L	%	CELLS/L	%	CELLS/L	%	CELLS/L	%	CELLS/L	%	CELLS/L	%	CELLS/L	ď,		CELLS/L	%	CELLS/L	%	CELLS/L	%	CELLS/L	%			%		dh dh	CELL S/L
6 Total toplank (contin		DF	DF	DF	DF	DF	DF	DF	DF	DF	DF	DF	DF	DF	DF	DF		DF	DF	DF	DF	DF	DF	DF	DF	ЦЦ	5	DF	DF	E E	ШĽ
Abundance of Prevalent Species (> 5% Screened Phyt		ATHECATE DINOFLAGELLATE	ATHECATE DINOFLAGELLATE	CERATIUM FUSUS	CERATIUM FUSUS	CERATIUM LONGIPES	CERATIUM LONGIPES	CERATIUM SPP.	CERATIUM SPP.	CERATIUM TRIPOS	CERATIUM TRIPOS	DINOPHYSIS NORVEGICA	DINOPHYSIS NORVEGICA	GONYAULAX SPP.	GONYAULAX SPP.	GYRODINIUM SP. GROUP 2 21-40 MICRONS WIDTH, 21-50 MICRONS LENGTH	GYRODINIUM SP. GROUP 2 21-40 MICRONS WIDTH, 21-50 MICRONS	LENGTH	GYRODINIUM SPIRALE	GYRODINIUM SPIRALE	PROROCENTRUM MICANS	PROROCENTRUM MICANS	PROTOPERIDINIUM PUNCTULATUM	PROTOPERIDINIUM PUNCTULATUM	PROTOPERIDINIUM SP. GROUP 1 10-30 MICRONS WIDTH, 10-40 MICRONS LENGTH	PROTOPERIDINIUM SP. GROUP 1 10-30 MICRONS WIDTH, 10-40 MICRONS	PROTOPERIDINIUM SP. GROUP 2 31-75 MICRONS WIDTH. 41-80 MICRONS	LENGTH	PROTOPERIDINIUM SP. GROUP 2 31-75 MICRONS WIDTH, 41-80 MICRONS	THECATE DINOFLAGELLATE SPP.	THECATE DINOFI AGELLATE SPP

			N04	N18
ATHECATE DINOFLAGELLATE	DF	%	8.9	5.2
ATHECATE DINOFLAGELLATE	DF	CELLS/L	32.5	40.0
CERATIUM FUSUS	DF	%		14.6
CERATIUM FUSUS	DF	CELLS/L		112.5
CERATIUM LONGIPES	DF	%		12.6
CERATIUM LONGIPES	DF	CELLS/L		97.5
CERATIUM TRIPOS	DF	%	28.1	51.8
CERATIUM TRIPOS	DF	CELLS/L	102.5	400.0
PROROCENTRUM MINIMUM	DF	%	43.8	5.5
PROROCENTRUM MINIMUM	DF	CELLS/L	160.0	42.5
PROTOPERIDINIUM SP. GROUP 2 31-75 MICRONS				
WIDTH, 41-80 MICRONS LENGTH	DF	%	5.5	
PROTOPERIDINIUM SP. GROUP 2 31-75 MICRONS				
WIDTH, 41-80 MICRONS LENGTH	DF	CELLS/L	20.0	
THECATE DINOFLAGELLATE SPP.	DF	%	6.2	5.5
THECATE DINOFLAGELLATE SPP.	DF	CELLS/L	22.5	42.5

Abundance of Prevalent Species (>5% Total Count) in Chlorophyll a Maximum Sample Screened Phytoplankton, Survey WN015

Abundance of Prevalent Species (>5% Total Count) in Chlorophyll a Maximum Sample Screened Phytoplankton, Survey WN016

			N04	N18
CERATIUM LONGIPES	DF	%		36.3
CERATIUM LONGIPES	DF	CELLS/L		2142.0
CERATIUM TRIPOS	DF	%	46.5	54.8
CERATIUM TRIPOS	DF	CELLS/L	1795.5	3230.0
PROROCENTRUM MINIMUM	DF	%	40.4	
PROROCENTRUM MINIMUM	DF	CELLS/L	1559.3	

			F01	F02	F06	F13	F22	F23	F24
CERATIUM FUSUS	DF	%	12.2			0.6		13.7	,0
CERATIUM FUSUS	DF	CELLS/L	720.0			382.5		172.5	235 6
CERATIUM LONGIPES	DF	%	26.3	20.0	39.0	22.8	26.0	23.9	0.00
CERATIUM LONGIPES	DF	CELLS/L	1560.0	2710.0	7345.0	975.0	3121.2	300.0	545 0
CERATIUM SPP.	DF	%			<u>9.7</u>		011	2.22	19
CERATIUM SPP.	DF	CELLS/L			1480.0		1318.4		159 (
CERATIUM TRIPOS	DF	%	48.5	68.5	48.7	57.6	57.8	47.9	60.6
CERATIUM TRIPOS	DF	CELLS/L	2872.5	9260.0	9180.0	2460.0	6943.7	602.5	1492.0

			F25	F26	F27	F31	N04	9IN	N18
CERATIUM FUSUS	DF	%				16.9	12.0	19	
CERATIUM FUSUS	DF	CELLS/L				100.0	1045.0	340.0	
CERATIUM LONGIPES	DF	%	14.5	42.8	38.3	13.1	24.8	250	266
CERATIUM LONGIPES	DF	CELLS/L	475.0	1940.0	3540.0	77.5	2150.0	1420.0	4520.0
CERATIUM SPP.	DF	%	11.7	12.4		6.8	0.0012	0.0741	1071
CERATIUM SPP.	DF	CELLS/L	382.5	562.5		40.0	1815.0		2060.0
CERATIUM TRIPOS	DF	%	62.3	38.9	58.0	555	38.8	58.1	54.1
CERATIUM TRIPOS	DF	CELLS/L	2040.0	1760.0	5365.0	327.5	3370.0	3217.5	9180.0

Abundance of Prevalent Species (>5% Total Count) in Chlorophyll a Maximum Sample Screened Phytoplankton, Survey WF017 (continued)

APPENDIX H

Abundance of Prevalent Species in Zooplankton Tow Samples

Count	
% Total	1001
cies (>5	wey WF
ent Spe	ton, Sur
Preval	oplankt
lance of	Z0
Abund	

_

				F01	F02	F06	F13	F22	F23	F24
BIVALVIA SPP.	Λ	ΟZ	%							
BIVALVIA SPP.	Λ	ZO	ind/m3							
CENTROPAGES SPP.	с С	ပ	%		1					
CENTROPAGES SPP.	ပ	ပ	ind/m3		1199					
CENTROPAGES TYPICUS	ц	ပ	%		6					
CENTROPAGES TYPICUS	ц	ပ	ind/m3		1165					
CIRRIPEDIA SPP.	z	В	%				6		23	16
CIRRIPEDIA SPP.	N	В	ind/m3				875		1205	2102
COPEPOD SPP.	Z	U	%	48	34	46	39	40	42	41
COPEPOD SPP.	N	ပ	ind/m3	4061	5860	8106	3868	8558	2184	5342
OITHONA SIMILIS	ပ	U	%	15	35	34	34	47	16	30
OITHONA SIMILIS	ပ	ပ	ind/m3	1310	5963	5927	3361	7999	819	3910
OITHONA SIMILIS	ц	с С	%		9			~~~~		
OITHONA SIMILIS	ц	ပ	ind/m3		1028			1637		
POLYCHAETE SPP.	L	ZO	%	16		9				
POL YCHAETE SPP.	L	ZO	ind/m3	1366		993				
POLYCHAETE SPP.	T	ZO	%							
POLYCHAETE SPP.	T	ZO	ind/m3							
PSEUDOCALANUS NEWMANI	c	ပ	%	6			9		2	
PSEUDOCALANUS NEWMANI	ပ	ပ	ind/m3	730			576		353	

				F25	F26	F27	F30	F31	F32	F33	N04	N16	N18
BIVALVIA SPP.	۷	ZO	%				7						
BIVALVIA SPP.	>	ΟZ	ind/m3				436						Ī
CENTROPAGES SPP.	ပ	ပ	%							L			
CENTROPAGES SPP.	ပ	ပ	ind/m3							1538			
CENTROPAGES TYPICUS	ц	ပ	%							DCCT			
CENTROPAGES TYPICUS	н	υ	ind/m3										
CIRRIPEDIA SPP.	z	В	%	34			33	63					
CIRRIPEDIA SPP.	z	В	ind/m3	983			2161	3058					
COPEPOD SPP.	z	ပ	%	33	31	43	34	17	46	26	45	18	16
COPEPOD SPP.	z	ပ	ind/m3	956	5163	4080	2203	814	2631	13008	1773	0101	12100
OITHONA SIMILIS	ပ	ပ	%	12	54	42			407	PC	121	1712	
OITHONA SIMILIS	ບ	U	ind/m3	340	8912	702			4857	1747	C+	00	11270
OITHONA SIMILIS	ц	ပ	%		9	9			1001	Ì	6000	/ 1 / 1 / 1	0/711
OITHONA SIMILIS	н	ပ	ind/m3		983	535							
POLYCHAETE SPP.	L	ZO	%							T			
POLYCHAETE SPP.	L	ZO	ind/m3										
POLYCHAETE SPP.	Т	ZO	%				×						
POLYCHAETE SPP.	Т	ZO	ind/m3				499						T
PSEUDOCALANUS NEWMANI	ပ	ပ	%	9				2					
						1	-		-		-		-

Abundance of Prevalent Species (>5% Total Count) Zooplankton, Survey WF001 (continued)

360 179 ind/m3 ပ J PSEUDOCALANUS NEWMANI H-3

oundance of Prevalent Species (>5% To Zooplankton, Survey WF012
--

				i				-		
				F01	F02	F06	F13	F22	F23	F24
CIRRIPEDIA SPP.	N	B	%				20		40	F
CIRRIPEDIA SPP.	N	В	ind/m3				3205		2590	1220
COPEPOD SPP.	z	с U	%	46	36	39	27	38	26	23
COPEPOD SPP.	N	ບ	ind/m3	6226	5379	9158	4299	2966	1670	2633
OITHONA SIMILIS	C	ບ ບ	%	29	29	29	16	41		45
OITHONA SIMILIS	с U	с U	ind/m3	4014	4337	6761	2580	3168		5094
OITHONA SIMILIS	F	с U	%	9	7		5	8		9
OITHONA SIMILIS	Н	с U	ind/m3	819	986		821	590		72.8
POLYCHAETE SPP.	L	ZO	%		6		14		Ε	
POLYCHAETE SPP.	L L	ZO	ind/m3		1324		2306		685	
POLYCHAETE SPP.	۲	ZO	%							
POLYCHAETE SPP.	Т	ΟZ	ind/m3							
PSEUDOCALANUS NEWMANI	J	с U	%	8	11	7	11		6	
PSEUDOCALANUS NEWMANI	່ ບ	с U	ind/m3	1106	1690	1660	1720		557	

				F25	F26	F27	F30	F31	F32	F33	N04	9IN	818
CIRRIPEDIA SPP.	z	В	%	42	25		29	86					-
CIRRIPEDIA SPP.	z	B	ind/m3	3979	2705		2784	1696					110011
COPEPOD SPP.	z	C	%	26	27	50	26		38	11	30	Q.	140y
COPEPOD SPP.	z	J	ind/m3	2462	2908	3372	2451		5266	8674	300	1755	102
OITHONA SIMILIS	<u>ں</u>	C	%	12	28	41	L		33	33	11	11	orne
OITHONA SIMILIS	ں د	ں د	ind/m3	1087	3010	2813	642		4464	USUL	1C VL	41	00
OITHONA SIMILIS	H	C	%				;	۲ ۲	50	2007	7	1000	4044 404
OITHONA SIMILIS	Ц	J	ind/m3					100	1256				
POLYCHAETE SPP.	L	ZO	0/0	5	9		11	701	0071				/17
POLYCHAETE SPP.	L	ZO	ind/m3	492	609		1047						
POLYCHAETE SPP.	L	ZO	%				9						
POLYCHAETE SPP.	T	ZO	ind/m3				595						
PSEUDOCALANUS NEWMANI	<u>ں</u>	J	%	8	9				×	E	4	°	
PSEUDOCALANUS NEWMANI	ပ	<u>ں</u>	ind/m3	759	676		666		1151	2391	676	804 804	
												-	

Abundance of Prevalent Species (>5% Total Count) Zooplankton, Survey WF012 (continued)

				N04	N18
BIVALVIA SPP.	V	OZ	%		8
BIVALVIA SPP.	V	OZ	ind/m3		1219
CIRRIPEDIA SPP.	N	В	%		6
CIRRIPEDIA SPP.	N	В	ind/m3		1016
COPEPOD SPP.	N	C	%	55	52
COPEPOD SPP.	N	C	ind/m3	12483	8330
OITHONA SIMILIS	С	C	%	18	15
OITHONA SIMILIS	C	C	ind/m3	4099	2387
PSEUDOCALANUS NEWMANI	C	C	%	6	6
PSEUDOCALANUS NEWMANI	С	C	ind/m3	1304	914

Abundance of Prevalent Species (>5% Total Count) Zooplankton, Survey WN013
idance of Prevalent Species (>5% Total Count)	Zooplankton, Survey WF014
Abundan	

				F01	F02	F06	F13	F22	F23	F24
ACARTIA TONSA	Μ	ပ	%							
ACARTIA TONSA	Μ	ပ	ind/m3							
BIVALVIA SPP.	>	ΟZ	%			5				
BIVALVIA SPP.	V	ΟZ	ind/m3			509				
CALANUS FINMARCHICUS	C	ပ	%	17	10	6	6	6		
CALANUS FINMARCHICUS	ပ	ပ	ind/m3	4327	4004	833	1553	1619		
CIRRIPEDIA SPP.	Z	В	%				5			12
CIRRIPEDIA SPP.	N	В	ind/m3				874			2222
COPEPOD SPP.	N	U	%	39	46	27	45	37	43	47
COPEPOD SPP.	N	ပ	ind/m3	10096	18970	2546	7703	6655	3664	9032
ECHINODERM PLUTEI	lluu	ZO	%							
ECHINODERM PLUTEI	null	ZO	ind/m3							
GASTROPODA SPP.	٧	ΟZ	%		6	7		6		
GASTROPODA SPP.	٧	ΟZ	ind/m3		3742	671		1559		
OIKOPLEURA DIOICA	llun	ΟZ	%				5		6	12
OIKOPLEURA DIOICA	null	ZO	ind/m3				939		799	2367
OITHONA SIMILIS	C	C	%	19	6	22	15	26	15	8
OITHONA SIMILIS	С	ပ	ind/m3	4808	3545	2153	2589	4736	1292	1497
POLYCHAETE SPP.	L	ΟZ	%							
POLYCHAETE SPP.	L	ΟZ	ind/m3							
PSEUDOCALANUS NEWMANI	c	U	%	10	7	11	9		14	7
PSEUDOCALANUS NEWMANI	С	c	ind/m3	2644	2888	1088	971		1198	1352

Semiannual Water Column Monitoring Report (February – July 2000)

				F25	F26	F27	F30	F31	F32	F33	N04	N16	N18
ACARTIA TONSA	M	с	%				Ξ						
ACARTIA TONSA	M	υ	ind/m3				1401						
BIVALVIA SPP.	Λ	ZO	%										
BIVALVIA SPP.	٧	ZO	ind/m3										
CALANUS FINMARCHICUS	с	υ	%	10		10		8	10	12	14	6	10
CALANUS FINMARCHICUS	ပ	υ	ind/m3	1323		2537		341	3095	3401	2208	1155	1547
CIRRIPEDIA SPP.	N	ш	%					8					
CIRRIPEDIA SPP.	z	m	ind/m3					318					
COPEPOD SPP.	N	ပ	%	40	36	28	35	35	43	50	47	42	39
COPEPOD SPP.	N	c	ind/m3	5408	11762	7150	4601	1471	13785	13695	7525	5173	5861
ECHINODERM PLUTEI	null	ZO	%		9	9							
ECHINODERM PLUTEI	null	ZO	ind/m3		1799	1461							
GASTROPODA SPP.	V	ZO	%		5	9							6
GASTROPODA SPP.	V	ZO	ind/m3		1661	1614							1360
OIKOPLEURA DIOICA	null	ΟZ	%	12	16	12					∞	9	10
OIKOPLEURA DIOICA	null	ΟZ	ind/m3	1697	5328	2998					1309	698	1500
OITHONA SIMILIS	C	c	%	14	20	26		13	15	13	18	14	18
OITHONA SIMILIS	С	ပ	ind/m3	1927	6435	6535		565	4782	3580	2944	1708	2673
POLYCHAETE SPP.	L	ZO	%				39	6					
POLYCHAETE SPP.	L	ZO	ind/m3				5092	365					
PSEUDOCALANUS NEWMANI	С	ပ	%	∞	5			6	20	15		10	
PSEUDOCALANUS NEWMANI	с	c	ind/m3	1093	1661			376	6377	4117		1275	

				N04	N18
BIVALVIA SPP.	V	OZ	%	9	
BIVALVIA SPP.	V	OZ	ind/m3	2808	
CALANUS FINMARCHICUS	C	C	%		9
CALANUS FINMARCHICUS	C	C	ind/m3		1976
COPEPOD SPP.	N	C	%	30	18
COPEPOD SPP.	N	C	ind/m3	9001	3894
GASTROPODA SPP.	V	OZ	%	8	16
GASTROPODA SPP.	V	OZ	ind/m3	2448	3371
OITHONA SIMILIS	C	C	%	21	22
OITHONA SIMILIS	C	C	ind/m3	6193	4707
OITHONA SIMILIS	F	C	%	5	5
OITHONA SIMILIS	F	С	ind/m3	1584	1104
PSEUDOCALANUS NEWMANI	C	C	%	9	10
PSEUDOCALANUS NEWMANI	C	C	ind/m3	2736	2208

				N04	N18
BIVALVIA SPP.	V	OZ	%	15	
BIVALVIA SPP.	V	OZ	ind/m3	8426	
COPEPOD SPP.	N	C	%	28	39
COPEPOD SPP.	N	C	ind/m3	15488	12351
GASTROPODA SPP.	V	OZ	%		9
GASTROPODA SPP.	V	OZ	ind/m3		3016
OITHONA SIMILIS	С	C	%	26	19
OITHONA SIMILIS	С	C	ind/m3	14445	6176
PSEUDOCALANUS NEWMANI	С	C	%	10	11
PSEUDOCALANUS NEWMANI	С	C	ind/m3	5297	3519
TEMORA LONGICORNIS	С	С	%		6
TEMORA LONGICORNIS	С	С	ind/m3		1939

tt Species (>5% Total Count)	n, Survey WF017
Abundance of Prevalent Specie	Zooplankton, Surve

				F01	F02	F06	F13	F22	F23	F24
ACARTIA HUDSONICA	F	C	%						5	
ACARTIA HUDSONICA	F	ပ	ind/m3						3280	
ACARTIA HUDSONICA	М	c	%						6	
ACARTIA HUDSONICA	М	C	ind/m3			2			5284	
ACARTIA SPP.	С	С	%						38	6
ACARTIA SPP.	С	С	ind/m3						23140	2371
BIVALVIA SPP.	ν	ZO	%			17		27		
BIVALVIA SPP.	٧	ZO	ind/m3			2191		2436		
CALANUS FINMARCHICUS	c	ပ	%							
CALANUS FINMARCHICUS	ပ	ပ	ind/m3							
CENTROPAGES SPP.	С	C	%	5	5					7
CENTROPAGES SPP.	С	C	ind/m3	1750	1273					1946
COPEPOD SPP.	N	ပ	%	33	21	14	20		15	32
COPEPOD SPP.	N	ပ	ind/m3	10831	4825	1795	4156		8928	8817
EVADNE NORDMANNI	llun	ZO	%							
EVADNE NORDMANNI	lluu	ZO	ind/m3							
DITHONA SIMILIS	С	C	%	51	57	32	24	14		10
SITHONA SIMILIS	С	C	ind/m3	16454	13269	4117	4987	1218		2858
DITHONA SIMILIS	F	ပ	%							
DITHONA SIMILIS	F	C	ind/m3							
PSEUDOCALANUS NEWMANI	С	C	%			10	17	16		9
PSEUDOCALANUS NEWMANI	С	C	ind/m3			1240	3574	1451		1763
PSEUDOCALANUS NEWMANI	F	c	%				2			
PSEUDOCALANUS NEWMANI	F	С	ind/m3				1455			
TEMORA LONGICORNIS	С	С	%			9	14	14		5
TEMORA LONGICORNIS	c	c	ind/m3			739	2868	1270		1399
TEMORA LONGICORNIS	F	C	%							
TEMORA LONGICORNIS	F	C	ind/m3							
TEMORA LONGICORNIS	М	ပ	%							
TEMORA LONGICORNIS	M	ပ	ind/m3							

	Т	1	-		- -	T	· [· ·	- T			Т	-	T÷	FIVE	<u>.</u>	T	110	T	ŝT		1-	112	<u>.</u>				1~	<u>.</u>	ET C	5
N18													14	1626			15	1730			=	1315			10	2240		034) 10	-
91N													25	2690			31	3313	0100		18	1982			×	850				
N04													12	1172			17	1616	2121		20	1001			28	2725				-
F31					6	3403					2	2511	37	13772			9	2106							10	3565				•
F30	9	5009	9	4823	52	43223							20	16325																
F27									17	3733			23	4994			20	4364	5	1115	13	2812			10	2133				
F26							23	3257					14	1969	5	720	12	1742			19	2727			5	720				
F25											19	5389	20	5659			18	5210			9	1617			7	1976				
	16	nd/m3	10	nd/m3	%	nd/m3	. 9/	nd/m3	20	nd/m3	10	nd/m3	20	nd/m3	10	nd/m3	20	nd/m3	24	nd/m3	20	nd/m3	20	nd/m3	20	nd/m3	20	nd/m3	20	
	с С	c	ບ ບ	с г	с U	C	ZO	0Z i	с U	c C	ບ	ы С	ບ ບ	с г	5 ZO	0Z i	ບ ບ	C C	о. С	і С	ບ	ц С	ر د	ц С	с С	і. С	с С	C	ر د	
	Р	F	М	М	С	с	٧	>	c	c	c	c	N	N	null	llun	c	c	щ	ц	ပ	c	ц	Ч	ບ	ပ	F	F	М	
	ACARTIA HUDSONICA	ACARTIA HUDSONICA	ACARTIA HUDSONICA	ACARTIA HUDSONICA	ACARTIA SPP.	ACARTIA SPP.	SIVALVIA SPP.	SIVALVIA SPP.	CALANUS FINMARCHICUS	CALANUS FINMARCHICUS	CENTROPAGES SPP.	CENTROPAGES SPP.	OPEPOD SPP.	OPEPOD SPP.	VADNE NORDMANNI	EVADNE NORDMANNI	ITHONA SIMILIS	SITHONA SIMILIS	SITHONA SIMILIS	DITHONA SIMILIS	SEUDOCALANUS NEWMANI	SEUDOCALANUS NEWMANI	SEUDOCALANUS NEWMANI	SEUDOCALANUS NEWMANI	TEMORA LONGICORNIS	EMORA LONGICORNIS	TEMORA LONGICORNIS	TEMORA LONGICORNIS	TEMORA LONGICORNIS	

APPENDIX H

Abundance of Prevalent Species in Zooplankton Tow Samples

(>5% Total Count)	WF001
Abundance of Prevalent Species	Zooplankton, Survey

				F01	F02	F06	F13	F22	F23	F24
BIVALVIA SPP.	Λ	ZO	%							
BIVALVIA SPP.	Λ	ZO	ind/m3							
CENTROPAGES SPP.	ပ	ပ	%		2					
CENTROPAGES SPP.	ပ	ပ	ind/m3		1199					
CENTROPAGES TYPICUS	Ч	ပ	%		2					
CENTROPAGES TYPICUS	Ч	ပ	ind/m3		1165					
CIRRIPEDIA SPP.	z	в	%				6		23	16
CIRRIPEDIA SPP.	z	В	ind/m3				875		1205	2102
COPEPOD SPP.	N	ပ	%	48	34	46	39	40	42	41
COPEPOD SPP.	N	U	ind/m3	4061	5860	8106	3868	8558	2184	5342
OITHONA SIMILIS	С	c	%	15	35	34	34	47	16	30
OITHONA SIMILIS	С	ပ	ind/m3	1310	5963	5927	3361	79997	819	3910
OITHONA SIMILIS	Р	ပ	%		9			8		
OITHONA SIMILIS	ч	ပ	ind/m3		1028			1637		
POLYCHAETE SPP.	L	ΟZ	%	16		9				
POLYCHAETE SPP.	L	ZO	ind/m3	1366		993				
POLYCHAETE SPP.	Т	ΟZ	%							
POL YCHAETE SPP.	Т	ZO	ind/m3							
PSEUDOCALANUS NEWMANI	ပ	ပ	%	6			9		2	
PSEUDOCALANUS NEWMANI	С	ပ	ind/m3	730			576		353	

bundance of Prevalent Species (>5%] Zooplankton, Survey WF00 (continued)

				F25	F26	F27	F30	F31	F32	F33	N04	y1V	212
BIVALVIA SPP.	٨	ZO	%				L						
BIVALVIA SPP.	>	ZO	ind/m3				436						
CENTROPAGES SPP.	ບ	U	%				2			7			
CENTROPAGES SPP.	C	U	ind/m3							1538			
CENTROPAGES TYPICUS	Ł	ပ	%										
CENTROPAGES TYPICUS	F	U	ind/m3										
CIRRIPEDIA SPP.	z	ß	%	34			33	63					
CIRRIPEDIA SPP.	N	В	ind/m3	983			2161	3058					Ī
COPEPOD SPP.	N	ပ	%	33	31	43	34	17	46	56	45	48	16
COPEPOD SPP.	N	ပ	ind/m3	956	5163	4080	2203	814	2931	13008	6771	0771	13100
OITHONA SIMILIS	C	ບ	%	12	54	42			404	74	45	38	
OITHONA SIMILIS	C	ပ	ind/m3	340	8912	3927			4857	5447	6460	7547	11270
OITHONA SIMILIS	Ч	ပ	%		6	9			120	5	000	t C	112/0
OITHONA SIMILIS	ц	c	ind/m3		983	535							
POLYCHAETE SPP.	Γ	ZO	%										
POLYCHAETE SPP.	L	ZO	ind/m3										T
POL YCHAETE SPP.	Ţ	ZO	%				~						
POLYCHAETE SPP.	Ţ	ZO	ind/m3				499					\uparrow	
PSEUDOCALANUS NEWMANI	ပ	U	%	9				L					
PSEUDOCALANUS NEWMANI	с	ပ	ind/m3	179				360					

(Jumf)	(mmo)	
Total (TOTOT	12
1220		y WF0
Snerie	- prove	Surve
valent		ankton,
e of Pre		Zoopla
ndance		
Ahu		

				F01	F02	F06	F13	F22	F23	F24
CIRRIPEDIA SPP.	N	В	%				20		40	11
CIRRIPEDIA SPP.	N	B	ind/m3				3205		2590	1220
COPEPOD SPP.	N	с	%	46	36	39	27	38	26	23
COPEPOD SPP.	N	c	ind/m3	6226	5379	9158	4299	2966	1670	2633
OITHONA SIMILIS	C	J	%	29	29	29	16	41		45
OITHONA SIMILIS	C	с С	ind/m3	4014	4337	6761	2580	3168		5094
OITHONA SIMILIS	н	U U	%	9	L		5	∞		9
OITHONA SIMILIS	н	C L	ind/m3	819	986		821	590		728
POLYCHAETE SPP.	L	ΟZ	%		6		14		Ξ	
POL YCHAETE SPP.	L	ΟZ	ind/m3		1324		2306		685	
POLYCHAETE SPP.	T	ΟZ	%							
POLYCHAETE SPP.	T	DZ	ind/m3							
PSEUDOCALANUS NEWMANI	J	с С	%	∞	11	7	Ξ		6	
PSEUDOCALANUS NEWMANI	c	c	ind/m3	1106	1690	1660	1720		557	

				1.25	744								
				C7 J	170	121	F30	F31	F32	F33	20Z	N16	N18
CIRRIPEDIA SPP.	Z	В	%	42	25		29	86					
CIRRIPEDIA SPP.	z	В	ind/m3	3979	2705		2784	1606					110011
COPEPOD SPP.	z	с U	%	26	27	50	26		38	F	30	V.	1409
COPEPOD SPP.	z	с U	ind/m3	2462	2908	3372	2451		5766	17	200	104	10
OITHONA SIMILIS	ں د	U	%	12	28	41	10.7		3077	100	C//#	44200	
OITHONA SIMILIS	с С	<u>ں</u>	ind/m3	1087	3010	2813	642		4464	10802	10	41	00
OITHONA SIMILIS	F	ں د	%					Y	5	000/	7/11	4000	4044 404
OITHONA SIMILIS	н	с U	ind/m3					<u>1</u>	1256				712
POLYCHAETE SPP.	L	ZO	%	5	9		=						/17
POLYCHAETE SPP.	L L	ZO	ind/m3	492	609		1047						
POL YCHAETE SPP.	T	ZO	%										
POLYCHAETE SPP.	T	ZO	ind/m3				505						
PSEUDOCALANUS NEWMANI	ں ں	U	%	8	9		11		×	=	4	0	
PSEUDOCALANUS NEWMANI	J	ပ ပ	ind/m3	759	676		666		1151	1052	676	o VU	
											2		

Abundance of Prevalent Species (>5% Total Count) Zooplankton, Survey WF012 (continued)

				N04	N18
BIVALVIA SPP.	V	OZ	%		8
BIVALVIA SPP.	V	OZ	ind/m3		1219
CIRRIPEDIA SPP.	N	В	%		6
CIRRIPEDIA SPP.	N	В	ind/m3		1016
COPEPOD SPP.	N	C	%	55	52
COPEPOD SPP.	N	C	ind/m3	12483	8330
OITHONA SIMILIS	C	C	%	18	15
OITHONA SIMILIS	C	C	ind/m3	4099	2387
PSEUDOCALANUS NEWMANI	C	C	%	6	6
PSEUDOCALANUS NEWMANI	C	C	ind/m3	1304	914

bundance of Prevalent Species (>5% Total Count) Zooplankton, Survey WF014
--

				F01	F02	F06	F13	F22	F23	F24
ACARTIA TONSA	M	U	%							
ACARTIA TONSA	М	U	ind/m3							
BIVALVIA SPP.	٨	ZO	%			5				
BIVALVIA SPP.	Λ	ZO	ind/m3			509				
CALANUS FINMARCHICUS	ပ	ပ	%	17	10	6	6	6		
CALANUS FINMARCHICUS	ပ	υ	ind/m3	4327	4004	833	1553	1619		
CIRRIPEDIA SPP.	N	в	%				5			12
CIRRIPEDIA SPP.	z	в	ind/m3				874			2222
COPEPOD SPP.	N	U	%	39	46	27	45	37	43	47
COPEPOD SPP.	N	U	ind/m3	10096	18970	2546	7703	6655	3664	9032
ECHINODERM PLUTEI	llun	ZO	%							
ECHINODERM PLUTEI	null	ZO	ind/m3							
GASTROPODA SPP.	Λ	ZO	%		6	7		6		
GASTROPODA SPP.	Λ	ZO	ind/m3		3742	671		1559		
OIKOPLEURA DIOICA	null	ΟZ	%				5		6	12
OIKOPLEURA DIOICA	null	ZO	ind/m3				939		799	2367
OITHONA SIMILIS	С	ບ	%	19	6	22	15	26	15	8
OITHONA SIMILIS	C	ບ ່	ind/m3	4808	3545	2153	2589	4736	1292	1497
POLYCHAETE SPP.	Г	ΟZ	%							
POLYCHAETE SPP.	L	ZO	ind/m3							
PSEUDOCALANUS NEWMANI	C	U	%	10	7	11	9		14	7
PSEUDOCALANUS NEWMANI	С	c	ind/m3	2644	2888	1088	971		1198	1352

Semiannual Water Column Monitoring Report (February – July 2000)

				F25	F26	F27	F30	F31	F32	F33	N04	N16	NIS
ACARTIA TONSA	М	ပ	%				= 						
ACARTIA TONSA	М	υ	ind/m3				1401						
BIVALVIA SPP.	٨	ΖO	%										
BIVALVIA SPP.	٨	ZO	ind/m3										
CALANUS FINMARCHICUS	С	ပ	%	10		10		8	10	1	14	o	
CALANUS FINMARCHICUS	С	ပ	ind/m3	1323		2537		341	3095	3401	2205	1155	1547
CIRRIPEDIA SPP.	z	В	%					×				1	+CT
CIRRIPEDIA SPP.	z	В	ind/m3					318					
COPEPOD SPP.	z	ပ	%	40	36	28	35	35	43	205	77	42	30
COPEPOD SPP.	N	ပ	ind/m3	5408	11762	7150	4601	1471	13785	13695	7575	5173	1985
ECHINODERM PLUTEI	, Ilua	ΟZ	%		9	9				2002	2101	2172	Inor
ECHINODERM PLUTEI	null	ZO	ind/m3		1799	1461							Τ
GASTROPODA SPP.	٨	ΟZ	%		5	9							
GASTROPODA SPP.	٨	ZO	ind/m3		1661	1614							1360
OIKOPLEURA DIOICA	null	ΟZ	%	12	16	12					×	9	
OIKOPLEURA DIOICA	null	ΟZ	ind/m3	1697	5328	2998					1309	869	1500
OITHONA SIMILIS	ပ	С	%	14	20	26		13	15	13	18	14	18
OITHONA SIMILIS	ပ	С	ind/m3	1927	6435	6535		565	4782	3580	2944	1708	2673
POLYCHAETE SPP.	L	ZO	%				39	6					202
POLYCHAETE SPP.	L	ΟZ	ind/m3				5092	365					
PSEUDOCALANUS NEWMANI	С	С	%	∞	5			6	20	15		10	
PSEUDOCALANUS NEWMANI	c	ပ	ind/m3	1093	1661			376	6377	4117		1275	

.

				N04	N18
BIVALVIA SPP.	V	OZ	%	9	
BIVALVIA SPP.	V	OZ	ind/m3	2808	
CALANUS FINMARCHICUS	C	C	%		9
CALANUS FINMARCHICUS	C	C	ind/m3		1976
COPEPOD SPP.	N	C	%	30	18
COPEPOD SPP.	N	C	ind/m3	9001	3894
GASTROPODA SPP.	V	OZ	%	8	16
GASTROPODA SPP.	V	OZ	ind/m3	2448	3371
OITHONA SIMILIS	C	C	%	21	22
OITHONA SIMILIS	C	C	ind/m3	6193	4707
OITHONA SIMILIS	F	C	%	5	5
OITHONA SIMILIS	F	C	ind/m3	1584	1104
PSEUDOCALANUS NEWMANI	С	C	%	9	10
PSEUDOCALANUS NEWMANI	С	C	ind/m3	2736	2208

				N04	N18
BIVALVIA SPP.	V	OZ	%	15	
BIVALVIA SPP.	V	OZ	ind/m3	8426	
COPEPOD SPP.	N	C	%	28	39
COPEPOD SPP.	N	C	ind/m3	15488	12351
GASTROPODA SPP.	V	OZ	%		9
GASTROPODA SPP.	V	OZ	ind/m3		3016
OITHONA SIMILIS	C	C	%	26	19
OITHONA SIMILIS	C	C	ind/m3	14445	6176
PSEUDOCALANUS NEWMANI	C	C	%	10	11
PSEUDOCALANUS NEWMANI	С	С	ind/m3	5297	3519
TEMORA LONGICORNIS	С	C	%		6
TEMORA LONGICORNIS	C	C	ind/m3		1939

				F01	F02	F06	F13	F22	F23	F24
ACARTIA HUDSONICA	н	c	%						2	
ACARTIA HUDSONICA	F	ပ	ind/m3						3280	
ACARTIA HUDSONICA	М	ں ب	%						0	
ACARTIA HUDSONICA	М	IJ	ind/m3						52.84	
ACARTIA SPP.	ပ	ບ	%						38	0
ACARTIA SPP.	c	υ	ind/m3						23140	2371
BIVALVIA SPP.	>	ZO	%			17		7.2		1103
BIVALVIA SPP.	>	ΟZ	ind/m3			2191		2436		
CALANUS FINMARCHICUS	ບ	ပ	%							
CALANUS FINMARCHICUS	c	U	ind/m3							
CENTROPAGES SPP.	С	C	%	5	5					2
CENTROPAGES SPP.	c	ပ	ind/m3	1750	1273					1946
COPEPOD SPP.	N	C	%	33	21	14	20		15	32
COPEPOD SPP.	z	J	ind/m3	10831	4825	1795	4156		8028	8817
EVADNE NORDMANNI	llun	ΟZ	%							
EVADNE NORDMANNI	llun	ΟZ	ind/m3							
OITHONA SIMILIS	c	ပ	%	51	57	32	24	14		10
OITHONA SIMILIS	c	U	ind/m3	16454	13269	4117	4987	1218		2858
OITHONA SIMILIS	ц	ပ	%							
OITHONA SIMILIS	ц	ပ	ind/m3							
PSEUDOCALANUS NEWMANI	J	U	%			10	17	16		2
PSEUDOCALANUS NEWMANI	C	ပ	ind/m3			1240	3574	1451		1763
PSEUDOCALANUS NEWMANI	F	ပ	%				7			
PSEUDOCALANUS NEWMANI	F	ပ	ind/m3				1455			
TEMORA LONGICORNIS	C	ပ	%			9	14	14		V
TEMORA LONGICORNIS	C	C	ind/m3			739	2868	1270		1399
TEMORA LONGICORNIS	F	ບ	%							
TEMORA LONGICORNIS	ц	C	ind/m3							
TEMORA LONGICORNIS	М	C	%							
TEMORA LONGICORNIS	Μ	C	ind/m3							

Semiannual Water Column Monitoring Report (February – July 2001) Appendix H

				F25	F26	F27	F30	F31	N04	N16	N18
	F	С	%				9				
	F	ပ	ind/m3				5009				
	M	ပ	%				9				
	Μ	ပ	ind/m3				4823				
	С	С	%				52	6			
	С	С	ind/m3				43223	3403			
	٧	ZO	%		23						
	٧	ZO	ind/m3		3257						
S	c	ပ	%			17					
S	С	ပ	ind/m3			3733					
	С	ပ	%	19				7			
	С	c	ind/m3	5389				2511			
	N	c	%	20	14	23	20	37	12	25	14
	N	ပ	ind/m3	5659	1969	4994	16325	13772	1172	2690	1626
	null	ZO	%		5						
	llun	ZO	ind/m3		720						
	c	ပ	%	18	12	20		9	17	31	15
	С	ပ	ind/m3	5210	1742	4364		2106	1616	3313	1730
	F	c	%			5					
	F	ပ	ind/m3			1115					
AANI	С	c	%	9	19	13			20	18	11
MANI	С	ပ	ind/m3	1617	2727	2812			1901	1982	1315
AANI	F	С	%								
MANI	F	ပ	ind/m3								
	С	c	%	7	5	10		10	28	8	19
	С	c	ind/m3	1976	720	2133		3565	2725	850	2249
	F	С	%								8
	н	ပ	ind/m3								934
	Μ	ပ	%								10
	Μ	c	ind/m3								1142

APPENDIX I

Satellite Images of Chlorophyll a Concentrations and Temperature

Figure I-1. Chlorophyll a Concentrations from February 10, 2001

Chlorophyll a Concentration mg/m3

Figure I-2. Chlorophyll a Concentrations from February 27, 2001

Figure I-3. Chlorophyll a Concentrations from March 12, 2001

Figure I-4. Chlorophyll a Concentrations from March 16, 2001

Figure I-5. Chlorophyll a Concentration from March 19, 2001

Chlorophyll a Concentration mg/m3

Figure I-6. Chlorophyll a Concentration from March 27, 2001

Figure I-7. Chlorophyll a Concentration from April 4, 2001

Chlorophyll a Concentration mg/m3

Figure I-8. Chlorophyll a Concentration from April 5, 2001

Figure I-9. Chlorophyll a Concentration from April 10, 2001

Figure I-10. Chlorophyll a Concentration from April 15, 2001

Figure I-11. Chlorophyll a Concentration from April 19, 2001

Figure I-12. Chlorophyll a Concentration from April 20, 2001

Figure I-13. Chlorophyll a Concentration from April 29, 2001

Figure I-14. Chlorophyll a Concentration May 6, 2001

Figure I-15. Chlorophyll a Concentration from May 8, 2001

Figure I-16. Chlorophyll a Concentration from May 10, 2001

Figure I-17. Chlorophyll a Concentration from May 20, 2001

Figure I-18. Chlorophyll a Concentration from June 14, 2001

Chlorophyll a Concentration mg/m3

Figure I-19. Chlorophyll a Concentration from June 16, 2001

Figure I-20 Chlorophyll a Concentration from June 18, 2001

Figure I-22. Sea Surface Temperature from February 11, 2001

Semiannual Water Column Monitoring Report (February – July 2001) Appendix I

Figure I-23. Sea Surface Temperature from February 12, 2001

Figure I-24. Sea Surface Temperature from February 14, 2001

Figure I-25. Sea Surface Temperature from February 27, 2001

Figure I-26. Sea Surface Temperature from March 12, 2001.

Figure I-27. Sea Surface Temperature from March 16, 2001.

Figure I-28. Sea Surface Temperature from March 25, 2001.

Figure I-29. Sea Surface Temperature from April 3, 2001.

Figure I-30. Sea Surface Temperature from April 5, 2001.

Figure I-31. Sea Surface Temperature from April 6, 2001.

Figure I-32 Sea Surface Temperature from April 15, 2001.

10 5 15 2030 Ô 25 Sea Surface Temperature (°C) NOAA-14 23—Apr—2001

Figure I-33. Sea Surface Temperature from April 23, 2001.

Figure I-34. Sea Surface Temperature from May 6, 2001.

Figure I-35. Sea Surface Temperature from May 8, 2001.

Figure I-36.. Sea Surface Temperature from May 10, 2001.

0 5 10 15 202530 Sea Surface Temperature (°C) NOAA-14 20—May—2001

Figure I-37. Sea Surface Temperature from May 20, 2001.

Figure I-38. Sea Surface Temperature from June 14, 2001.

Figure I-39. Sea Surface Temperature from June 16, 2001.

Figure I-40. Sea Surface Temperature from June 18, 2001.

Figure I-41. Sea Surface Temperature from June 19, 2001.

Figure I-42. Sea Surface Temperature from June 26, 2001.

Figure I-43. Sea Surface Temperature from June 27, 2001.

APPENDIX J

Secchi Disk Data

Survey ID	Station Station Arrival ID Date and Time		Secchi Disk Depth (m)	Qualifier	
WF011	F01	2/7/01 13:36	4	v	
WF011	F02	2/7/01 15:09	3.75	v	
WF011	F03	2/12/01 14:08	7.25	v	
WF011	F05	2/12/01 12:44	7.75	v	
WF011	F06	2/12/01 12:10	10.25	v	
WF011	F07	2/12/01 11:35	9.75	v	
WF011	F10	2/12/01 10:44	11	v	
WF011	F13	2/12/01 10:00	6.75	v	
WF011	F14	2/12/01 9:26	6	v	
WF011	F15	2/8/01 12:59	7.25	v	
WF011	F16	2/8/01 12:18	8.75	V	
WF011	F17	2/8/01 11:38	8.75	v	
WF011	F18	2/8/01 15:12	7.25	v	
WF011	F19	2/8/01 10:47	8.75	v	
WF011	F22	2/8/01 9:54	7.75	v	
WF011	F23	2/9/01 7:16	4.25	v	
WF011	F24	2/8/01 15:48	4.75	v	
WF011	F25	2/12/01 8:52	4.25	v	
WF011	F26	2/8/01 7:46	6.25	v	
WF011	F27	2/8/01 8:37	9.75	V	
WF011	F29	2/7/01 16:59	4.75	v	
WF011	F30	2/8/01 16:44	3.25	v	
WF011	F31	2/12/01 7:25	2.75	v	
WF011	F32	2/7/01 14:25	5.75	v	
WF011	F33	2/7/01 16:07	4.25	ν	
WF011	N16	2/8/01 13:41	7.75	v	
WF012	F01	2/27/01 9:42	6.75	V	
WF012	F02	2/27/01 11:17	8.25	v	
WF012	F03	3/2/01 12:08	7.25	v	
WF012	F05	3/2/01 10:40	9.25	v	
WF012	F06	3/2/01 10:07	11.75	v	
WF012	F07	3/2/01 9:35	12.25	v	
WF012	F10	2/28/01 9:12	10.75	V	
WF012	F12	2/27/01 15:10	10.75	V	
WF012	F13	2/28/01 9:58	8.25	v	
WF012	F14	2/28/01 11:29	9.25	v	

Static Survey ID ID		Station Arrival Date and Time	Secchi Disk Depth (m)	Qualifier	
WF012	F15	2/28/01 10:30	10.75	v	
WF012	F16	3/2/01 8:19	12.75	v	
WF012	F17	2/28/01 8:17	10.25	v	
WF012	F18	2/28/01 14:31	10.75	v	
WF012	F19	2/28/01 7:31	9.75	v	
WF012	F22	2/28/01 6:40	10.25	v	
WF012	F23	3/1/01 6:53	6.75	v	
WF012	F24	2/28/01 15:05	8.25	v	
WF012	F25	2/28/01 12:00	7.75	v	
WF012	F27	2/27/01 17:26	7.75	v	
WF012	F28	2/27/01 15:54	10.75	v	
WF012	F29	2/27/01 13:17	10.25	v	
WF012	F30	2/28/01 16:07	3.75	v	
WF012	F32	2/27/01 10:34	7.75	v	
WF012	F33	2/27/01 12:21	7.75	v	
WF012	N16	2/28/01 13:18	12.75	v	
WF014	F01	4/9/01 13:36	9.25	v	
WF014	F02	4/9/01 12:06		е	
WF014	F03	4/9/01 14:23	6.25	v	
WF014	F05	4/9/01 8:14	8.25	v	
WF014	F06	4/9/01 8:39	12.25	v	
WF014	F07	4/9/01 9:35	12.25	v	
WF014	F10	4/5/01 9:40	10.75	v	
WF014	F12	4/6/01 8:53	12.25	v	
WF014	F13	4/5/01 9:00	8.75	v	
WF014	F14	4/5/01 8:08	9.25	v	
WF014	F15	4/5/01 8:36	11.25	v	
WF014	F16	4/5/01 10:17	11.25	v	
WF014	F17	4/5/01 10:47	10.25	v	
WF014	F18	4/5/01 13:57	6.25	v	
WF014	F19	4/6/01 12:20	7.25	v	
WF014	F22	4/5/01 11:37	11.75	v	
WF014	F23	4/4/01 7:01	3.75	v	
WF014	F24	4/5/01 14:25	3.25	v	
WF014	F25	4/5/01 6:48	5.125	v	
WF014	F26	4/6/01 11:11	6.75	v	
WF014	F27	4/6/01 10:14	10.25	v	

Survey ID	Station ID	Station Arrival Date and Time	Secchi Disk Depth (m)	Qualifier	
WF014	F28	4/6/01 9:24	10.75	v	
WF014	F29	4/9/01 10:41	14.75	v	
WF014	F30	4/6/01 13:53	2.75	v	
WF014	F31	4/6/01 14:24	2.75	v	
WF014	F32	4/9/01 13:03	11.25	v	
WF014	F33	4/9/01 11:33	15.25	v	
WF014	N16	4/5/01 12:44	11.25	V	
WF017	F01	6/19/01 11:50	9.25	v	
WF017	F02	6/19/01 12:53	10.75	v	
WF017	F03	6/19/01 10:56	9.75	v	
WF017	F05	6/20/01 15:14	10.75	v	
WF017	F06	6/20/01 14:37	9.75	v	
WF017	F07	6/20/01 14:01	8.75	v	
WF017	F10	6/21/01 9:51	9.25	v	
WF017	F12	6/20/01 13:04	10.75	v	
WF017	F13	6/21/01 9:06	10.25	v	
WF017	F14	6/21/01 8:13	4.75	v	
WF017	F15	6/21/01 8:42	8.75	v	
WF017	F16	6/21/01 10:32	8.25	v	
WF017	F17	6/21/01 11:06	8.25	v	
WF017	F18	6/21/01 15:57	3.25	V	
WF017	F19	6/21/01 11:58	7.25	v	
WF017	F22	6/21/01 12:53	8.25	v	
WF017	F23	6/25/01 6:44	2.75	v	
WF017	F24	6/21/01 16:32	3.25	v	
WF017	F25	6/21/01 7:07	4.75	v	
WF017	F26	6/20/01 10:27	12.75	V	
WF017	F27	6/20/01 11:31	8.75	v	
WF017	F28	6/20/01 12:28	9.25	v	
WF017	F29	6/19/01 14:35	8.75	v	
WF017	F30	6/21/01 17:26	2.25	ν	
WF017	F31	6/20/01 16:50	2.25	v	
WF017 N16		6/21/01 13:52	10.25	v	

e-Results not reported value given is null v-Arithmetic mean

APPENDIX J

Secchi Disk Data

.

Survey ID	Station ID	Station Arrival Date and Time	Secchi Disk Depth (m)	Qualifier
WF011	F01	2/7/01 13:36	4	v
WF011	F02	2/7/01 15:09	3.75	V
WF011	F03	2/12/01 14:08	7.25	v
WF011	F05	2/12/01 12:44	7.75	v
WF011	F06	2/12/01 12:10	10.25	v
WF011	F07	2/12/01 11:35	9.75	v
WF011	F10	2/12/01 10:44	11	v
WF011	F13	2/12/01 10:00	6.75	v
WF011	F14	2/12/01 9:26	6	v
WF011	F15	2/8/01 12:59	7.25	ν
WF011	F16	2/8/01 12:18	8.75	ν
WF011	F17	2/8/01 11:38	8.75	v
WF011	F18	2/8/01 15:12	7.25	ν
WF011	F19	2/8/01 10:47	8.75	v
WF011	F22	2/8/01 9:54	7.75	v
WF011	F23	2/9/01 7:16	4.25	v
WF011	F24	2/8/01 15:48	4.75	ν
WF011	F25	2/12/01 8:52	4.25	v
WF011	F26	2/8/01 7:46	6.25	v
WF011	F27	2/8/01 8:37	9.75	v
WF011	F29	2/7/01 16:59	4.75	v
WF011	F30	2/8/01 16:44	3.25	v
WF011	F31	2/12/01 7:25	2.75	v
WF011	F32	2/7/01 14:25	5.75	v
WF011	F33	2/7/01 16:07	4.25	v
WF011	N16	2/8/01 13:41	7.75	v
WF012	F01	2/27/01 9:42	6.75	v
WF012	F02	2/27/01 11:17	8.25	v
WF012	F03	3/2/01 12:08	7.25	v
WF012	F05	3/2/01 10:40	9.25	v
WF012	F06	3/2/01 10:07	11.75	v
WF012	F07	3/2/01 9:35	12.25	v
WF012	F10	2/28/01 9:12	10.75	v
WF012	F12	2/27/01 15:10	10.75	v
WF012	F13	2/28/01 9:58	8.25	v
WF012	F14	2/28/01 11:29	9.25	v

Survey ID	Station ID	Station Arrival Date and Time	Secchi Disk Depth (m)	Qualifier	
WF012	F15	2/28/01 10:30	10.75	v	
WF012	F16	3/2/01 8:19	12.75	v	
WF012	F17	2/28/01 8:17	10.25	v	
WF012	F18	2/28/01 14:31	10.75	v	
WF012	F19	2/28/01 7:31	9.75	v	
WF012	F22	2/28/01 6:40	10.25	v	
WF012	F23	3/1/01 6:53	6.75	v	
WF012	F24	2/28/01 15:05	8.25	v	
WF012	F25	2/28/01 12:00	7.75	v	
WF012	F27	2/27/01 17:26	7.75	v	
WF012	F28	2/27/01 15:54	10.75	v	
WF012	F29	2/27/01 13:17	10.25	v	
WF012	F30	2/28/01 16:07	3.75	v	
WF012	F32	2/27/01 10:34	7.75	v	
WF012	F33	2/27/01 12:21	7.75	v	
WF012	N16	2/28/01 13:18	12.75	v	
WF014	F01	4/9/01 13:36	9.25	v	
WF014	F02	4/9/01 12:06		е	
WF014	F03	4/9/01 14:23	6.25	v	
WF014	F05	4/9/01 8:14	8.25	v	
WF014	F06	4/9/01 8:39	12.25	v	
WF014	F07	4/9/01 9:35	12.25	v	
WF014	F10	4/5/01 9:40	10.75	v	
WF014	F12	4/6/01 8:53	12.25	v	
WF014	F13	4/5/01 9:00	8.75	v	
WF014	F14	4/5/01 8:08	9.25	v	
WF014	F15	4/5/01 8:36	11.25	v	
WF014	F16	4/5/01 10:17	11.25	v	
WF014	F17	4/5/01 10:47	10.25	v	
WF014	F18	4/5/01 13:57	6.25	v	
WF014	F19	4/6/01 12:20	7.25	v	
WF014	F22	4/5/01 11:37	11.75	v	
WF014	F23	4/4/01 7:01	3.75	v	
WF014	F24	4/5/01 14:25	3.25	v	
WF014	F25	4/5/01 6:48	5.125	v	
WF014	F26	4/6/01 11:11	6.75	v	
WF014	F27	4/6/01 10:14	10.25	v	

Survey ID	Station ID	Station Arrival Date and Time	Secchi Disk Depth (m)	Qualifier	
WF014	F28	4/6/01 9:24	10.75	V	
WF014	F29	4/9/01 10:41	14.75	v	
WF014	F30	4/6/01 13:53	2.75	v	
WF014	F31	4/6/01 14:24	2.75	v	
WF014	F32	4/9/01 13:03	11.25	V	
WF014	F33	4/9/01 11:33	15.25	v	
WF014	N16	4/5/01 12:44	11.25	v	
WF017	F01	6/19/01 11:50	9.25	v	
WF017	F02	6/19/01 12:53	10.75	v	
WF017	F03	6/19/01 10:56	9.75	v	
WF017	F05	6/20/01 15:14	10.75	v	
WF017	F06	6/20/01 14:37	9.75	v	
WF017	F07	6/20/01 14:01	8.75	v	
WF017	F10	6/21/01 9:51	9.25	v	
WF017	F12	6/20/01 13:04	10.75	v	
WF017	F13	6/21/01 9:06	10.25	v	
WF017	F14	6/21/01 8:13	4.75	v	
WF017	F15	6/21/01 8:42	8.75	v	
WF017	F16	6/21/01 10:32	8.25	v	
WF017	F17	6/21/01 11:06	8.25	v	
WF017	F18	6/21/01 15:57	3.25	v	
WF017	F19	6/21/01 11:58	7.25	v	
WF017	F22	6/21/01 12:53	8.25	v	
WF017	F23	6/25/01 6:44	2.75	v	
WF017	F24	6/21/01 16:32	3.25	v	
WF017	F25	6/21/01 7:07	4.75	v	
WF017	F26	6/20/01 10:27	12.75	v	
WF017	F27	6/20/01 11:31	8.75	v	
WF017	F28	6/20/01 12:28	9.25	v	
WF017	F29	6/19/01 14:35	8.75	v	
WF017	F30	6/21/01 17:26	2.25	v	
WF017	F31	6/20/01 16:50	2.25	v	
WF017	N16	6/21/01 13:52	10.25	v	

e-Results not reported value given is null v-Arithmetic mean

APPENDIX K

Estimated Carbon Equivalence Data

		0	Damilia	Osmalian		Estimated Carbon
Survey	Sta.	Number	Deptn (m)	Date	Plankton	(ng Carbon/L)
WF011	F01	WF01106C	1.82	2/7/2001	Centric diatom sp. group 1 diam <10 micr	326.65
WF011	F01	WF01106C	1.82	2/7/2001	Ceratium tripos	11442.62
WF011	F01	WF01106C	1.82	2/7/2001	Chaetoceros compressus	46823.71
WF011	F01	WF01106C	1.82	2/7/2001	Chaetoceros debilis	12642.01
WF011	F01	WF01106C	1.82	2/7/2001	Chaetoceros sp. group 2 diam 10-30 micro	19488.33
WF011	F01	WF01106C	1.82	2/7/2001	Choanoflagellate spp.	30.77
WF011	F01	WF01106C	1.82	2/7/2001	Corethron criophilum	4606.56
WF011	F01	WF01106C	1.82	2/7/2001	Cryptomonas sp. group 1 length <10 micro	410.83
WF011	F01	WF01106C	1.82	2/7/2001	Cylindrotheca closterium	230.85
WF011	F01	WF01106C	1.82	2/7/2001	Detonula confervacea	1924.22
WF011	F01	WF01106C	1.82	2/7/2001	Dinophysis norvegica	12804.79
WF011	F01	WF01106C	1.82	2/7/2001	Gymnodinium sp. group 1 5-20 microns wid	324.50
WF011	F01	WF01106C	1.82	2/7/2001	Licmophora spp.	138.16
WF011	F01	WF01106C	1.82	2/7/2001	Pleurosigma spp.	2540.11
WF011	F01	WF01106C	1.82	2/7/2001	Prorocentrum micans	1866.18
WF011	F01	WF01106C	1.82	2/7/2001	Rhizosolenia setigera	10553.65
WF011	F01	WF01106C	1.82	2/7/2001	Skeletonema costatum	1327.47
WF011	F01	WF01106C	1.82	2/7/2001	Stephanopyxis turris	13095.34
WF011	F01	WF01106C	1.82	2/7/2001	Thalassionema nitzschioides	2270.68
WF011	F01	WF01106C	1.82	2/7/2001	Thalassiosira anguste-lineata	20862.48
WF011	F01	WF01106C	1.82	2/7/2001	Thalassiosira nordenskioldii	4137.99
WF011	F01	WF01106C	1.82	2/7/2001	Thalassiosira punctigera	2418.96
WF011	F01	WF01106C	1.82	2/7/2001	Thalassiosira rotula	7767.42
WF011	F01	WF01106C	1.82	2/7/2001	Thalassiosira sp. group 3 10-20 microns	2724.87
WF011	F01	WF01106C	1.82	2/7/2001	Thalassiothrix longissima	3018.63
WF011	F01	WF01106C	1.82	2/7/2001	Unid. micro-phytoflag sp. group 1 length	13339.74
WF011	F01	WF01106A	12.2	2/7/2001	Centric diatom sp. group 1 diam <10 micr	610.73
WF011	F01	WF01106A	12.2	2/7/2001	Ceratium tripos	11588.38
WF011	F01	WF01106A	12.2	2/7/2001	Chaetoceros compressus	14892.29
WF011	F01	WF01106A	12.2	2/7/2001	Chaetoceros debilis	7041.68
WF011	F01	WF01106A	12.2	2/7/2001	Chaetoceros decipiens	9107.78
WF011	F01	WF01106A	12.2	2/7/2001	Chaetoceros socialis	2238.06
WF011	F01	WF01106A	12.2	2/7/2001	Chaetoceros sp. group 2 diam 10-30 micro	32666.22
WF011	F01	WF01106A	12.2	2/7/2001	Coscinodiscus sp. group 2 diam 40-100 mi	7967.85
WF011	F01	WF01106A	12.2	2/7/2001	Cryptomonas sp. group 1 length <10 micro	336.81
WF011	F01	WF01106A	12.2	2/7/2001	Cylindrotheca closterium	468.37
WF011	F01	WF01106A	12.2	2/7/2001	Dictyocha speculum	367.16
WF011	F01	WF01106A	12.2	2/7/2001	Gymnodinium sp. group 2 21-40 microns wi	6067.46
WF011	F01	WF01106A	12.2	2/7/2001	Gyrodinium spirale	13329.48
Survey	Sta.	Sample Number	Depth (m)	Sampling Date	Plankton	Estimated Carbon Equivalence (ng Carbon/L)
--------	------	------------------	--------------	------------------	--	---
WF011	F01	WF01106A	12.2	2/7/2001	Pleurosigma spp.	1286.24
WF011	F01	WF01106A	12.2	2/7/2001	Prorocentrum micans	944.97
WF011	F01	WF01106A	12.2	2/7/2001	Protoperidinium brevipes	2171.87
WF011	F01	WF01106A	12.2	2/7/2001	Rhizosolenia setigera	8550.47
WF011	F01	WF01106A	12.2	2/7/2001	Skeletonema costatum	3103.14
WF011	F01	WF01106A	12.2	2/7/2001	Thalassionema nitzschioides	2104.43
WF011	F01	WF01106A	12.2	2/7/2001	Thalassiosira anguste-lineata	7670.09
WF011	F01	WF01106A	12.2	2/7/2001	Thalassiosira nordenskioldii	4159.43
WF011	F01	WF01106A	12.2	2/7/2001	Unid. micro-phytoflag sp. group 1 length	13445.95
WF011	F01	WF01106A	12.2	2/7/2001	Unid. micro-phytoflag sp. group 2 length	385.84
WF011	F02	WF011089	2.31	2/7/2001	Centric diatom sp. group 1 diam <10 micr	152.68
WF011	F02	WF011089	2.31	2/7/2001	Chaetoceros compressus	79556.19
WF011	F02	WF011089	2.31	2/7/2001	Chaetoceros debilis	3200.76
WF011	F02	WF011089	2.31	2/7/2001	Chaetoceros decipiens	2276.94
WF011	F02	WF011089	2.31	2/7/2001	Chaetoceros socialis	4573.42
WF011	F02	WF011089	2.31	2/7/2001	Chaetoceros sp. group 2 diam 10-30 micro	5703.63
WF011	F02	WF011089	2.31	2/7/2001	Corethron criophilum	18660.97
WF011	F02	WF011089	2.31	2/7/2001	Cryptomonas sp. group 1 length <10 micro	376.44
WF011	F02	WF011089	2.31	2/7/2001	Cylindrotheca closterium	467.58
WF011	F02	WF011089	2.31	2/7/2001	Detonula confervacea	3312.85
WF011	F02	WF011089	2.31	2/7/2001	Dictyocha fibula	1276.58
WF011	F02	WF011089	2.31	2/7/2001	Ditylum brightwellii	5296.91
WF011	F02	WF011089	2.31	2/7/2001	Guinardia delicatula	4156.23
WF011	F02	WF011089	2.31	2/7/2001	Gymnodinium sp. group 1 5-20 microns wid	328.64
WF011	F02	WF011089	2.31	2/7/2001	Heterocapsa triquetra	1157.40
WF011	F02	WF011089	2.31	2/7/2001	Leptocylindrus danicus	1115.04
WF011	F02	WF011089	2.31	2/7/2001	Paralia sulcata	812.39
WF011	F02	WF011089	2.31	2/7/2001	Pleurosigma spp.	1286.24
WF011	F02	WF011089	2.31	2/7/2001	Prorocentrum micans	944.97
WF011	F02	WF011089	2.31	2/7/2001	Protoperidinium sp. group 1 10-30 micron	2400.26
WF011	F02	WF011089	2.31	2/7/2001	Pseudonitzschia pungens	460.76
WF011	F02	WF011089	2.31	2/7/2001	Rhizosolenia setigera	6412.85
WF011	F02	WF011089	2.31	2/7/2001	Skeletonema costatum	1461.28
WF011	F02	WF011089	2.31	2/7/2001	Thalassionema nitzschioides	1275.41
WF011	F02	WF011089	2.31	2/7/2001	Thalassiosira anguste-lineata	3835.05
WF011	F02	WF011089	2.31	2/7/2001	Thalassiosira nordenskioldii	5848.23
WF011	F02	WF011089	2.31	2/7/2001	Thalassiosira punctigera	1222.83
WF011	F02	WF011089	2.31	2/7/2001	Thalassiosira rotula	3371.30
WF011	F02	WF011089	2.31	2/7/2001	Unid. micro-phytoflag sp. group 1 length	6882.29
WF011	F02	WF011087	11.98	2/7/2001	Centric diatom sp. group 1 diam <10 micr	434.19

Survey	Sta.	Sample Number	Depth (m)	Sampling Date	Plankton	Estimated Carbon Equivalence (ng Carbon/L)
WF011	F02	WF011087	11.98	2/7/2001	Chaetoceros compressus	58510.29
WF011	F02	WF011087	11.98	2/7/2001	Chaetoceros debilis	4558.78
WF011	F02	WF011087	11.98	2/7/2001	Chaetoceros decipiens	1618.78
WF011	F02	WF011087	11.98	2/7/2001	Chaetoceros septentrionalis	138.36
WF011	F02	WF011087	11.98	2/7/2001	Chaetoceros socialis	2075.39
WF011	F02	WF011087	11.98	2/7/2001	Chaetoceros sp. group 2 diam 10-30 micro	23592.46
WF011	F02	WF011087	11.98	2/7/2001	Corethron criophilum	26533.78
WF011	F02	WF011087	11.98	2/7/2001	Cryptomonas sp. group 1 length <10 micro	225.37
WF011	F02	WF011087	11.98	2/7/2001	Ditylum brightwellii	15063.22
WF011	F02	WF011087	11.98	2/7/2001	Guinardia delicatula	1474.94
WF011	F02	WF011087	11.98	2/7/2001	Gymnodinium sp. group 1 5-20 microns wid	467.29
WF011	F02	WF011087	11.98	2/7/2001	Gyrodinium spirale	18953.01
WF011	F02	WF011087	11.98	2/7/2001	Prorocentrum micans	2691.81
WF011	F02	WF011087	11.98	2/7/2001	Rhizosolenia hebetata	1208.83
WF011	F02	WF011087	11.98	2/7/2001	Rhizosolenia setigera	9118.35
WF011	F02	WF011087	11.98	2/7/2001	Skeletonema costatum	1831.52
WF011	F02	WF011087	11.98	2/7/2001	Thalassionema nitzschioides	1269.45
WF011	F02	WF011087	11.98	2/7/2001	Thalassiosira anguste-lineata	2726.50
WF011	F02	WF011087	11.98	2/7/2001	Thalassiosira nordenskioldii	7070.41
WF011	F02	WF011087	11.98	2/7/2001	Thalassiosira rotula	12804.47
WF011	F02	WF011087	11.98	2/7/2001	Thalassiosira sp. group 3 10-20 microns	345.64
WF011	F02	WF011087	11.98	2/7/2001	Thalassiothrix longissima	2173.41
WF011	F02	WF011087	11.98	2/7/2001	Unid. micro-phytoflag sp. group 1 length	12957.17
WF011	F22	WF011110	2.86	2/8/2001	Centric diatom sp. group 1 diam <10 micr	260.07
WF011	F22	WF011110	2.86	2/8/2001	Chaetoceros compressus	1144.36
WF011	F22	WF011110	2.86	2/8/2001	Chaetoceros decipiens	16649.66
WF011	F22	WF011110	2.86	2/8/2001	Chaetoceros sp. group 2 diam 10-30 micro	1516.60
WF011	F22	WF011110	2.86	2/8/2001	Cryptomonas sp. group 1 length <10 micro	144.63
WF011	F22	WF011110	2.86	2/8/2001	Cylindrotheca closterium	682.67
WF011	F22	WF011110	2.86	2/8/2001	Dictyocha speculum	714.73
WF011	F22	WF011110	2.86	2/8/2001	Ditylum brightwellii	2577.83
WF011	F22	WF011110	2.86	2/8/2001	Guinardia delicatula	1177.93
WF011	F22	WF011110	2.86	2/8/2001	Katodinium rotundatum	188.85
WF011	F22	WF011110	2.86	2/8/2001	Leptocylindrus minimus	155.32
WF011	F22	WF011110	2.86	2/8/2001	Paralia sulcata	296.52
WF011	F22	WF011110	2.86	2/8/2001	Pseudonitzschia pungens	485.85
WF011	F22	WF011110	2.86	2/8/2001	Skeletonema costatum	42.67
WF011	F22	WF011110	2.86	2/8/2001	Stephanopyxis turris	4302.84
WF011	F22	WF011110	2.86	2/8/2001	Thalassionema nitzschioides	124.14
WF011	F22	WF011110	2.86	2/8/2001	Thalassiosira anguste-lineata	6532.36

		Sample	Depth	Sampling		Estimated Carbon Equivalence
Survey	Sta.	Number	(m)	Date	Plankton Thelessissing perdenskieldii	(ng Carbon/L)
WF011	F22	WF011110	2.00	2/8/2001	Thalassiosira hordenskioldi	228.50
WF011	F22	WF011110	2.80	2/8/2001	Thalassiosira punctigera	7656.60
WF011	F22	WF011110	2.80	2/8/2001	The lessioning on group 2, 10, 20 migroup	2598.46
WF011	F22	WF011110	2.80	2/8/2001	Unid micro phytoflag on group 1 length	7443.07
WF011	F22	WF011110	2.80	2/8/2001	Unid, micro-phytoliag sp. group 2 length	562.22
WFUIT	F22	WF011110	2.80	2/8/2001	Contributing on another strong spectrum and strong spectrum strong st	201.11
WF011	F22	WF01110E	32.31	2/8/2001	Chartenance and another 2 diam 10 20 minute	291.11
WF011	F22	WF01110E	32.31	2/8/2001	Chaetoceros sp. group 2 diam 10-30 micro	102.02
WF011	F22	WF01110E	32.31	2/8/2001	Cryptomotias sp. group 1 length <10 micro	105.05
WF011	F22	WF01110E	32.31	2/8/2001	Distrucche anosylum	764.07
WF011	F22	WF01110E	32.31	2/8/2001	Dictyocha speculum	5508 70
WF011	F22	WF01110E	32.31	2/8/2001	Ditylum brightweini	1618 21
WF011	F22	WF01110E	32.31	2/8/2001		1018.21
WF011	F22	WF01110E	32.31	2/8/2001		13.83
WF011	F22	WF01110E	32.31	2/8/2001	Odontella spp.	11580.07
WF011	F22	WF01110E	32.31	2/8/2001	Paralla sulcata	1209.40
WF011	F22	WF01110E	32.31	2/8/2001	Pleurosigma spp.	008.84
WF011	F22	WF01110E	32.31	2/8/2001	Pseudonitzschia pungens	2/9.53
WF011	F22	WF01110E	32.31	2/8/2001	Skeletonema costatum	60.79
WF011	F22	WF01110E	32.31	2/8/2001	Stephanopyxis turris	11493.88
WF011	F22	WF01110E	32.31	2/8/2001	Thalassionema nitzschioides	99.48
WF011	F22	WF01110E	32.31	2/8/2001	Thalassiosira nordenskioldii	422.82
WF011	F22	WF01110E	32.31	2/8/2001	Thalassiosira punctigera	635.8/
WF011	F22	WF01110E	32.31	2/8/2001	Thalassiosira sp. group 3 10-20 microns	3581.43
WF011	F22	WF01110E	32.31	2/8/2001	Unid. micro-phytoflag sp. group 1 length	6428.57
WF011	F22	WF01110E	32.31	2/8/2001	Unid. micro-phytoflag sp. group 2 length	401.27
WF011	F24	WF01117D	1.94	2/8/2001	Centric diatom sp. group 1 diam <10 micr	158.24
WF011	F24	WF01117D	1.94	2/8/2001	Chaetoceros sp. group 2 diam 10-30 micro	537.39
WF011	F24	WF01117D	1.94	2/8/2001	Cryptomonas sp. group 1 length <10 micro	133.47
WF011	F24	WF01117D	1.94	2/8/2001	Cylindrotheca closterium	242.30
WF011	F24	WF01117D	1.94	2/8/2001	Dictyocha speculum	665.91
WF011	F24	WF01117D	1.94	2/8/2001	Dinophysis norvegica	1677.18
WF011	F24	WF01117D	1.94	2/8/2001	Eutreptia/eutreptiella spp.	24.17
WF011	F24	WF01117D	1.94	2/8/2001	Pennate diatom sp. group 3 31-60 microns	37.13
WF011	F24	WF01117D	1.94	2/8/2001	Prorocentrum micans	244.84
WF011	F24	WF01117D	1.94	2/8/2001	Pseudonitzschia pungens	99.49
WF011	F24	WF01117D	1.94	2/8/2001	Rhizosolenia setigera	2215.44
WF011	F24	WF01117D	1.94	2/8/2001	Skeletonema costatum	30.29
WF011	F24	WF01117D	1.94	2/8/2001	Stephanopyxis turris	18326.64
WF011	F24	WF01117D	1.94	2/8/2001	Thalassionema nitzschioides	446.12

Survey	Sta.	Sample Number	Depth (m)	Sampling Date	Plankton	Estimated Carbon Equivalence (ng Carbon/L)
WF011	F24	WF01117D	1.94	2/8/2001	Thalassiosira nordenskioldii	72.93
WF011	F24	WF01117D	1.94	2/8/2001	Thalassiosira punctigera	633.67
WF011	F24	WF01117D	1.94	2/8/2001	Thalassiosira sp. group 3 10-20 microns	1826.52
WF011	F24	WF01117D	1.94	2/8/2001	Unid. micro-phytoflag sp. group 1 length	4788.25
WF011	F24	WF01117B	8.76	2/8/2001	Asterionellopsis glacialis	35.75
WF011	F24	WF01117B	8.76	2/8/2001	Centric diatom sp. group 1 diam <10 micr	171.00
WF011	F24	WF01117B	8.76	2/8/2001	Chaetoceros decipiens	2185.87
WF011	F24	WF01117B	8.76	2/8/2001	Chaetoceros socialis	93.41
WF011	F24	WF01117B	8.76	2/8/2001	Chaetoceros sp. group 2 diam 10-30 micro	165.92
WF011	F24	WF01117B	8.76	2/8/2001	Cryptomonas sp. group 1 length <10 micro	38.04
WF011	F24	WF01117B	8.76	2/8/2001	Cylindrotheca closterium	299.25
WF011	F24	WF01117B	8.76	2/8/2001	Dictyocha speculum	587.45
WF011	F24	WF01117B	8.76	2/8/2001	Guinardia delicatula	110.65
WF011	F24	WF01117B	8.76	2/8/2001	Pleurosigma spp.	411.60
WF011	F24	WF01117B	8.76	2/8/2001	Pseudonitzschia pungens	73.72
WF011	F24	WF01117B	8.76	2/8/2001	Rhizosolenia setigera	1368.08
WF011	F24	WF01117B	8.76	2/8/2001	Stephanopyxis turris	2829.26
WF011	F24	WF01117B	8.76	2/8/2001	Thalassionema nitzschioides	346.91
WF011	F24	WF01117B	8.76	2/8/2001	Thalassiosira nordenskioldii	220.17
WF011	F24	WF01117B	8.76	2/8/2001	Thalassiosira punctigera	391.31
WF011	F24	WF01117B	8.76	2/8/2001	Thalassiosira sp. group 3 10-20 microns	2359.53
WF011	F24	WF01117B	8.76	2/8/2001	Unid. micro-phytoflag sp. group 1 length	5322.30
WF011	F26	WF0110F0	2	2/8/2001	Asterionellopsis glacialis	27.03
WF011	F26	WF0110F0	2	2/8/2001	Centric diatom sp. group 1 diam <10 micr	49.25
WF011	F26	WF0110F0	2	2/8/2001	Chaetoceros sp. group 2 diam 10-30 micro	376.31
WF011	F26	WF0110F0	2	2/8/2001	Coscinodiscus sp. group 3 diam >100 micr	8999.67
WF011	F26	WF0110F0	2	2/8/2001	Cryptomonas sp. group 1 length <10 micro	57.52
WF011	F26	WF0110F0	2	2/8/2001	Cylindrotheca closterium	226.23
WF011	F26	WF0110F0	2	2/8/2001	Dictyocha speculum	799.39
WF011	F26	WF0110F0	2	2/8/2001	Ebria tripartita	721.04
WF011	F26	WF0110F0	2	2/8/2001	Guinardia delicatula	4021.88
WF011	F26	WF0110F0	2	2/8/2001	Gymnodinium sp. group 2 21-40 microns wi	1465.36
WF011	F26	WF0110F0	2	2/8/2001	Leptocylindrus minimus	51.47
WF011	F26	WF0110F0	2	2/8/2001	Pseudonitzschia pungens	130.04
WF011	F26	WF0110F0	2	2/8/2001	Skeletonema costatum	28.28
WF011	F26	WF0110F0	2	2/8/2001	Stephanopyxis turris	1069.45
WF011	F26	WF0110F0	2	2/8/2001	Thalassionema nitzschioides	107.99
WF011	F26	WF0110F0	2	2/8/2001	Thalassiosira anguste-lineata	5334.66
WF011	F26	WF0110F0	2	2/8/2001	Thalassiosira nordenskioldii	83.22
WF011	F26	WF0110F0	2	2/8/2001	Thalassiosira sp. group 3 10-20 microns	1803.40

Survev	Sta.	Sample Number	Depth (m)	Sampling Date	Plankton	Estimated Carbon Equivalence (ng Carbon/L)
WF011	F26	WF0110F0	2	2/8/2001	Unid. micro-phytoflag sp. group 1 length	5919.83
WF011	F26	WF0110EE	20.14	2/8/2001	Asterionellopsis glacialis	215.22
WF011	F26	WF0110EE	20.14	2/8/2001	Centric diatom sp. group 1 diam <10 micr	245.10
WF011	F26	WF0110EE	20.14	2/8/2001	Chaetoceros debilis	308.29
WF011	F26	WF0110EE	20.14	2/8/2001	Chaetoceros socialis	156.21
WF011	F26	WF0110EE	20.14	2/8/2001	Chaetoceros sp. group 2 diam 10-30 micro	166.48
WF011	F26	WF0110EE	20.14	2/8/2001	Cryptomonas sp. group 1 length <10 micro	19.08
WF011	F26	WF0110EE	20.14	2/8/2001	Cylindrotheca closterium	600.49
WF011	F26	WF0110EE	20.14	2/8/2001	Dictyocha fibula	204.93
WF011	F26	WF0110EE	20.14	2/8/2001	Dictyocha speculum	1060.92
WF011	F26	WF0110EE	20.14	2/8/2001	Guinardia delicatula	1110.14
WF011	F26	WF0110EE	20.14	2/8/2001	Leptocylindrus minimus	25.62
WF011	F26	WF0110EE	20.14	2/8/2001	Porosira glacialis	2453.79
WF011	F26	WF0110EE	20.14	2/8/2001	Prorocentrum micans	303.40
WF011	F26	WF0110EE	20.14	2/8/2001	Pseudonitzschia pungens	369.84
WF011	F26	WF0110EE	20.14	2/8/2001	Stephanopyxis turris	2838.66
WF011	F26	WF0110EE	20.14	2/8/2001	Thalassionema nitzschioides	286.64
WF011	F26	WF0110EE	20.14	2/8/2001	Thalassiosira anguste-lineata	2770.41
WF011	F26	WF0110EE	20.14	2/8/2001	Thalassiosira nordenskioldii	401.64
WF011	F26	WF0110EE	20.14	2/8/2001	Thalassiosira punctigera	2355.64
WF011	F26	WF0110EE	20.14	2/8/2001	Thalassiosira sp. group 3 10-20 microns	3824.22
WF011	F26	WF0110EE	20.14	2/8/2001	Thalassiothrix longissima	490.76
WF011	F26	WF0110EE	20.14	2/8/2001	Unid. micro-phytoflag sp. group 1 length	7856.54
WF011	F27	WF011103	3.4	2/8/2001	Centric diatom sp. group 1 diam <10 micr	85.43
WF011	F27	WF011103	3.4	2/8/2001	Corethron criophilum	6275.46
WF011	F27	WF011103	3.4	2/8/2001	Cryptomonas sp. group 1 length <10 micro	93.12
WF011	F27	WF011103	3.4	2/8/2001	Cylindrotheca closterium	188.37
WF011	F27	WF011103	3.4	2/8/2001	Dictyocha fibula	1717.19
WF011	F27	WF011103	3.4	2/8/2001	Dictyocha speculum	147.92
WF011	F27	WF011103	3.4	2/8/2001	Dinophysis tripos	576.68
WF011	F27	WF011103	3.4	2/8/2001	Guinardia delicatula	92.87
WF011	F27	WF011103	3.4	2/8/2001	Katodinium rotundatum	43.43
WF011	F27	WF011103	3.4	2/8/2001	Pennate diatom sp. group 2 10-30 microns	6.73
WF011	F27	WF011103	3.4	2/8/2001	Pseudonitzschia pungens	567.19
WF011	F27	WF011103	3.4	2/8/2001	Skeletonema costatum	11.77
WF011	F27	WF011103	3.4	2/8/2001	Stephanopyxis turris	5936.56
WF011	F27	WF011103	3.4	2/8/2001	Thalassionema nitzschioides	376.80
WF011	F27	WF011103	3.4	2/8/2001	Thalassiosira punctigera	164.21
WF011	F27	WF011103	3.4	2/8/2001	Thalassiosira sp. group 3 10-20 microns	435.25
WF011	F27	WF011103	3.4	2/8/2001	Thalassiothrix longissima	205.27

Survey	Sta.	Sample Number	Depth (m)	Sampling Date	Plankton	Estimated Carbon Equivalence (ng Carbon/L)
WF011	F27	WF011103	3.4	2/8/2001	Unid. micro-phytoflag sp. group 1 length	6375.39
WF011	F27	WF011101	47.98	2/8/2001	Centric diatom sp. group 1 diam <10 micr	202.30
WF011	F27	WF011101	47.98	2/8/2001	Ceratium fusus	479.37
WF011	F27	WF011101	47.98	2/8/2001	Ceratium macroceros	476.23
WF011	F27	WF011101	47.98	2/8/2001	Ceratium tripos	2456.74
WF011	F27	WF011101	47.98	2/8/2001	Chaetoceros decipiens	362.03
WF011	F27	WF011101	47.98	2/8/2001	Cryptomonas sp. group 1 length <10 micro	63.00
WF011	F27	WF011101	47.98	2/8/2001	Cylindrotheca closterium	74.35
WF011	F27	WF011101	47.98	2/8/2001	Dictyocha fibula	135.32
WF011	F27	WF011101	47.98	2/8/2001	Dictyocha speculum	311.35
WF011	F27	WF011101	47.98	2/8/2001	Guinardia delicatula	73.30
WF011	F27	WF011101	47.98	2/8/2001	Gymnodinium sp. group 1 5-20 microns wid	348.36
WF011	F27	WF011101	47.98	2/8/2001	Gyrodinium spirale	1412.93
WF011	F27	WF011101	47.98	2/8/2001	Pleurosigma spp.	545.36
WF011	F27	WF011101	47.98	2/8/2001	Prorocentrum micans	100.17
WF011	F27	WF011101	47.98	2/8/2001	Pseudonitzschia pungens	113.96
WF011	F27	WF011101	47.98	2/8/2001	Thalassionema nitzschioides	277.15
WF011	F27	WF011101	47.98	2/8/2001	Thalassiosira nordenskioldii	3.32
WF011	F27	WF011101	47.98	2/8/2001	Thalassiosira punctigera	777.72
WF011	F27	WF011101	47.98	2/8/2001	Thalassiosira sp. group 3 10-20 microns	249.08
WF011	F27	WF011101	47.98	2/8/2001	Unid. micro-phytoflag sp. group 1 length	3748.94
WF011	F30	WF01118E	2.36	2/8/2001	Centric diatom sp. group 1 diam <10 micr	170.86
WF011	F30	WF01118E	2.36	2/8/2001	Chaetoceros decipiens	1019.23
WF011	F30	WF01118E	2.36	2/8/2001	Chaetoceros sp. group 2 diam 10-30 micro	580.25
WF011	F30	WF01118E	2.36	2/8/2001	Cryptomonas sp. group 1 length <10 micro	305.97
WF011	F30	WF01118E	2.36	2/8/2001	Cylindrotheca closterium	104.65
WF011	F30	WF01118E	2.36	2/8/2001	Dictyocha speculum	164.35
WF011	F30	WF01118E	2.36	2/8/2001	Eutreptia/eutreptiella spp.	62.63
WF011	F30	WF01118E	2.36	2/8/2001	Guinardia delicatula	77.39
WF011	F30	WF01118E	2.36	2/8/2001	Gyrodinium spirale	2983.34
WF011	F30	WF01118E	2.36	2/8/2001	Odontella spp.	4986.81
WF011	F30	WF01118E	2.36	2/8/2001	Pennate diatom sp. group 2 10-30 microns	22.44
WF011	F30	WF01118E	2.36	2/8/2001	Prorocentrum micans	211.50
WF011	F30	WF01118E	2.36	2/8/2001	Rhizosolenia setigera	4305.89
WF011	F30	WF01118E	2.36	2/8/2001	Skeletonema costatum	39.25
WF011	F30	WF01118E	2.36	2/8/2001	Thalassionema nitzschioides	456.73
WF011	F30	WF01118E	2.36	2/8/2001	Thalassiosira nordenskioldii	49.00
WF011	F30	WF01118E	2.36	2/8/2001	Thalassiosira sp. group 3 10-20 microns	1487.09
WF011	F30	WF01118E	2.36	2/8/2001	Unid. micro-phytoflag sp. group 1 length	6033.09
WF011	F30	WF01118D	4.35	2/8/2001	Asterionella formosa	197.10

Survey	Sta.	Sample Number	Depth (m)	Sampling Date	Plankton	Estimated Carbon Equivalence (ng Carbon/L)
WF011	F30	WF01118D	4.35	2/8/2001	Centric diatom sp. group 1 diam <10 micr	212.17
WF011	F30	WF01118D	4.35	2/8/2001	Chaetoceros sp. group 2 diam 10-30 micro	96.07
WF011	F30	WF01118D	4.35	2/8/2001	Coscinodiscus sp. group 3 diam >100 micr	3446.32
WF011	F30	WF01118D	4.35	2/8/2001	Cryptomonas sp. group 1 length <10 micro	220.25
WF011	F30	WF01118D	4.35	2/8/2001	Cylindrotheca closterium	129.95
WF011	F30	WF01118D	4.35	2/8/2001	Dictyocha fibula	118.26
WF011	F30	WF01118D	4.35	2/8/2001	Dictyocha speculum	136.05
WF011	F30	WF01118D	4.35	2/8/2001	Eutreptia/eutreptiella spp.	34.56
WF011	F30	WF01118D	4.35	2/8/2001	Gyrosigma spp.	238.31
WF011	F30	WF01118D	4.35	2/8/2001	Paralia sulcata	112.89
WF011	F30	WF01118D	4.35	2/8/2001	Pennate diatom sp. group 2 10-30 microns	27.86
WF011	F30	WF01118D	4.35	2/8/2001	Pseudonitzschia pungens	285.05
WF011	F30	WF01118D	4.35	2/8/2001	Rhizosolenia setigera	3564.51
WF011	F30	WF01118D	4.35	2/8/2001	Thalassionema nitzschioides	271.75
WF011	F30	WF01118D	4.35	2/8/2001	Thalassiosira nordenskioldii	57.94
WF011	F30	WF01118D	4.35	2/8/2001	Thalassiosira sp. group 3 10-20 microns	1321.13
WF011	F30	WF01118D	4.35	2/8/2001	Unid. micro-phytoflag sp. group 1 length	5962.49
WF011	N16	WF01115D	2.1	2/8/2001	Asterionellopsis glacialis	165.47
WF011	N16	WF01115D	2.1	2/8/2001	Centric diatom sp. group 1 diam <10 micr	18.81
WF011	N16	WF01115D	2.1	2/8/2001	Ceratium tripos	5721.31
WF011	N16	WF01115D	2.1	2/8/2001	Chaetoceros compressus	1354.40
WF011	N16	WF01115D	2.1	2/8/2001	Chaetoceros debilis	948.15
WF011	N16	WF01115D	2.1	2/8/2001	Chaetoceros sp. group 2 diam 10-30 micro	1535.97
WF011	N16	WF01115D	2.1	2/8/2001	Coscinodiscus sp. group 3 diam >100 micr	9183.34
WF011	N16	WF01115D	2.1	2/8/2001	Cryptomonas sp. group 1 length <10 micro	9.78
WF011	N16	WF01115D	2.1	2/8/2001	Cylindrotheca closterium	1269.67
WF011	N16	WF01115D	2.1	2/8/2001	Dictyocha speculum	1450.15
WF011	N16	WF01115D	2.1	2/8/2001	Ditylum brightwellii	5239.08
WF011	N16	WF01115D	2.1	2/8/2001	Guinardia delicatula	1194.98
WF011	N16	WF01115D	2.1	2/8/2001	Gyrodinium sp. group 2 21-40 microns wid	1495.27
WF011	N16	WF01115D	2.1	2/8/2001	Leptocylindrus minimus	184.14
WF011	N16	WF01115D	2.1	2/8/2001	Pennate diatom sp. group 3 31-60 microns	70.76
WF011	N16	WF01115D	2.1	2/8/2001	Proboscia alata	2056.57
WF011	N16	WF01115D	2.1	2/8/2001	Prorocentrum micans	466.54
WF011	N16	WF01115D	2.1	2/8/2001	Pseudonitzschia delicatissima	15.80
WF011	N16	WF01115D	2.1	2/8/2001	Pseudonitzschia pungens	909.93
WF011	N16	WF01115D	2.1	2/8/2001	Stephanopyxis turris	34920.92
WF011	N16	WF01115D	2.1	2/8/2001	Thalassionema nitzschioides	661.17
WF011	N16	WF01115D	2.1	2/8/2001	Thalassiosira anguste-lineata	2366.75
WF011	N16	WF01115D	2.1	2/8/2001	Thalassiosira nordenskioldii	154.40

		0	Death	0		Estimated Carbon
Survey	Sta.	Sample Number	Depth (m)	Date	Plankton	(ng Carbon/L)
WF011	N16	WF01115D	2.1	2/8/2001	Thalassiosira punctigera	1207.45
WF011	N16	WF01115D	2.1	2/8/2001	Thalassiosira rotula	1664.45
WF011	N16	WF01115D	2.1	2/8/2001	Thalassiosira sp. group 3 10-20 microns	3360.37
WF011	N16	WF01115D	2.1	2/8/2001	Thalassiothrix longissima	754.66
WF011	N16	WF01115D	2.1	2/8/2001	Unid. micro-phytoflag sp. group 1 length	3901.25
WF011	N16	WF01115B	19.36	2/8/2001	Asterionellopsis glacialis	453.41
WF011	N16	WF01115B	19.36	2/8/2001	Centric diatom sp. group 1 diam <10 micr	128.88
WF011	N16	WF01115B	19.36	2/8/2001	Chaetoceros decipiens	1729.74
WF011	N16	WF01115B	19.36	2/8/2001	Chaetoceros socialis	789.83
WF011	N16	WF01115B	19.36	2/8/2001	Chaetoceros sp. group 2 diam 10-30 micro	2363.41
WF011	N16	WF01115B	19.36	2/8/2001	Coscinodiscus sp. group 3 diam >100 micr	9420.33
WF011	N16	WF01115B	19.36	2/8/2001	Cryptomonas sp. group 1 length <10 micro	240.82
WF011	N16	WF01115B	19.36	2/8/2001	Cylindrotheca closterium	1302.44
WF011	N16	WF01115B	19.36	2/8/2001	Dictyocha speculum	743.79
WF011	N16	WF01115B	19.36	2/8/2001	Guinardia delicatula	1225.81
WF011	N16	WF01115B	19.36	2/8/2001	Gymnodinium sp. group 1 5-20 microns wid	665.76
WF011	N16	WF01115B	19.36	2/8/2001	Gyrodinium sp. group 2 21-40 microns wid	1533.86
WF011	N16	WF01115B	19.36	2/8/2001	Heterocapsa triquetra	1172.33
WF011	N16	WF01115B	19.36	2/8/2001	Leptocylindrus minimus	350.22
WF011	N16	WF01115B	19.36	2/8/2001	Prorocentrum micans	478.58
WF011	N16	WF01115B	19.36	2/8/2001	Pseudonitzschia pungens	1166.77
WF011	N16	WF01115B	19.36	2/8/2001	Skeletonema costatum	44.40
WF011	N16	WF01115B	19.36	2/8/2001	Stephanopyxis turris	53823.57
WF011	N16	WF01115B	19.36	2/8/2001	Thalassionema nitzschioides	258.37
WF011	N16	WF01115B	19.36	2/8/2001	Thalassiosira nordenskioldii	142.55
WF011	N16	WF01115B	19.36	2/8/2001	Thalassiosira punctigera	2477.22
WF011	N16	WF01115B	19.36	2/8/2001	Thalassiosira rotula	5122.20
WF011	N16	WF01115B	19.36	2/8/2001	Thalassiosira sp. group 3 10-20 microns	3611.23
WF011	N16	WF01115B	19.36	2/8/2001	Unid. micro-phytoflag sp. group 1 length	6390.17
WF011	F23	WF0111B8	1.74	2/9/2001	Centric diatom sp. group 1 diam <10 micr	410.07
WF011	F23	WF0111B8	1.74	2/9/2001	Cryptomonas sp. group 1 length <10 micro	244.15
WF011	F23	WF0111B8	1.74	2/9/2001	Cylindrotheca closterium	110.81
WF011	F23	WF0111B8	1.74	2/9/2001	Dictyocha speculum	174.02
WF011	F23	WF0111B8	1.74	2/9/2001	Eucampia cornuta	
WF011	F23	WF0111B8	1.74	2/9/2001	Gymnodinium sp. group 1 5-20 microns wid	311.52
WF011	F23	WF0111B8	1.74	2/9/2001	Odontella aurita	840.60
WF011	F23	WF0111B8	1.74	2/9/2001	Pseudonitzschia pungens	72.79
WF011	F23	WF0111B8	1.74	2/9/2001	Rhizosolenia setigera	5065.75
WF011	F23	WF0111B8	1.74	2/9/2001	Skeletonema costatum	27.70
WF011	F23	WF0111B8	1.74	2/9/2001	Thalassionema nitzschioides	120.90

Survey	Sta	Sample	Depth	Sampling Date	Plankton	Estimated Carbon Equivalence
WF011	F23	WF0111B8	1.74	2/9/2001	Thalassiosira anguste-lineata	681.63
WF011	F23	WF0111B8	1.74	2/9/2001	Thalassiosira nordenskioldii	103.76
WF011	F23	WF0111B8	1.74	2/9/2001	Thalassiosira punctigera	289.79
WF011	F23	WF0111B8	1.74	2/9/2001	Thalassiosira sp. group 3 10-20 microns	1689.78
WF011	F23	WF0111B8	1.74	2/9/2001	Unid. micro-phytoflag sp. group 1 length	5376.17
WF011	F23	WF0111B6	10.79	2/9/2001	Asterionellopsis glacialis	35.01
WF011	F23	WF0111B6	10.79	2/9/2001	Centric diatom sp. group 1 diam <10 micr	239.20
WF011	F23	WF0111B6	10.79	2/9/2001	Chaetoceros sp. group 2 diam 10-30 micro	324.93
WF011	F23	WF0111B6	10.79	2/9/2001	Cryptomonas sp. group 1 length <10 micro	93.12
WF011	F23	WF0111B6	10.79	2/9/2001	Cylindrotheca closterium	146.51
WF011	F23	WF0111B6	10.79	2/9/2001	Dictyocha speculum	115.04
WF011	F23	WF0111B6	10.79	2/9/2001	Eutreptia/eutreptiella spp.	29.23
WF011	F23	WF0111B6	10.79	2/9/2001	Guinardia delicatula	108.34
WF011	F23	WF0111B6	10.79	2/9/2001	Pennate diatom sp. group 2 10-30 microns	15.70
WF011	F23	WF0111B6	10.79	2/9/2001	Pseudonitzschia pungens	24.06
WF011	F23	WF0111B6	10.79	2/9/2001	Rhizosolenia setigera	669.79
WF011	F23	WF0111B6	10.79	2/9/2001	Thalassionema nitzschioides	559.48
WF011	F23	WF0111B6	10.79	2/9/2001	Thalassiosira nordenskioldii	97.99
WF011	F23	WF0111B6	10.79	2/9/2001	Thalassiosira sp. group 3 10-20 microns	2284.99
WF011	F23	WF0111B6	10.79	2/9/2001	Unid. micro-phytoflag sp. group 1 length	5510.93
WF011	N04	WF0111F3	2.79	2/9/2001	Asterionellopsis glacialis	98.05
WF011	N04	WF0111F3	2.79	2/9/2001	Centric diatom sp. group 1 diam <10 micr	201.00
WF011	N04	WF0111F3	2.79	2/9/2001	Chaetoceros sp. group 2 diam 10-30 micro	1365.20
WF011	N04	WF0111F3	2.79	2/9/2001	Coscinodiscus sp. group 3 diam >100 micr	16324.67
WF011	N04	WF0111F3	2.79	2/9/2001	Cryptomonas sp. group 1 length <10 micro	173.88
WF011	N04	WF0111F3	2.79	2/9/2001	Cylindrotheca closterium	1641.47
WF011	N04	WF0111F3	2.79	2/9/2001	Dictyocha fibula	1122.26
WF011	N04	WF0111F3	2.79	2/9/2001	Dictyocha speculum	1288.92
WF011	N04	WF0111F3	2.79	2/9/2001	Ditylum brightwellii	4648.78
WF011	N04	WF0111F3	2.79	2/9/2001	Guinardia delicatula	1213.85
WF011	N04	WF0111F3	2.79	2/9/2001	Gymnodinium sp. group 1 5-20 microns wid	288.43
WF011	N04	WF0111F3	2.79	2/9/2001	Gyrodinium spirale	11698.48
WF011	N04	WF0111F3	2.79	2/9/2001	Leptocylindrus minimus	93.37
WF011	N04	WF0111F3	2.79	2/9/2001	Pleurosigma spp.	4523.01
WF011	N04	WF0111F3	2.79	2/9/2001	Prorocentrum micans	829.35
WF011	N04	WF0111F3	2.79	2/9/2001	Protoperidinium sp. group 1 10-30 micron	1051.51
WF011	N04	WF0111F3	2.79	2/9/2001	Pseudonitzschia pungens	1010.96
WF011	N04	WF0111F3	2.79	2/9/2001	Rhizosolenia hebetata	746.13
WF011	N04	WF0111F3	2.79	2/9/2001	Skeletonema costatum	76.95
WF011	N04	WF0111F3	2.79	2/9/2001	Stephanopyxis turris	11639.40

	-	Sample	Depth	Sampling		Estimated Carbon Equivalence
Survey	Sta.	Number	(m)	Date	Plankton	(ng Carbon/L)
WF011	N04	WF0111F3	2.79	2/9/2001	Thalassionema nitzschioides	671.61
WF011	N04	WF0111F3	2.79	2/9/2001	Thalassiosira anguste-lineata	4207.24
WF011	N04	WF0111F3	2.79	2/9/2001	Thalassiosira punctigera	2146.41
WF011	N04	WF0111F3	2.79	2/9/2001	Thalassiosira sp. group 3 10-20 microns	6115.75
WF011	N04	WF0111F3	2.79	2/9/2001	Unid. micro-phytoflag sp. group 1 length	6207.95
WF011	N04	WF0111F1	18.03	2/9/2001	Asterionellopsis glacialis	377.28
WF011	N04	WF0111F1	18.03	2/9/2001	Centric diatom sp. group 1 diam <10 micr	315.09
WF011	N04	WF0111F1	18.03	2/9/2001	Chaetoceros sp. group 2 diam 10-30 micro	1169.30
WF011	N04	WF0111F1	18.03	2/9/2001	Cryptomonas sp. group 1 length <10 micro	200.72
WF011	N04	WF0111F1	18.03	2/9/2001	Cylindrotheca closterium	526.34
WF011	N04	WF0111F1	18.03	2/9/2001	Dictyocha speculum	413.29
WF011	N04	WF0111F1	18.03	2/9/2001	Guinardia delicatula	2335.32
WF011	N04	WF0111F1	18.03	2/9/2001	Gyrodinium sp. group 2 21-40 microns wid	1704.61
WF011	N04	WF0111F1	18.03	2/9/2001	Pleurosigma spp.	2900.60
WF011	N04	WF0111F1	18.03	2/9/2001	Pseudonitzschia delicatissima	36.03
WF011	N04	WF0111F1	18.03	2/9/2001	Pseudonitzschia pungens	1037.33
WF011	N04	WF0111F1	18.03	2/9/2001	Rhizosolenia setigera	1203.12
WF011	N04	WF0111F1	18.03	2/9/2001	Skeletonema costatum	65.80
WF011	N04	WF0111F1	18.03	2/9/2001	Stephanopyxis turris	4976.23
WF011	N04	WF0111F1	18.03	2/9/2001	Thalassionema nitzschioides	753.73
WF011	N04	WF0111F1	18.03	2/9/2001	Thalassiosira nordenskioldii	140.82
WF011	N04	WF0111F1	18.03	2/9/2001	Thalassiosira punctigera	688.25
WF011	N04	WF0111F1	18.03	2/9/2001	Thalassiosira sp. group 3 10-20 microns	4925.34
WF011	N04	WF0111F1	18.03	2/9/2001	Thalassiothrix longissima	860.31
WF011	N04	WF0111F1	18.03	2/9/2001	Unid. micro-phytoflag sp. group 1 length	6312.47
WF011	N18	WF01121E	2.38	2/9/2001	Centric diatom sp. group 1 diam <10 micr	342.01
WF011	N18	WF01121E	2.38	2/9/2001	Ceratium tripos	6489.49
WF011	N18	WF01121E	2.38	2/9/2001	Coscinodiscus sp. group 2 diam 40-100 mi	2227.25
WF011	N18	WF01121E	2.38	2/9/2001	Cryptomonas sp. group 1 length <10 micro	155.33
WF011	N18	WF01121E	2.38	2/9/2001	Cylindrotheca closterium	1178.30
WF011	N18	WF01121E	2.38	2/9/2001	Dictyocha speculum	1028.03
WF011	N18	WF01121E	2.38	2/9/2001	Ditylum brightwellii	2966.27
WF011	N18	WF01121E	2.38	2/9/2001	Guinardia delicatula	2327.49
WF011	N18	WF01121E	2.38	2/9/2001	Gyrodinium spirale	7464.51
WF011	N18	WF01121E	2.38	2/9/2001	Leptocylindrus minimus	59.58
WF011	N18	WF01121E	2.38	2/9/2001	Pennate diatom sp. group 2 10-30 microns	112.46
WF011	N18	WF01121E	2.38	2/9/2001	Prorocentrum micans	529.19
WF011	N18	WF01121E	2.38	2/9/2001	Pseudonitzschia pungens	559.06
WF011	N18	WF01121E	2.38	2/9/2001	Rhizosolenia setigera	1197.07
WF011	N18	WF01121E	2.38	2/9/2001	Skeletonema costatum	32.73

		Sample	Depth	Sampling		Estimated Carbon Equivalence
Survey	Sta.	Number	(m)	Date	Plankton	(ng Carbon/L)
WF011	N18	WF01121E	2.38	2/9/2001	Stephanopyxis turris	12378.02
WF011	N18	WF01121E	2.38	2/9/2001	Thalassionema nitzschioides	749.94
WF011	N18	WF01121E	2.38	2/9/2001	Thalassiosira nordenskioldii	157.62
WF011	N18	WF01121E	2.38	2/9/2001	Thalassiosira punctigera	684.79
WF011	N18	WF01121E	2.38	2/9/2001	Thalassiosira sp. group 3 10-20 microns	6760.97
WF011	N18	WF01121E	2.38	2/9/2001	Thalassiothrix longissima	855.98
WF011	N18	WF01121E	2.38	2/9/2001	Unid. micro-phytoflag sp. group 1 length	5781.12
WF011	N18	WF01121C	10.61	2/9/2001	Amphidinium spp.	139.60
WF011	N18	WF01121C	10.61	2/9/2001	Asterionellopsis glacialis	598.50
WF011	N18	WF01121C	10.61	2/9/2001	Centric diatom sp. group 1 diam <10 micr	68.05
WF011	N18	WF01121C	10.61	2/9/2001	Ceratium tripos	5164.68
WF011	N18	WF01121C	10.61	2/9/2001	Chaetoceros compressus	4198.94
WF011	N18	WF01121C	10.61	2/9/2001	Chaetoceros decipiens	1522.17
WF011	N18	WF01121C	10.61	2/9/2001	Chaetoceros sp. group 2 diam 10-30 micro	462.18
WF011	N18	WF01121C	10.61	2/9/2001	Corethron criophilum	2079,19
WF011	N18	WF01121C	10.61	2/9/2001	Coscinodiscus sp. group 3 diam >100 micr	8289.89
WF011	N18	WF01121C	10.61	2/9/2001	Cryptomonas sp. group 1 length <10 micro	158.94
WF011	N18	WF01121C	10.61	2/9/2001	Cylindrotheca closterium	1146.15
WF011	N18	WF01121C	10.61	2/9/2001	Dictyocha speculum	490.90
WF011	N18	WF01121C	10.61	2/9/2001	Ditylum brightwellii	2360.71
WF011	N18	WF01121C	10.61	2/9/2001	Guinardia delicatula	616.41
WF011	N18	WF01121C	10.61	2/9/2001	Leptocylindrus minimus	130.39
WF011	N18	WF01121C	10.61	2/9/2001	Pleurosigma spp.	573.25
WF011	N18	WF01121C	10.61	2/9/2001	Prorocentrum micans	421.15
WF011	N18	WF01121C	10.61	2/9/2001	Pseudonitzschia pungens	1060.98
WF011	N18	WF01121C	10.61	2/9/2001	Rhizosolenia hebetata	378.90
WF011	N18	WF01121C	10.61	2/9/2001	Rhizosolenia setigera	952.69
WF011	N18	WF01121C	10.61	2/9/2001	Skeletonema costatum	52.10
WF011	N18	WF01121C	10.61	2/9/2001	Stephanopyxis turris	27629.43
WF011	N18	WF01121C	10.61	2/9/2001	Thalassionema nitzschioides	881.06
WF011	N18	WF01121C	10.61	2/9/2001	Thalassiosira nordenskioldii	83.63
WF011	N18	WF01121C	10.61	2/9/2001	Thalassiosira punctigera	2179.95
WF011	N18	WF01121C	10.61	2/9/2001	Thalassiosira sp. group 3 10-20 microns	5777.97
WF011	N18	WF01121C	10.61	2/9/2001	Unid. micro-phytoflag sp. group 1 length	4941.73
WF011	F06	WF01134F	2.14	2/12/2001	Asterionellopsis glacialis	146.95
WF011	F06	WF01134F	2.14	2/12/2001	Centric diatom sp. group 1 diam <10 micr	100.24
WF011	F06	WF01134F	2.14	2/12/2001	Ceratium tripos	3804.15
WF011	F06	WF01134F	2.14	2/12/2001	Chaetoceros compressus	1286.51
WF011	F06	WF01134F	2.14	2/12/2001	Chaetoceros sp. group 2 diam 10-30 micro	170.21
WF011	F06	WF01134F	2.14	2/12/2001	Corethron criophilum	1531.47

		Sample	Depth	Sampling		Estimated Carbon Equivalence
Survey	Sta.	Number	(m)	Date	Plankton	(ng Carbon/L)
WF011	F06	WF01134F	2.14	2/12/2001	Coscinodiscus sp. group 2 diam 40-100 mi	1305.62
WF011	F06	WF01134F	2.14	2/12/2001	Cryptomonas sp. group 1 length <10 micro	91.06
WF011	F06	WF01134F	2.14	2/12/2001	Cylindrotheca closterium	844.22
WF011	F06	WF01134F	2.14	2/12/2001	Dictyocha speculum	361.58
WF011	F06	WF01134F	2.14	2/12/2001	Guinardia delicatula	1702.61
WF011	F06	WF01134F	2.14	2/12/2001	Leptocylindrus minimus	34.92
WF011	F06	WF01134F	2.14	2/12/2001	Pleurosigma spp.	422.24
WF011	F06	WF01134F	2.14	2/12/2001	Prorocentrum micans	620.42
WF011	F06	WF01134F	2.14	2/12/2001	Pseudonitzschia pungens	529.40
WF011	F06	WF01134F	2.14	2/12/2001	Rhizosolenia setigera	701.72
WF011	F06	WF01134F	2.14	2/12/2001	Stephanopyxis turris	13060.82
WF011	F06	WF01134F	2.14	2/12/2001	Thalassionema nitzschioides	1297.92
WF011	F06	WF01134F	2.14	2/12/2001	Thalassiosira nordenskioldii	82.13
WF011	F06	WF01134F	2.14	2/12/2001	Thalassiosira punctigera	1605.69
WF011	F06	WF01134F	2.14	2/12/2001	Thalassiosira sp. group 3 10-20 microns	3910.09
WF011	F06	WF01134F	2.14	2/12/2001	Unid. micro-phytoflag sp. group 1 length	3388.90
WF011	F06	WF01134D	16.62	2/12/2001	Centric diatom sp. group 1 diam <10 micr	108.96
WF011	F06	WF01134D	16.62	2/12/2001	Chaetoceros sp. group 2 diam 10-30 micro	666.05
WF011	F06	WF01134D	16.62	2/12/2001	Coscinodiscus sp. group 2 diam 40-100 mi	1702.98
WF011	F06	WF01134D	16.62	2/12/2001	Cryptomonas sp. group 1 length <10 micro	305.40
WF011	F06	WF01134D	16.62	2/12/2001	Cylindrotheca closterium	1001.05
WF011	F06	WF01134D	16.62	2/12/2001	Dictyocha speculum	471.63
WF011	F06	WF01134D	16.62	2/12/2001	Eucampia cornuta	
WF011	F06	WF01134D	16.62	2/12/2001	Guinardia delicatula	888.32
WF011	F06	WF01134D	16.62	2/12/2001	Gymnodinium sp. group 1 5-20 microns wid	844.30
WF011	F06	WF01134D	16.62	2/12/2001	Pleurosigma spp.	550.74
WF011	F06	WF01134D	16.62	2/12/2001	Prorocentrum micans	809.24
WF011	F06	WF01134D	16.62	2/12/2001	Pseudonitzschia pungens	789.16
WF011	F06	WF01134D	16.62	2/12/2001	Skeletonema costatum	50.06
WF011	F06	WF01134D	16.62	2/12/2001	Stephanopyxis turris	15168.46
WF011	F06	WF01134D	16.62	2/12/2001	Thalassionema nitzschioides	1283.36
WF011	F06	WF01134D	16.62	2/12/2001	Thalassiosira nordenskioldii	66.95
WF011	F06	WF01134D	16.62	2/12/2001	Thalassiosira punctigera	1570.78
WF011	F06	WF01134D	16.62	2/12/2001	Thalassiosira sp. group 3 10-20 microns	5308.29
WF011	F06	WF01134D	16.62	2/12/2001	Unid. micro-phytoflag sp. group 1 length	5293.45
WF011	F13	WF011322	2.08	2/12/2001	Centric diatom sp. group 1 diam <10 micr	271.37
WF011	F13	WF011322	2.08	2/12/2001	Cryptomonas sp. group 1 length <10 micro	281.71
WF011	F13	WF011322	2.08	2/12/2001	Cylindrotheca closterium	623.29
WF011	F13	WF011322	2.08	2/12/2001	Dictyocha speculum	652.57
WF011	F13	WF011322	2.08	2/12/2001	Guinardia delicatula	921.84

Survey	Sta.	Sample Number	Depth (m)	Sampling Date	Plankton	Estimated Carbon Equivalence (ng Carbon/L)
WF011	F13	WF011322	2.08	2/12/2001	Leptocylindrus minimus	23.64
WF011	F13	WF011322	2.08	2/12/2001	Prorocentrum micans	419.89
WF011	F13	WF011322	2.08	2/12/2001	Pseudonitzschia pungens	272.98
WF011	F13	WF011322	2.08	2/12/2001	Rhizosolenia setigera	1899.66
WF011	F13	WF011322	2.08	2/12/2001	Stephanopyxis turris	1964.30
WF011	F13	WF011322	2.08	2/12/2001	Thalassionema nitzschioides	566.72
WF011	F13	WF011322	2.08	2/12/2001	Thalassiosira anguste-lineata	852.03
WF011	F13	WF011322	2.08	2/12/2001	Thalassiosira nordenskioldii	83.38
WF011	F13	WF011322	2.08	2/12/2001	Thalassiosira sp. group 3 10-20 microns	3996.43
WF011	F13	WF011322	2.08	2/12/2001	Unid. micro-phytoflag sp. group 1 length	5606.47
WF011	F13	WF011320	10.66	2/12/2001	Centric diatom sp. group 1 diam <10 micr	208.44
WF011	F13	WF011320	10.66	2/12/2001	Chaetoceros compressus	856.05
WF011	F13	WF011320	10.66	2/12/2001	Cryptomonas sp. group 1 length <10 micro	238.03
WF011	F13	WF011320	10.66	2/12/2001	Cylindrotheca closterium	893.69
WF011	F13	WF011320	10.66	2/12/2001	Dictyocha speculum	401.00
WF011	F13	WF011320	10.66	2/12/2001	Guinardia delicatula	566.46
WF011	F13	WF011320	10.66	2/12/2001	Pennate diatom sp. group 3 31-60 microns	78.26
WF011	F13	WF011320	10.66	2/12/2001	Prorocentrum micans	2064.15
WF011	F13	WF011320	10.66	2/12/2001	Pseudonitzschia pungens	209.68
WF011	F13	WF011320	10.66	2/12/2001	Skeletonema costatum	47.88
WF011	F13	WF011320	10.66	2/12/2001	Stephanopyxis turris	4828.20
WF011	F13	WF011320	10.66	2/12/2001	Thalassionema nitzschioides	696.49
WF011	F13	WF011320	10.66	2/12/2001	Thalassiosira nordenskioldii	187.86
WF011	F13	WF011320	10.66	2/12/2001	Thalassiosira punctigera	1335.55
WF011	F13	WF011320	10.66	2/12/2001	Thalassiosira rotula	1841.02
WF011	F13	WF011320	10.66	2/12/2001	Thalassiosira sp. group 3 10-20 microns	4469.08
WF011	F13	WF011320	10.66	2/12/2001	Thalassiothrix longissima	834.72
WF011	F13	WF011320	10.66	2/12/2001	Unid. micro-phytoflag sp. group 1 length	4141.12
WF011	F25	WF011302	1.81	2/12/2001	Centric diatom sp. group 1 diam <10 micr	271.67
WF011	F25	WF011302	1.81	2/12/2001	Corethron criophilum	5869.40
WF011	F25	WF011302	1.81	2/12/2001	Coscinodiscus sp. group 2 diam 40-100 mi	1248.85
WF011	F25	WF011302	1.81	2/12/2001	Cryptomonas sp. group 1 length <10 micro	323.50
WF011	F25	WF011302	1.81	2/12/2001	Cyclotella sp. group 1 diam <10 microns	70.62
WF011	F25	WF011302	1.81	2/12/2001	Cylindrotheca closterium	220.23
WF011	F25	WF011302	1.81	2/12/2001	Dictyocha speculum	115.29
WF011	F25	WF011302	1.81	2/12/2001	Dinophysis norvegica	8143.85
WF011	F25	WF011302	1.81	2/12/2001	Eutreptia/eutreptiella spp.	87.86
WF011	F25	WF011302	1.81	2/12/2001	Grammatophora marina	46.33
WF011	F25	WF011302	1.81	2/12/2001	Pleurosigma spp.	403.88
WF011	F25	WF011302	1.81	2/12/2001	Prorocentrum micans	2377.77

		Sample	Depth	Sampling		Estimated Carbon Equivalence
Survey	Sta.	Number	(m)	Date	Plankton	(ng Carbon/L)
WF011	F25	WF011302	1.81	2/12/2001	Pseudonitzschia pungens	289.36
WF011	F25	WF011302	1.81	2/12/2001	Rhizosolenia setigera	1342.42
WF011	F25	WF011302	1.81	2/12/2001	Skeletonema costatum	36.71
WF011	F25	WF011302	1.81	2/12/2001	Stephanopyxis turris	1388.11
WF011	F25	WF011302	1.81	2/12/2001	Thalassionema nitzschioides	280.34
WF011	F25	WF011302	1.81	2/12/2001	Thalassiosira nordenskioldii	108.02
WF011	F25	WF011302	1.81	2/12/2001	Thalassiosira punctigera	383.97
WF011	F25	WF011302	1.81	2/12/2001	Thalassiosira sp. group 3 10-20 microns	3078.57
WF011	F25	WF011302	1.81	2/12/2001	Unid. micro-phytoflag sp. group 1 length	5002.40
WF011	F25	WF011300	5.24	2/12/2001	Centric diatom sp. group 1 diam <10 micr	105.53
WF011	F25	WF011300	5.24	2/12/2001	Cryptomonas sp. group 1 length <10 micro	375.62
WF011	F25	WF011300	5.24	2/12/2001	Cylindrotheca closterium	346.27
WF011	F25	WF011300	5.24	2/12/2001	Dictyocha speculum	871.55
WF011	F25	WF011300	5.24	2/12/2001	Guinardia delicatula	307.28
WF011	F25	WF011300	5.24	2/12/2001	Gymnodinium sp. group 1 5-20 microns wid	194.70
WF011	F25	WF011300	5.24	2/12/2001	Prorocentrum micans	279.93
WF011	F25	WF011300	5.24	2/12/2001	Pseudonitzschia pungens	159.24
WF011	F25	WF011300	5.24	2/12/2001	Skeletonema costatum	51.94
WF011	F25	WF011300	5.24	2/12/2001	Stephanopyxis turris	6547.67
WF011	F25	WF011300	5.24	2/12/2001	Thalassionema nitzschioides	113.34
WF011	F25	WF011300	5.24	2/12/2001	Thalassiosira nordenskioldii	101.91
WF011	F25	WF011300	5.24	2/12/2001	Thalassiosira sp. group 3 10-20 microns	2640.29
WF011	F25	WF011300	5.24	2/12/2001	Unid. micro-phytoflag sp. group 1 length	3964.17
WF011	F31	WF0112EB	2.01	2/12/2001	Centric diatom sp. group 1 diam <10 micr	313.58
WF011	F31	WF0112EB	2.01	2/12/2001	Chaetoceros sp. group 2 diam 10-30 micro	266.23
WF011	F31	WF0112EB	2.01	2/12/2001	Cryptomonas sp. group 1 length <10 micro	228.89
WF011	F31	WF0112EB	2.01	2/12/2001	Cylindrotheca closterium	420.15
WF011	F31	WF0112EB	2.01	2/12/2001	Dictyocha speculum	94.26
WF011	F31	WF0112EB	2.01	2/12/2001	Eutreptia/eutreptiella spp.	23.95
WF011	F31	WF0112EB	2.01	2/12/2001	Pennate diatom sp. group 2 10-30 microns	38.60
WF011	F31	WF0112EB	2.01	2/12/2001	Pleurosigma spp.	660.43
WF011	F31	WF0112EB	2.01	2/12/2001	Pseudonitzschia pungens	39.43
WF011	F31	WF0112EB	2.01	2/12/2001	Rhizosolenia setigera	3841.53
WF011	F31	WF0112EB	2.01	2/12/2001	Skeletonema costatum	52.52
WF011	F31	WF0112EB	2.01	2/12/2001	Thalassionema nitzschioides	114.60
WF011	F31	WF0112EB	2.01	2/12/2001	Thalassiosira nordenskioldii	32.12
WF011	F31	WF0112EB	2.01	2/12/2001	Thalassiosira sp. group 3 10-20 microns	1893.01
WF011	F31	WF0112EB	2.01	2/12/2001	Unid. micro-phytoflag sp. group 1 length	3975.50
WF011	F31	WF0112EA	6.49	2/12/2001	Calycomonas wulffii	19.81
WF011	F31	WF0112EA	6.49	2/12/2001	Centric diatom sp. group 1 diam <10 micr	262.33

		Sample	Depth	Sampling		Estimated Carbon Equivalence
Survey	Sta.	Number	(m)	Date	Plankton	(ng Carbon/L)
WFUIT	F31	WF0112EA	6.49	2/12/2001	Cryptomonas sp. group 1 length <10 micro	493.38
WF011	F31	WF0112EA	6.49	2/12/2001	Distusses graculum	408.02
WF011	F31	WF0112EA	6.49	2/12/2001	Dictyocha speculum	105.14
WF011	F31	WF0112EA	6.49	2/12/2001		198.02
WF011	F31	WF0112EA	6.49	2/12/2001	Licmophora spp.	40.07
WF011	F31	WF0112EA	6.49	2/12/2001	Pennate diatom sp. group 3 31-60 microns	41.04
WF011	F31	WF0112EA	6.49	2/12/2001	Pleurosigma spp.	/36.63
WF011	F31	WF0112EA	6.49	2/12/2001	Rhizosolenia setigera	3672.67
WF011	F31	WF0112EA	6.49	2/12/2001	Stephanopyxis turris	2531.77
WF011	F31	WF0112EA	6.49	2/12/2001	Thalassionema nitzschioides	146.09
WF011	F31	WF0112EA	6.49	2/12/2001	Thalassiosira anguste-lineata	823.63
WF011	F31	WF0112EA	6.49	2/12/2001	Thalassiosira nordenskioldii	170.15
WF011	F31	WF0112EA	6.49	2/12/2001	Thalassiosira sp. group 3 10-20 microns	2181.04
WF011	F31	WF0112EA	6.49	2/12/2001	Unid. micro-phytoflag sp. group 1 length	5419.59
WF012	F01	WF012023	2.68	2/27/2001	Asterionellopsis glacialis	103.50
WF012	F01	WF012023	2.68	2/27/2001	Centric diatom sp. group 1 diam <10 micr	353.61
WF012	F01	WF012023	2.68	2/27/2001	Chaetoceros compressus	9802.55
WF012	F01	WF012023	2.68	2/27/2001	Chaetoceros debilis	8005.98
WF012	F01	WF012023	2.68	2/27/2001	Chaetoceros decipiens	2109.36
WF012	F01	WF012023	2.68	2/27/2001	Chaetoceros socialis	811.30
WF012	F01	WF012023	2.68	2/27/2001	Chaetoceros sp. group 2 diam 10-30 micro	10087.30
WF012	F01	WF012023	2.68	2/27/2001	Choanoflagellate spp.	57.84
WF012	F01	WF012023	2.68	2/27/2001	Cryptomonas sp. group 1 length <10 micro	110.13
WF012	F01	WF012023	2.68	2/27/2001	Cylindrotheca closterium	216.58
WF012	F01	WF012023	2.68	2/27/2001	Detonula confervacea	1446.67
WF012	F01	WF012023	2.68	2/27/2001	Guinardia delicatula	1921.93
WF012	F01	WF012023	2.68	2/27/2001	Gymnodinium sp. group 1 5-20 microns wid	1217.80
WF012	F01	WF012023	2.68	2/27/2001	Gymnodinium sp. group 2 21-40 microns wi	5611.44
WF012	F01	WF012023	2.68	2/27/2001	Leptocylindrus minimus	123.20
WF012	F01	WF012023	2.68	2/27/2001	Pleurosigma spp.	2383.13
WF012	F01	WF012023	2.68	2/27/2001	Pseudonitzschia pungens	427.57
WF012	F01	WF012023	2.68	2/27/2001	Stephanopyxis turris	40953.45
WF012	F01	WF012023	2.68	2/27/2001	Thalassionema nitzschioides	413.54
WF012	F01	WF012023	2.68	2/27/2001	Thalassiosira nordenskioldii	1014.02
WF012	F01	WF012023	2.68	2/27/2001	Thalassiosira sp. group 3 10-20 microns	6980.96
WF012	F01	WF012023	2.68	2/27/2001	Unid. micro-phytoflag sp. group 1 length	9150.36
WF012	F01	WF012021	8.86	2/27/2001	Centric diatom sp. group 1 diam <10 micr	276.40
WF012	F01	WF012021	8.86	2/27/2001	Ceratium fusus	4465.48
WF012	F01	WF012021	8.86	2/27/2001	Chaetoceros compressus	20896.53
WF012	F01	WF012021	8.86	2/27/2001	Chaetoceros debilis	9797.56

	01-	Sample	Depth	Sampling	Displaton	Estimated Carbon Equivalence
WE012		Number	(m)	Date	Plankton Chastogeros deciniens	(ng Carbon/L)
WF012	F01	WF012021	0.00	2/27/2001	Chaetogeros socialis	1154.03
WF012		WF012021	0.00	2/2//2001	Chaetogeros en group 2 diam 10 20 migro	1134.93
WF012	FUI	WF012021	0.00	2/2//2001	Chaenefic sellete ent	14647.09
WF012	FUI	WF012021	0.80	2/2//2001	Cristerande en group 1 langth <10 migro	212.01
WF012	FUI	WF012021	8.86	2/2//2001	Cryptomonas sp. group 1 length <10 micro	313.01
WF012	F01	WF012021	8.86	2/2//2001	Cylindrotheca closterium	461.70
WF012	F01	WF012021	8.86	2/2//2001	Ditylum brightwellii	5230.28
WF012	FOI	WF012021	8.86	2/2//2001	Guinardia delicatula	4779.90
WF012	F01	WF012021	8.86	2/2//2001	Gymnodinium sp. group 1 5-20 microns wid	324.50
WF012	F01	WF012021	8.86	2/27/2001	Gyrodinium spirale	13161.81
WF012	F01	WF012021	8.86	2/27/2001	Pleurosigma spp.	1270.06
WF012	F01	WF012021	8.86	2/27/2001	Porosira glacialis	7546.57
WF012	F01	WF012021	8.86	2/27/2001	Prorocentrum micans	1869.32
WF012	F01	WF012021	8.86	2/27/2001	Pseudonitzschia pungens	1215.29
WF012	F01	WF012021	8.86	2/27/2001	Stephanopyxis turris	91667.41
WF012	F01	WF012021	8.86	2/27/2001	Thalassionema nitzschioides	314.84
WF012	F01	WF012021	8.86	2/27/2001	Thalassiosira nordenskioldii	3026.29
WF012	F01	WF012021	8.86	2/27/2001	Thalassiosira rotula	4438.53
WF012	F01	WF012021	8.86	2/27/2001	Thalassiosira sp. group 3 10-20 microns	400.04
WF012	F01	WF012021	8.86	2/27/2001	Unid. micro-phytoflag sp. group 1 length	10004.81
WF012	F02	WF01203C	2.53	2/27/2001	Centric diatom sp. group 1 diam <10 micr	310.32
WF012	F02	WF01203C	2.53	2/27/2001	Ceratium tripos	5435.24
WF012	F02	WF01203C	2.53	2/27/2001	Chaetoceros compressus	2757.18
WF012	F02	WF01203C	2.53	2/27/2001	Chaetoceros decipiens	1601.92
WF012	F02	WF01203C	2.53	2/27/2001	Chaetoceros sp. group 2 diam 10-30 micro	6079.87
WF012	F02	WF01203C	2.53	2/27/2001	Cryptomonas sp. group 1 length <10 micro	92.93
WF012	F02	WF01203C	2.53	2/27/2001	Dictyocha speculum	344.41
WF012	F02	WF01203C	2.53	2/27/2001	Dinophysis acuminata	270.97
WF012	F02	WF01203C	2.53	2/27/2001	Ditylum brightwellii	2484.38
WF012	F02	WF01203C	2.53	2/27/2001	Guinardia delicatula	4378.73
WF012	F02	WF01203C	2.53	2/27/2001	Gymnodinium sp. group 1 5-20 microns wid	616.56
WF012	F02	WF01203C	2.53	2/27/2001	Gymnodinium sp. group 2 21-40 microns wi	1420.51
WF012	F02	WF01203C	2.53	2/27/2001	Gyrodinium spirale	25049.53
WF012	F02	WF01203C	2.53	2/27/2001	Porosira glacialis	3584.62
WF012	F02	WF01203C	2.53	2/27/2001	Protoperidinium sp. group 2 31-75 micron	3965.09
WF012	F02	WF01203C	2.53	2/27/2001	Pseudonitzschia pungens	828.42
WF012	F02	WF01203C	2.53	2/27/2001	Stephanopyxis turris	47688.88
WF012	F02	WF01203C	2.53	2/27/2001	Thalassionema nitzschioides	568.29
WF012	F02	WF01203C	2.53	2/27/2001	Thalassiosira nordenskioldii	601.40
WF012	F02	WF01203C	2.53	2/27/2001	Thalassiosira sp. group 3 10-20 microns	3458.38

Survey	Sta	Sample	Depth (m)	Sampling Date	Plankton	Estimated Carbon Equivalence (ng Carbon/L)
WF012	F02	WF01203C	2.53	2/27/2001	Unid. micro-phytoflag sp. group 1 length	5738.61
WF012	F02	WF01203A	11.62	2/27/2001	Asterionellopsis glacialis	22.06
WF012	F02	WF01203A	11.62	2/27/2001	Centric diatom sp. group 1 diam <10 micr	85.43
WF012	F02	WF01203A	11.62	2/27/2001	Chaetoceros compressus	851.34
WF012	F02	WF01203A	11.62	2/27/2001	Chaetoceros debilis	442.47
WF012	F02	WF01203A	11.62	2/27/2001	Chaetoceros decipiens	224.83
WF012	F02	WF01203A	11.62	2/27/2001	Chaetoceros socialis	201.77
WF012	F02	WF01203A	11.62	2/27/2001	Chaetoceros sp. group 2 diam 10-30 micro	563.19
WF012	F02	WF01203A	11.62	2/27/2001	Corethron criophilum	460.66
WF012	F02	WF01203A	11.62	2/27/2001	Cryptomonas sp. group 1 length <10 micro	50.86
WF012	F02	WF01203A	11.62	2/27/2001	Cylindrotheca closterium	23.08
WF012	F02	WF01203A	11.62	2/27/2001	Guinardia delicatula	1638.82
WF012	F02	WF01203A	11.62	2/27/2001	Gyrodinium spirale	1316.18
WF012	F02	WF01203A	11.62	2/27/2001	Leptocylindrus danicus	441.15
WF012	F02	WF01203A	11.62	2/27/2001	Pleurosigma spp.	127.01
WF012	F02	WF01203A	11.62	2/27/2001	Porosira glacialis	1131.98
WF012	F02	WF01203A	11.62	2/27/2001	Prorocentrum micans	93.31
WF012	F02	WF01203A	11.62	2/27/2001	Protoperidinium brevipes	214.46
WF012	F02	WF01203A	11.62	2/27/2001	Protoperidinium sp. group 2 31-75 micron	834.76
WF012	F02	WF01203A	11.62	2/27/2001	Pseudonitzschia pungens	166.82
WF012	F02	WF01203A	11.62	2/27/2001	Stephanopyxis turris	13531.86
WF012	F02	WF01203A	11.62	2/27/2001	Thalassionema nitzschioides	295.95
WF012	F02	WF01203A	11.62	2/27/2001	Thalassiosira nordenskioldii	219.25
WF012	F02	WF01203A	11.62	2/27/2001	Thalassiosira sp. group 3 10-20 microns	784.09
WF012	F02	WF01203A	11.62	2/27/2001	Unid. micro-phytoflag sp. group 1 length	2114.22
WF012	F26	WF01209F	2.01	2/27/2001	Centric diatom sp. group 1 diam <10 micr	168.71
WF012	F26	WF01209F	2.01	2/27/2001	Chaetoceros debilis	326.48
WF012	F26	WF01209F	2.01	2/27/2001	Coscinodiscus oculus-iridis	3697.07
WF012	F26	WF01209F	2.01	2/27/2001	Cryptomonas sp. group 1 length <10 micro	141.46
WF012	F26	WF01209F	2.01	2/27/2001	Cylindrotheca closterium	119.23
WF012	F26	WF01209F	2.01	2/27/2001	Dictyocha speculum	374.50
WF012	F26	WF01209F	2.01	2/27/2001	Guinardia delicatula	3179.52
WF012	F26	WF01209F	2.01	2/27/2001	Gymnodinium sp. group 1 5-20 microns wid	670.42
WF012	F26	WF01209F	2.01	2/27/2001	Licmophora spp.	71.36
WF012	F26	WF01209F	2.01	2/27/2001	Pennate diatom sp. group 2 10-30 microns	51.21
WF012	F26	WF01209F	2.01	2/27/2001	Pennate diatom sp. group 3 31-60 microns	73.09
WF012	F26	WF01209F	2.01	2/27/2001	Porosira glacialis	3904.34
WF012	F26	WF01209F	2.01	2/27/2001	Prorocentrum minimum	120.02
WF012	F26	WF01209F	2.01	2/27/2001	Pseudonitzschia pungens	156.92
WF012	F26	WF01209F	2.01	2/27/2001	Rhizosolenia hebetata	433.58

Survev	Sta.	Sample Number	Depth (m)	Sampling Date	Plankton	Estimated Carbon Equivalence (ng Carbon/L)
WF012	F26	WF01209F	2.01	2/27/2001	Stephanopyxis turris	18036.54
WF012	F26	WF01209F	2.01	2/27/2001	Thalassionema nitzschioides	390.28
WF012	F26	WF01209F	2.01	2/27/2001	Thalassiosira nordenskioldii	3062.34
WF012	F26	WF01209F	2.01	2/27/2001	Thalassiosira punctigera	623.64
WF012	F26	WF01209F	2.01	2/27/2001	Thalassiosira sp. group 3 10-20 microns	2727.40
WF012	F26	WF01209F	2.01	2/27/2001	Unid. micro-phytoflag sp. group 1 length	3347.47
WF012	F26	WF01209E	6.92	2/27/2001	Asterionellopsis glacialis	52.40
WF012	F26	WF01209E	6.92	2/27/2001	Centric diatom sp. group 1 diam <10 micr	35.81
WF012	F26	WF01209E	6.92	2/27/2001	Chaetoceros compressus	736.49
WF012	F26	WF01209E	6.92	2/27/2001	Chaetoceros sp. group 2 diam 10-30 micro	972.78
WF012	F26	WF01209E	6.92	2/27/2001	Cryptomonas sp. group 1 length <10 micro	92.93
WF012	F26	WF01209E	6.92	2/27/2001	Cylindrotheca closterium	219.31
WF012	F26	WF01209E	6.92	2/27/2001	Dictyocha speculum	172.21
WF012	F26	WF01209E	6.92	2/27/2001	Guinardia delicatula	3081.33
WF012	F26	WF01209E	6.92	2/27/2001	Gymnodinium sp. group 1 5-20 microns wid	154.14
WF012	F26	WF01209E	6.92	2/27/2001	Gyrodinium spirale	6251.86
WF012	F26	WF01209E	6.92	2/27/2001	Odontella spp.	10450.30
WF012	F26	WF01209E	6.92	2/27/2001	Pseudonitzschia pungens	36.02
WF012	F26	WF01209E	6.92	2/27/2001	Stephanopyxis turris	24881.16
WF012	F26	WF01209E	6.92	2/27/2001	Thalassionema nitzschioides	269.19
WF012	F26	WF01209E	6.92	2/27/2001	Thalassiosira nordenskioldii	2112.23
WF012	F26	WF01209E	6.92	2/27/2001	Thalassiosira punctigera	573.54
WF012	F26	WF01209E	6.92	2/27/2001	Thalassiosira rotula	2108.30
WF012	F26	WF01209E	6.92	2/27/2001	Thalassiosira sp. group 3 10-20 microns	3420.37
WF012	F26	WF01209E	6.92	2/27/2001	Unid. micro-phytoflag sp. group 1 length	3407.30
WF012	F27	WF01208C	1.93	2/27/2001	Centric diatom sp. group 1 diam <10 micr	138.47
WF012	F27	WF01208C	1.93	2/27/2001	Chaetoceros atlanticus	1740.36
WF012	F27	WF01208C	1.93	2/27/2001	Chaetoceros socialis	176.49
WF012	F27	WF01208C	1.93	2/27/2001	Chaetoceros sp. group 2 diam 10-30 micro	1567.45
WF012	F27	WF01208C	1.93	2/27/2001	Cryptomonas sp. group 1 length <10 micro	167.70
WF012	F27	WF01208C	1.93	2/27/2001	Cylindrotheca closterium	566.35
WF012	F27	WF01208C	1.93	2/27/2001	Dictyocha speculum	1109.90
WF.012	F27	WF01208C	1.93	2/27/2001	Ditylum brightwellii	3202.49
WF012	F27	WF01208C	1.93	2/27/2001	Guinardia delicatula	3135.78
WF012	F27	WF01208C	1.93	2/27/2001	Gymnodinium sp. group 1 5-20 microns wid	596.08
WF012	F27	WF01208C	1.93	2/27/2001	Protoperidinium sp. group 2 31-75 micron	5111.19
WF012	F27	WF01208C	1.93	2/27/2001	Pseudonitzschia pungens	46.43
WF012	F27	WF01208C	1.93	2/27/2001	Stephanopyxis turris	32073.02
WF012	F27	WF01208C	1.93	2/27/2001	Thalassionema nitzschioides	732.55
WF012	F27	WF01208C	1.93	2/27/2001	Thalassiosira nordenskioldii	2458.05

						Estimated
		Sample	Depth	Sampling	Disultan	Equivalence
Survey	5ta.	Number	(m) 1.02			(iig carbon/L)
WF012	F27	WF01208C	1.93	2/27/2001	Thalassiosita punctigera Thalassiosita sp. group 3 10 20 microns	3821.16
WF012	F27	WF01208C	1.93	2/27/2001	Unid migro phytoflag on group 1 length	3351.02
WF012	F27	WF01208C	1.95	2/27/2001	Unid, micro-phytoflag sp. group 2 length	600.82
WF012	F27	WF01208C	1.95	2/27/2001	Amphidinium con	120.00
WF012	F27	WF01208A	23.8	2/2//2001	Astarianallancia alacialia	129.90
WF012	F27	WF01208A	23.8	2/2//2001	Asterionellopsis glacialis	40.33
WF012	F27	WF01208A	23.8	2/2//2001	Centric diatom sp. group 1 diam <10 micr	443.24
WF012	F27	WF01208A	23.8	2/2//2001		1803.22
WF012	F27	WF01208A	23.8	2/2//2001	Chaetoceros sp. group 2 diam 10-30 micro	645.11
WF012	F27	WF01208A	23.8	2/27/2001	Coscinodiscus sp. group 2 diam 40-100 mi	3298.85
WF012	F27	WF01208A	23.8	2/27/2001	Cryptomonas sp. group 1 length <10 micro	131.47
WF012	F27	WF01208A	23.8	2/27/2001	Cylindrotheca closterium	581.74
WF012	F27	WF01208A	23.8	2/27/2001	Detonula confervacea	161.63
WF012	F27	WF01208A	23.8	2/27/2001	Dictyocha speculum	609.06
WF012	F27	WF01208A	23.8	2/27/2001	Dinophysis norvegica	2684.49
WF012	F27	WF01208A	23.8	2/27/2001	Ditylum brightwellii	2196.72
WF012	F27	WF01208A	23.8	2/27/2001	Guinardia delicatula	10916.52
WF012	F27	WF01208A	23.8	2/27/2001	Gymnodinium sp. group 1 5-20 microns wid	2180.67
WF012	F27	WF01208A	23.8	2/27/2001	Gyrodinium spirale	5527.96
WF012	F27	WF01208A	23.8	2/27/2001	Prorocentrum micans	1570.22
WF012	F27	WF01208A	23.8	2/27/2001	Pseudonitzschia pungens	31.85
WF012	F27	WF01208A	23.8	2/27/2001	Stephanopyxis turris	14666.79
WF012	F27	WF01208A	23.8	2/27/2001	Thalassionema nitzschioides	396.70
WF012	F27	WF01208A	23.8	2/27/2001	Thalassiosira nordenskioldii	1322.92
WF012	F27	WF01208A	23.8	2/27/2001	Thalassiosira punctigera	507.13
WF012	F27	WF01208A	23.8	2/27/2001	Thalassiosira rotula	1864.18
WF012	F27	WF01208A	23.8	2/27/2001	Thalassiosira sp. group 3 10-20 microns	5544.60
WF012	F27	WF01208A	23.8	2/27/2001	Unid. micro-phytoflag sp. group 1 length	5444.13
WF012	F13	WF0120F8	2.26	2/28/2001	Centric diatom sp. group 1 diam <10 micr	66.01
WF012	F13	WF0120F8	2.26	2/28/2001	Chaetoceros sp. group 2 diam 10-30 micro	1344.97
WF012	F13	WF0120F8	2.26	2/28/2001	Cryptomonas sp. group 1 length <10 micro	73.42
WF012	F13	WF0120F8	2.26	2/28/2001	Cylindrotheca closterium	259.90
WF012	F13	WF0120F8	2.26	2/28/2001	Guinardia delicatula	1793.80
WF012	F13	WF0120F8	2.26	2/28/2001	Gymnodinium sp. group 1 5-20 microns wid	121.78
WF012	F13	WF0120F8	2.26	2/28/2001	Gymnodinium sp. group 2 21-40 microns wi	2244.58
WF012	F13	WF0120F8	2.26	2/28/2001	Pennate diatom sp. group 2 10-30 microns	18.57
WF012	F13	WF0120F8	2.26	2/28/2001	Porosira glacialis	1416.04
WF012	F13	WF0120F8	2.26	2/28/2001	Pseudonitzschia pungens	28.46
WF012	F13	WF0120F8	2.26	2/28/2001	Rhizosolenia setigera	792.11
WF012	F13	WF0120F8	2.26	2/28/2001	Stephanopyxis turris	14743.24

		Sample	Depth	Sampling		Estimated Carbon Equivalence
Survey	Sta.	Number	(m)	Date	Plankton	(ng Carbon/L)
WF012	F13	WF0120F8	2.26	2/28/2001	Thalassionema nitzschioides	165.42
WF012	F13	WF0120F8	2.26	2/28/2001	Thalassiosira nordenskioldii	1147.29
WF012	F13	WF0120F8	2.26	2/28/2001	Thalassiosira sp. group 3 10-20 microns	570.49
WF012	F13	WF0120F8	2.26	2/28/2001	Unid. micro-phytoflag sp. group 1 length	2148.86
WF012	F13	WF0120F5	11.27	2/28/2001	Centric diatom sp. group 1 diam <10 micr	241.18
WF012	F13	WF0120F5	11.27	2/28/2001	Ceratium tripos	4576.34
WF012	F13	WF0120F5	11.27	2/28/2001	Chaetoceros decipiens	899.18
WF012	F13	WF0120F5	11.27	2/28/2001	Chaetoceros sp. group 2 diam 10-30 micro	1842.88
WF012	F13	WF0120F5	11.27	2/28/2001	Cryptomonas sp. group 1 length <10 micro	187.78
WF012	F13	WF0120F5	11.27	2/28/2001	Cylindrotheca closterium	369.30
WF012	F13	WF0120F5	11.27	2/28/2001	Ditylum brightwellii	2091.79
WF012	F13	WF0120F5	11.27	2/28/2001	Eutreptia/eutreptiella spp.	73.67
WF012	F13	WF0120F5	11.27	2/28/2001	Guinardia delicatula	1775.12
WF012	F13	WF0120F5	11.27	2/28/2001	Gymnodinium sp. group 1 5-20 microns wid	1038.25
WF012	F13	WF0120F5	11.27	2/28/2001	Gymnodinium sp. group 2 21-40 microns wi	1196.03
WF012	F13	WF0120F5	11.27	2/28/2001	Pennate diatom sp. group 2 10-30 microns	19.79
WF012	F13	WF0120F5	11.27	2/28/2001	Prorocentrum micans	373.18
WF012	F13	WF0120F5	11.27	2/28/2001	Rhizosolenia hebetata	335.73
WF012	F13	WF0120F5	11.27	2/28/2001	Stephanopyxis turris	43644.45
WF012	F13	WF0120F5	11.27	2/28/2001	Thalassionema nitzschioides	151.10
WF012	F13	WF0120F5	11.27	2/28/2001	Thalassiosira nordenskioldii	1407.94
WF012	F13	WF0120F5	11.27	2/28/2001	Thalassiosira sp. group 3 10-20 microns	1055.95
WF012	F13	WF0120F5	11.27	2/28/2001	Unid. micro-phytoflag sp. group 1 length	6190.70
WF012	F22	WF0120B7	1.87	2/28/2001	Centric diatom sp. group 1 diam <10 micr	183.22
WF012	F22	WF0120B7	1.87	2/28/2001	Chaetoceros didymus	36.41
WF012	F22	WF0120B7	1.87	2/28/2001	Chaetoceros socialis	155.69
WF012	F22	WF0120B7	1.87	2/28/2001	Cryptomonas sp. group 1 length <10 micro	76.08
WF012	F22	WF0120B7	1.87	2/28/2001	Cylindrotheca closterium	149.63
WF012	F22	WF0120B7	1.87	2/28/2001	Detonula confervacea	374.16
WF012	F22	WF0120B7	1.87	2/28/2001	Dictyocha fibula	204.25
WF012	F22	WF0120B7	1.87	2/28/2001	Dictyocha speculum	469.96
WF012	F22	WF0120B7	1.87	2/28/2001	Guinardia delicatula	2323.58
WF012	F22	WF0120B7	1.87	2/28/2001	Gymnodinium sp. group 1 5-20 microns wid	473.24
WF012	F22	WF0120B7	1.87	2/28/2001	Gyrodinium spirale	8530.87
WF012	F22	WF0120B7	1.87	2/28/2001	Pennate diatom sp. group 2 10-30 microns	48.20
WF012	F22	WF0120B7	1.87	2/28/2001	Prorocentrum micans	302.39
WF012	F22	WF0120B7	1.87	2/28/2001	Pseudonitzschia pungens	98.30
WF012	F22	WF0120B7	1.87	2/28/2001	Stephanopyxis turris	15560.94
WF012	F22	WF0120B7	1.87	2/28/2001	Thalassionema nitzschioides	1103.81
WF012	F22	WF0120B7	1.87	2/28/2001	Thalassiosira nordenskioldii	1411.08

		Sample	Depth	Sampling		Estimated Carbon Equivalence
Survey	Sta.	Number	(m)	Date	Plankton	(ng Carbon/L)
WF012	F22	WF0120B7	1.87	2/28/2001	Thalassiosira rotula	2517.24
WF012	F22	WF0120B7	1.87	2/28/2001	Thalassiosira sp. group 3 10-20 microns	1503.88
WF012	F22	WF0120B7	1.87	2/28/2001	Unid. micro-phytoflag sp. group 1 length	2844.68
WF012	F22	WF0120B4	40.89	2/28/2001	Centric diatom sp. group 1 diam <10 micr	133.75
WF012	F22	WF0120B4	40.89	2/28/2001	Ceratium tripos	3691.49
WF012	F22	WF0120B4	40.89	2/28/2001	Chaetoceros compressus	499.36
WF012	F22	WF0120B4	40.89	2/28/2001	Chaetoceros sp. group 2 diam 10-30 micro	330.34
WF012	F22	WF0120B4	40.89	2/28/2001	Cryptomonas sp. group 1 length <10 micro	75.74
WF012	F22	WF0120B4	40.89	2/28/2001	Cylindrotheca closterium	148.95
WF012	F22	WF0120B4	40.89	2/28/2001	Dictyocha speculum	116.96
WF012	F22	WF0120B4	40.89	2/28/2001	Guinardia delicatula	2973.93
WF012	F22	WF0120B4	40.89	2/28/2001	Gymnodinium sp. group 1 5-20 microns wid	314.06
WF012	F22	WF0120B4	40.89	2/28/2001	Gyrodinium spirale	4246.12
WF012	F22	WF0120B4	40.89	2/28/2001	Porosira glacialis	1217.29
WF012	F22	WF0120B4	40.89	2/28/2001	Protoperidinium depressum	70604.04
WF012	F22	WF0120B4	40.89	2/28/2001	Pseudonitzschia pungens	24.46
WF012	F22	WF0120B4	40.89	2/28/2001	Stephanopyxis turris	11265.79
WF012	F22	WF0120B4	40.89	2/28/2001	Thalassionema nitzschioides	162.51
WF012	F22	WF0120B4	40.89	2/28/2001	Thalassiosira nordenskioldii	1334.95
WF012	F22	WF0120B4	40.89	2/28/2001	Thalassiosira punctigera	389.53
WF012	F22	WF0120B4	40.89	2/28/2001	Thalassiosira rotula	1073.93
WF012	F22	WF0120B4	40.89	2/28/2001	Thalassiosira sp. group 3 10-20 microns	1548.69
WF012	F22	WF0120B4	40.89	2/28/2001	Unid. micro-phytoflag sp. group 1 length	2953.59
WF012	F24	WF012178	2.26	2/28/2001	Centric diatom sp. group 1 diam <10 micr	89.06
WF012	F24	WF012178	2.26	2/28/2001	Chaetoceros debilis	320.08
WF012	F24	WF012178	2.26	2/28/2001	Cyclotella sp. group 1 diam <10 microns	56.22
WF012	F24	WF012178	2.26	2/28/2001	Guinardia delicatula	4667.91
WF012	F24	WF012178	2.26	2/28/2001	Gymnodinium sp. group 1 5-20 microns wid	492.96
WF012	F24	WF012178	2.26	2/28/2001	Gyrodinium spirale	6664.74
WF012	F24	WF012178	2.26	2/28/2001	Heterocapsa triquetra	288.86
WF012	F24	WF012178	2.26	2/28/2001	Pseudonitzschia pungens	38.40
WF012	F24	WF012178	2.26	2/28/2001	Stephanopyxis turris	13284.48
WF012	F24	WF012178	2.26	2/28/2001	Thalassionema nitzschioides	127.54
WF012	F24	WF012178	2.26	2/28/2001	Thalassiosira nordenskioldii	2455.00
WF012	F24	WF012178	2.26	2/28/2001	Thalassiosira sp. group 3 10-20 microns	648.22
WF012	F24	WF012178	2.26	2/28/2001	Unid. micro-phytoflag sp. group 1 length	3919.08
WF012	F24	WF012175	8.64	2/28/2001	Centric diatom sp. group 1 diam <10 micr	135.69
WF012	F24	WF012175	8.64	2/28/2001	Chaetoceros compressus	348.28
WF012	F24	WF012175	8.64	2/28/2001	Chaetoceros sp. group 2 diam 10-30 micro	1612.77
WF012	F24	WF012175	8.64	2/28/2001	Cryptomonas sp. group 1 length <10 micro	176.07

	Cha	Sample	Depth	Sampling	Displaton	Estimated Carbon Equivalence
Survey	5ta.	Number	(m)	2/28/2001		(ng Carbon/L)
WF012	F24	WF012175	0.04	2/28/2001	Cuinardia delicatula	2611.99
WF012	F24	WF012175	8.04	2/28/2001	Gumadinium en group 2.21.40 microns wi	1345 74
WF012	F24	WF012175	8.64	2/28/2001	Pennate diatom sp. group 3 31 60 microns	63.68
WF012	F24	WE012175	8.64	2/28/2001	Phizosolenia hebetata	377.76
WF012	F24	WE012175	8.64	2/28/2001	Stephenopyxis turris	31/28 83
WE012	F24	WF012175	8.64	2/28/2001	Thalassionema nitzschioides	113 34
WE012	F24	WE012175	8.64	2/28/2001	Thalassionema mizsemoides	1667.55
WF012	F24	WF012175	8.64	2/28/2001	Thalassiosira rotula	4993 34
WF012	F24	WE012175	8.64	2/28/2001	Thalassiosira sp. group 3 10-20 microps	756.08
WE012	F24	WF012175	8.64	2/28/2001	Unid micro-phytoflag sp. group 1 length	5040.16
WF012	E25	WF012175	2 11	2/28/2001	Amphidinium spp	71.00
WF012	F25	WE012136	2.11	2/28/2001	Centric diatom sp. group 1 diam <10 micr	86.52
WF012	F25	WE012136	2.11	2/28/2001	Chaetoceros compressus	355 32
WE012	F25	WF012136	2.11	2/28/2001	Chaetoceros debilis	145.10
WF012	F25	WF012136	2.11	2/28/2001	Chaetoceros sp. group 2 diam 10-30 micro	705.18
WE012	F25	WF012136	2.11	2/28/2001	Cryptomonas sp. group 1 length <10 micro	114 52
WE012	F25	WE012136	2.11	2/28/2001	Guinardia delicatula	1018 87
WF012	F25	WF012136	2.11	2/28/2001	Gymnodinium sp. group 1 5-20 microns wid	1010.07
WF012	F25	WE012136	2.11	2/28/2001	Pennate diatom sp. group 3 31-60 microns	97.62
WF012	F25	WF012136	2.11	2/28/2001	Stephanonyxis turris	13026 39
WF012	F25	WF012136	2.11	2/28/2001	Thalassionema nitzschioides	13020.35
WF012	F25	WF012136	2.11	2/28/2001	Thalassiosira nordenskioldii	985 34
WF012	F25	WF012136	2.11	2/28/2001	Thalassiosira rotula	1530.90
WF012	F25	WF012136	2.11	2/28/2001	Thalassiosira sp. group 3 10-20 microns	385.69
WF012	F25	WF012136	2.11	2/28/2001	Unid micro-phytoflag sp. group 1 length	2448 31
WF012	F25	WF012133	5.84	2/28/2001	Centric diatom sp. group 1 diam <10 micr	135.69
WF012	F25	WF012133	5.84	2/28/2001	Chaetoceros debilis	758.52
WF012	F25	WF012133	5.84	2/28/2001	Chaetoceros sp. group 2 diam 10-30 micro	1230.84
WF012	F25	WF012133	5.84	2/28/2001	Cryptomonas sp. group 1 length <10 micro	187.81
WF012	F25	WF012133	5.84	2/28/2001	Cyclotella sp. group 1 diam <10 microns	66.62
WF012	F25	WF012133	5.84	2/28/2001	Cylindrotheca closterium	184.68
WF012	F25	WF012133	5.84	2/28/2001	Dactyliosolen fragilissimus	400.98
WF012	F25	WF012133	5.84	2/28/2001	Dictyocha speculum	435.78
WF012	F25	WF012133	5.84	2/28/2001	Grammatophora marina	58.27
WF012	F25	WF012133	5.84	2/28/2001	Guinardia delicatula	1229.12
WF012	F25	WF012133	5.84	2/28/2001	Pseudonitzschia pungens	60.66
WF012	F25	WF012133	5.84	2/28/2001	Stephanopyxis turris	20987.81
WF012	F25	WF012133	5.84	2/28/2001	Thalassiosira nordenskioldii	1247.57
WF012	F25	WF012133	5.84	2/28/2001	Thalassiosira sp. group 3 10-20 microns	352.04

Survey	Sta	Sample	Depth	Sampling	Plankton	Estimated Carbon Equivalence
WE012	F25	WE012133	5.84	2/28/2001	Unid micro-phytoflag sp. group 1 length	3284 60
WF012	F30	WF012189	1 97	2/28/2001	Centric diatom sp. group 1 diam <10 micr	66 59
WF012	F30	WF012189	1.97	2/28/2001	Cryptomonas sp. group 1 length <10 micro	114.05
WF012	F30	WF012189	1.97	2/28/2001	Cylindrotheca closterium	122.35
WF012	F30	WF012189	1.97	2/28/2001	Detonula confervacea	305.95
WF012	F30	WF012189	1.97	2/28/2001	Eucampia cornuta	
WF012	F30	WF012189	1.97	2/28/2001	Eutreptia/eutreptiella spp.	97.62
WF012	F30	WF012189	1.97	2/28/2001	Guinardia delicatula	1447.63
WF012	F30	WF012189	1.97	2/28/2001	Pleurosigma spp.	673.13
WF012	F30	WF012189	1.97	2/28/2001	Stephanopyxis turris	27762.13
WF012	F30	WF012189	1.97	2/28/2001	Thalassionema nitzschioides	66.75
WF012	F30	WF012189	1.97	2/28/2001	Thalassiosira nordenskioldii	2307.70
WF012	F30	WF012189	1.97	2/28/2001	Thalassiosira rotula	1176.21
WF012	F30	WF012189	1.97	2/28/2001	Thalassiosira sp. group 3 10-20 microns	763.28
WF012	F30	WF012189	1.97	2/28/2001	Unid. micro-phytoflag sp. group 1 length	4101.97
WF012	F30	WF012188	5.02	2/28/2001	Centric diatom sp. group 1 diam <10 micr	142.76
WF012	F30	WF012188	5.02	2/28/2001	Chaetoceros debilis	326.48
WF012	F30	WF012188	5.02	2/28/2001	Chaetoceros decipiens	1161.24
WF012	F30	WF012188	5.02	2/28/2001	Chaetoceros sp. group 2 diam 10-30 micro	1059.54
WF012	F30	WF012188	5.02	2/28/2001	Cryptomonas sp. group 1 length <10 micro	80.84
WF012	F30	WF012188	5.02	2/28/2001	Eutreptia/eutreptiella spp.	47.57
WF012	F30	WF012188	5.02	2/28/2001	Grammatophora marina	75.24
WF012	F30	WF012188	5.02	2/28/2001	Guinardia delicatula	529.03
WF012	F30	WF012188	5.02	2/28/2001	Licmophora spp.	71.36
WF012	F30	WF012188	5.02	2/28/2001	Stephanopyxis turris	33818.52
WF012	F30	WF012188	5.02	2/28/2001	Thalassionema nitzschioides	97.57
WF012	F30	WF012188	5.02	2/28/2001	Thalassiosira nordenskioldii	2504.10
WF012	F30	WF012188	5.02	2/28/2001	Thalassiosira rotula	2865.61
WF012	F30	WF012188	5.02	2/28/2001	Thalassiosira sp. group 3 10-20 microns	867.81
WF012	F30	WF012188	5.02	2/28/2001	Unid. micro-phytoflag sp. group 1 length	4192.46
WF012	N16	WF012156	2.66	2/28/2001	Centric diatom sp. group 1 diam <10 micr	33.92
WF012	N16	WF012156	2.66	2/28/2001	Chaetoceros compressus	1218.96
WF012	N16	WF012156	2.66	2/28/2001	Chaetoceros sp. group 2 diam 10-30 micro	921.58
WF012	N16	WF012156	2.66	2/28/2001	Cryptomonas sp. group 1 length <10 micro	140.86
WF012	N16	WF012156	2.66	2/28/2001	Cylindrotheca closterium	208.11
WF012	N16	WF012156	2.66	2/28/2001	Dictyocha speculum	326.28
WF012	N16	WF012156	2.66	2/28/2001	Ditylum brightwellii	2353.63
WF012	N16	WF012156	2.66	2/28/2001	Guinardia delicatula	2919.16
WF012	N16	WF012156	2.66	2/28/2001	Gymnodinium sp. group 1 5-20 microns wid	292.05
WF012	N16	WF012156	2.66	2/28/2001	Gymnodinium sp. group 2 21-40 microns wi	1345.74

		Sample	Depth	Sampling		Estimated Carbon Equivalence
Survey	Sta.	Number	(m)	Date		(ng Carbon/L)
WF012	NI6	WF012156	2.00	2/28/2001		841.10
WF012	NI6	WF012156	2.00	2/28/2001	Prorocentrum micans	641.19
WF012	NI6	WF012156	2.66	2/28/2001	Pseudonitzschia pungens	68.36
WF012	N16	WF012156	2.66	2/28/2001	Stephanopyxis turris	19643.02
WF012	N16	WF012156	2.66	2/28/2001	Thalassionema nitzschioides	1048.43
WF012	N16	WF012156	2.66	2/28/2001	Thalassiosira nordenskioldii	12/8.45
WF012	N16	WF012156	2.66	2/28/2001	Thalassiosira punctigera	2/16.76
WF012	N16	WF012156	2.66	2/28/2001	Thalassiosira sp. group 3 10-20 microns	360.04
WF012	N16	WF012156	2.66	2/28/2001	Thalassiothrix longissima	679.19
WF012	N16	WF012156	2.66	2/28/2001	Unid. micro-phytoflag sp. group 1 length	3652.70
WF012	N16	WF012153	20.58	2/28/2001	Asterionellopsis glacialis	132.90
WF012	N16	WF012153	20.58	2/28/2001	Centric diatom sp. group 1 diam <10 micr	135.99
WF012	N16	WF012153	20.58	2/28/2001	Chaetoceros compressus	930.82
WF012	N16	WF012153	20.58	2/28/2001	Chaetoceros sp. group 2 diam 10-30 micro	821.02
WF012	N16	WF012153	20.58	2/28/2001	Coscinodiscus sp. group 2 diam 40-100 mi	1574.41
WF012	N16	WF012153	20.58	2/28/2001	Cryptomonas sp. group 1 length <10 micro	82.35
WF012	N16	WF012153	20.58	2/28/2001	Cylindrotheca closterium	277.64
WF012	N16	WF012153	20.58	2/28/2001	Dictyocha fibula	252.67
WF012	N16	WF012153	20.58	2/28/2001	Dictyocha speculum	436.02
WF012	N16	WF012153	20.58	2/28/2001	Eucampia cornuta	
WF012	N16	WF012153	20.58	2/28/2001	Eutreptia/eutreptiella spp.	36.92
WF012	N16	WF012153	20.58	2/28/2001	Guinardia delicatula	5338.13
WF012	N16	WF012153	20.58	2/28/2001	Gymnodinium sp. group 1 5-20 microns wid	585.42
WF012	N16	WF012153	20.58	2/28/2001	Gymnodinium sp. group 2 21-40 microns wi	2397.80
WF012	N16	WF012153	20.58	2/28/2001	Pleurosigma spp.	1530.06
WF012	N16	WF012153	20.58	2/28/2001	Proboscia alata	1648.95
WF012	N16	WF012153	20.58	2/28/2001	Prorocentrum micans	374.07
WF012	N16	WF012153	20.58	2/28/2001	Prorocentrum minimum	93.16
WF012	N16	WF012153	20.58	2/28/2001	Stephanopyxis turris	19249.60
WF012	N16	WF012153	20.58	2/28/2001	Thalassionema nitzschioides	277.68
WF012	N16	WF012153	20.58	2/28/2001	Thalassiosira anguste-lineata	1518.12
WF012	N16	WF012153	20.58	2/28/2001	Thalassiosira nordenskioldii	2209.82
WF012	N16	WF012153	20.58	2/28/2001	Thalassiosira sp. group 3 10-20 microns	705.66
WF012	N16	WF012153	20.58	2/28/2001	Unid. micro-phytoflag sp. group 1 length	4692.00
WF012	F23	WF01219D	1.91	3/1/2001	Centric diatom sp. group 1 diam <10 micr	70.11
WF012	F23	WF01219D	1.91	3/1/2001	Chaetoceros sp. group 2 diam 10-30 micro	178.57
WF012	F23	WF01219D	1.91	3/1/2001	Cryptomonas sp. group 1 length <10 micro	68.23
WF012	F23	WF01219D	1.91	3/1/2001	Cryptomonas sp. group 2 length >10 micro	87.64
WF012	F23	WF01219D	1.91	3/1/2001	Dactyliosolen fragilissimus	174.82
WF012	F23	WF01219D	1.91	3/1/2001	Dictyocha speculum	126.44

Survey	Sta.	Sample Number	Depth (m)	Sampling Date	Plankton	Estimated Carbon Equivalence (ng Carbon/L)
WF012	F23	WF01219D	1.91	3/1/2001	Guinardia delicatula	238.16
WF012	F23	WF01219D	1.91	3/1/2001	Gymnodinium sp. group 2 21-40 microns wi	1043.02
WF012	F23	WF01219D	1.91	3/1/2001	Leptocylindrus minimus	18.32
WF012	F23	WF01219D	1.91	3/1/2001	Licmophora spp.	48.19
WF012	F23	WF01219D	1.91	3/1/2001	Pennate diatom sp. group 3 31-60 microns	49.36
WF012	F23	WF01219D	1.91	3/1/2001	Prorocentrum micans	1303.94
WF012	F23	WF01219D	1.91	3/1/2001	Protoperidinium brevipes	747.96
WF012	F23	WF01219D	1.91	3/1/2001	Stephanopyxis turris	24359.03
WF012	F23	WF01219D	1.91	3/1/2001	Thalassionema nitzschioides	21.96
WF012	F23	WF01219D	1.91	3/1/2001	Thalassiosira nordenskioldii	2154.07
WF012	F23	WF01219D	1.91	3/1/2001	Thalassiosira rotula	1548.04
WF012	F23	WF01219D	1.91	3/1/2001	Thalassiosira sp. group 3 10-20 microns	1060.39
WF012	F23	WF01219D	1.91	3/1/2001	Unid. micro-phytoflag sp. group 1 length	3555.26
WF012	F23	WF01219B	10.47	3/1/2001	Centric diatom sp. group 1 diam <10 micr	83.55
WF012	F23	WF01219B	10.47	3/1/2001	Chaetoceros sp. group 2 diam 10-30 micro	1215.97
WF012	F23	WF01219B	10.47	3/1/2001	Coscinodiscus sp. group 3 diam >100 micr	8724.17
WF012	F23	WF01219B	10.47	3/1/2001	Guinardia delicatula	324.90
WF012	F23	WF01219B	10.47	3/1/2001	Gymnodinium sp. group 1 5-20 microns wid	154.14
WF012	F23	WF01219B	10.47	3/1/2001	Gymnodinium sp. group 2 21-40 microns wi	1420.51
WF012	F23	WF01219B	10.47	3/1/2001	Gyrosigma spp.	1206.55
WF012	F23	WF01219B	10.47	3/1/2001	Pennate diatom sp. group 2 10-30 microns	47.09
WF012	F23	WF01219B	10.47	3/1/2001	Pennate diatom sp. group 3 31-60 microns	134.44
WF012	F23	WF01219B	10.47	3/1/2001	Pleurosigma spp.	603.28
WF012	F23	WF01219B	10.47	3/1/2001	Protoperidinium brevipes	1018.66
WF012	F23	WF01219B	10.47	3/1/2001	Stephanopyxis turris.	12461.51
WF012	F23	WF01219B	10.47	3/1/2001	Thalassiosira nordenskioldii	1657.51
WF012	F23	WF01219B	10.47	3/1/2001	Thalassiosira sp. group 3 10-20 microns	1026.11
WF012	F23	WF01219B	10.47	3/1/2001	Unid. micro-phytoflag sp. group 1 length	3377.41
WF012	F31	WF0122A8	1.97	3/1/2001	Asterionellopsis glacialis	47.48
WF012	F31	WF0122A8	1.97	3/1/2001	Centric diatom sp. group 1 diam <10 micr	75.71
WF012	F31	WF0122A8	1.97	3/1/2001	Chaetoceros sp. group 2 diam 10-30 micro	1101.84
WF012	F31	WF0122A8	1.97	3/1/2001	Coscinodiscus sp. group 2 diam 40-100 mi	1690.32
WF012	F31	WF0122A8	1.97	3/1/2001	Cryptomonas sp. group 1 length <10 micro	75.78
WF012	F31	WF0122A8	1.97	3/1/2001	Guinardia delicatula	1028.67
WF012	F31	WF0122A8	1.97	3/1/2001	Gymnodinium sp. group 1 5-20 microns wid	139.67
WF012	F31	WF0122A8	1.97	3/1/2001	Gyrodinium spirale	5665.03
WF012	F31	WF0122A8	1.97	3/1/2001	Stephanopyxis turris	16909.26
WF012	F31	WF0122A8	1.97	3/1/2001	Thalassionema nitzschioides	54.21
WF012	F31	WF0122A8	1.97	3/1/2001	Thalassiosira nordenskioldii	1741.18
WF012	F31	WF0122A8	1.97	3/1/2001	Thalassiosira rotula	955.20

						Estimated Carbon
Survov	Sta	Sample	Depth	Sampling	Plankton	Equivalence
WF012	F31	WF0122A8	1 97	3/1/2001	Thalassiosira sp. group 3 10-20 microns	688 74
WF012	F31	WF0122A8	1.97	3/1/2001	Unid micro-phytoflag sp. group 1 length	2870.81
WF012	F31	WF0122A7	5.67	3/1/2001	Actinontychus senarius	636.49
WF012	F31	WF0122A7	5.67	3/1/2001	Asterionellonsis glacialis	67.90
WF012	F31	WF0122A7	5.67	3/1/2001	Centric diatom sp. group 1 diam <10 micr	108.26
WF012	F31	WE0122A7	5.67	3/1/2001	Chaetoceros sp. group 2 diam 10-30 micro	1260.48
WF012	F31	WF0122A7	5.67	3/1/2001	Coscinodiscus sp. group 2 diam 40-100 mi	2417.13
WF012	F31	WF0122A7	5.67	3/1/2001	Cryptomonas sp. group 1 length <10 micro	120.41
WF012	F31	WF0122A7	5.67	3/1/2001	Cylindrotheca closterium	284.65
WE012	E21	WE0122A7	5.67	3/1/2001	Dactuliosolan fragilissimus	617.00
WF012	F31 F21	WE0122A7	5.67	2/1/2001	Dictyocha speculum	894.04
WF012	F31 F21	WF0122A7	5.67	2/1/2001	Guipardia delicatula	840.56
WF012	F31 F21	WF0122A7	5.07	2/1/2001	Decreasentrum microne	1150.52
WF012	F31 F21	WF0122A7	5.07	3/1/2001	Stenhenonymia turnia	10746.63
WF012	F31	WF0122A7	5.07	3/1/2001		10/40.03
WF012	F31	WF0122A7	5.07	3/1/2001	Thalassionema hitzschloides	38.70
WF012	F31	WF0122A7	5.67	3/1/2001		2261.77
WF012	F31	WF0122A7	5.67	3/1/2001	Thalassiosira sp. group 3 10-20 microns	/38.00
WF012	F31	WF0122A/	5.67	3/1/2001	Unid. micro-phytoflag sp. group 1 length	3679.19
WF012	N04	WF0121E0	1.8	3/1/2001	Centric diatom sp. group I diam <10 micr	/4./5
WF012	N04	WF0121E0	1.8	3/1/2001	Chaetoceros debilis	537.29
WF012	N04	WF0121E0	1.8	3/1/2001	Chaetoceros sp. group 2 diam 10-30 micro	1740.76
WF012	N04	WF0121E0	1.8	3/1/2001	Cryptomonas sp. group 1 length <10 micro	49.89
WF012	N04	WF0121E0	1.8	3/1/2001	Dictyocha speculum	308.16
WF012	N04	WF0121E0	1.8	3/1/2001	Guinardia delicatula	3047.19
WF012	N04	WF0121E0	1.8	3/1/2001	Heterocapsa rotundata	27.14
WF012	N04	WF0121E0	1.8	3/1/2001	Pleurosigma spp.	1081.36
WF012	N04	WF0121E0	1.8	3/1/2001	Prorocentrum micans	794.46
WF012	N04	WF0121E0	1.8	3/1/2001	Protoperidinium brevipes	911.44
WF012	N04	WF0121E0	1.8	3/1/2001	Pseudonitzschia pungens	32.23
WF012	N04	WF0121E0	1.8	3/1/2001	Rhizosolenia hebetata	356.77
WF012	N04	WF0121E0	1.8	3/1/2001	Stephanopyxis turris	7420.70
WF012	N04	WF0121E0	1.8	3/1/2001	Thalassionema nitzschioides	481.71
WF012	N04	WF0121E0	1.8	3/1/2001	Thalassiosira nordenskioldii	1036.81
WF012	N04	WF0121E0	1.8	3/1/2001	Thalassiosira punctigera	513.17
WF012	N04	WF0121E0	1.8	3/1/2001	Thalassiosira sp. group 3 10-20 microns	340.04
WF012	N04	WF0121E0	1.8	3/1/2001	Unid. micro-phytoflag sp. group 1 length	2807.95
WF012	N04	WF0121E0	1.8	3/1/2001	Unid. micro-phytoflag sp. group 2 length	485.76
WF012	N04	WF0121DE	22.23	3/1/2001	Centric diatom sp. group 1 diam <10 micr	118.33
WF012	N04	WF0121DE	22.23	3/1/2001	Ceratium tripos	21590.66
WF012	N04	WF0121DE	22.23	3/1/2001	Chaetoceros decipiens	1058.78

		Sample	Depth	Sampling		Estimated Carbon Equivalence
Survey	Sta.	Number	(m)	Date	Plankton	(ng Carbon/L)
WF012	N04	WF0121DE	22.23	3/1/2001	Chaetoceros sp. group 2 diam 10-30 micro	482.22
WF012	N04	WF0121DE	22.23	3/1/2001	Coscinodiscus sp. group 2 diam 40-100 mi	1849.41
WF012	N04	WF0121DE	22.23	3/1/2001	Cryptomonas sp. group 1 length <10 micro	55.28
WF012	N04	WF0121DE	22.23	3/1/2001	Dactyliosolen fragilissimus	236.04
WF012	N04	WF0121DE	22.23	3/1/2001	Dictyocha speculum	684.06
WF012	N04	WF0121DE	22.23	3/1/2001	Guinardia delicatula	3054.89
WF012	N04	WF0121DE	22.23	3/1/2001	Gyrodinium spirale	24834.55
WF012	N04	WF0121DE	22.23	3/1/2001	Prorocentrum micans	439.41
WF012	N04	WF0121DE	22.23	3/1/2001	Pseudonitzschia pungens	143.08
WF012	N04	WF0121DE	22.23	3/1/2001	Rhizosolenia hebetata	790.65
WF012	N04	WF0121DE	22.23	3/1/2001	Stephanopyxis turris	4111.27
WF012	N04	WF0121DE	22.23	3/1/2001	Thalassionema nitzschioides	919.25
WF012	N04	WF0121DE	22.23	3/1/2001	Thalassiosira nordenskioldii	1236.10
WF012	N04	WF0121DE	22.23	3/1/2001	Thalassiosira sp. group 3 10-20 microns	376.78
WF012	N04	WF0121DE	22.23	3/1/2001	Thalassiothrix longissima	710.77
WF012	N04	WF0121DE	22.23	3/1/2001	Unid. micro-phytoflag sp. group 1 length	4681.87
WF012	N04	WF0121DE	22.23	3/1/2001	Unid. micro-phytoflag sp. group 2 length	358.83
WF012	N18	WF0121FE	1.85	3/1/2001	Centric diatom sp. group 1 diam <10 micr	35.43
WF012	N18	WF0121FE	1.85	3/1/2001	Ceratium tripos	5378.03
WF012	N18	WF0121FE	1.85	3/1/2001	Chaetoceros debilis	445.63
WF012	N18	WF0121FE	1.85	3/1/2001	Chaetoceros socialis	270.95
WF012	N18	WF0121FE	1.85	3/1/2001	Chaetoceros sp. group 2 diam 10-30 micro	964.16
WF012	N18	WF0121FE	1.85	3/1/2001	Cryptomonas sp. group 1 length <10 micro	18.39
WF012	N18	WF0121FE	1.85	3/1/2001	Cylindrotheca closterium	108.50
WF012	N18	WF0121FE	1.85	3/1/2001	Dactyliosolen fragilissimus	471.95
WF012	N18	WF0121FE	1.85	3/1/2001	Dictyocha speculum	340.78
WF012	N18	WF0121FE	1.85	3/1/2001	Guinardia delicatula	5295.45
WF012	N18	WF0121FE	1.85	3/1/2001	Gymnodinium sp. group 1 5-20 microns wid	305.03
WF012	N18	WF0121FE	1.85	3/1/2001	Pleurosigma spp.	596.93
WF012	N18	WF0121FE	1.85	3/1/2001	Prorocentrum micans	877.10
WF012	N18	WF0121FE	1.85	3/1/2001	Pseudonitzschia pungens	106.92
WF012	N18	WF0121FE	1.85	3/1/2001	Stephanopyxis turris	18464.44
WF012	N18	WF0121FE	1.85	3/1/2001	Thalassionema nitzschioides	266.36
WF012	N18	WF0121FE	1.85	3/1/2001	Thalassiosira nordenskioldii	1698.12
WF012	N18	WF0121FE	1.85	3/1/2001	Thalassiosira rotula	1043.05
WF012	N18	WF0121FE	1.85	3/1/2001	Thalassiosira sp. group 3 10-20 microns	564.06
WF012	N18	WF0121FE	1.85	3/1/2001	Unid. micro-phytoflag sp. group 1 length	2898.25
WF012	N18	WF0121FE	1.85	3/1/2001	Unid. micro-phytoflag sp. group 2 length	537.19
WF012	N18	WF0121FC	10.69	3/1/2001	Centric diatom sp. group 1 diam <10 micr	129.78
WF012	N18	WF0121FC	10.69	3/1/2001	Chaetoceros sp. group 2 diam 10-30 micro	220.37

		Sample	Depth	Sampling		Estimated Carbon Equivalence
Survey	Sta.	Number	(m)	Date	Plankton	(ng Carbon/L)
WF012	N18	WF0121FC	10.69	3/1/2001	Cryptomonas sp. group 1 length <10 micro	151.57
WF012	N18	WF0121FC	10.69	3/1/2001	Dictyocha speculum	312.61
WF012	N18	WF0121FC	10.69	3/1/2001	Guinardia delicatula	1616.48
WF012	N18	WF0121FC	10.69	3/1/2001	Gymnodinium sp. group 1 5-20 microns wid	279.34
WF012	N18	WF0121FC	10.69	3/1/2001	Gymnodinium sp. group 2 21-40 microns wi	2574.34
WF012	N18	WF0121FC	10.69	3/1/2001	Pleurosigma spp.	1093.30
WF012	N18	WF0121FC	10.69	3/1/2001	Prorocentrum micans	803.23
WF012	N18	WF0121FC	10.69	3/1/2001	Protoperidinium bipes	678.69
WF012	N18	WF0121FC	10.69	3/1/2001	Protoperidinium brevipes	923.05
WF012	N18	WF0121FC	10.69	3/1/2001	Pseudonitzschia pungens	130.77
WF012	N18	WF0121FC	10.69	3/1/2001	Stephanopyxis turris	15030.45
WF012	N18	WF0121FC	10.69	3/1/2001	Thalassionema nitzschioides	650.46
WF012	N18	WF0121FC	10.69	3/1/2001	Thalassiosira nordenskioldii	1475.35
WF012	N18	WF0121FC	10.69	3/1/2001	Thalassiosira punctigera	519.70
WF012	N18	WF0121FC	10.69	3/1/2001	Thalassiosira sp. group 3 10-20 microns	275.49
WF012	N18	WF0121FC	10.69	3/1/2001	Unid. micro-phytoflag sp. group 1 length	4604.12
WF012	F06	WF0122E3	1.96	3/2/2001	Amphidinium spp.	288.66
WF012	F06	WF0122E3	1.96	3/2/2001	Asterionellopsis glacialis	102.96
WF012	F06	WF0122E3	1.96	3/2/2001	Centric diatom sp. group 1 diam <10 micr	58.53
WF012	F06	WF0122E3	1.96	3/2/2001	Chaetoceros debilis	589.93
WF012	F06	WF0122E3	1.96	3/2/2001	Chaetoceros decipiens	2098.31
WF012	F06	WF0122E3	1.96	3/2/2001	Coscinodiscus sp. group 2 diam 40-100 mi	1829.53
WF012	F06	WF0122E3	1.96	3/2/2001	Cryptomonas sp. group 1 length <10 micro	109.37
WF012	F06	WF0122E3	1.96	3/2/2001	Cylindrotheca closterium	215.45
WF012	F06	WF0122E3	1.96	3/2/2001	Dictyocha speculum	338.35
WF012	F06	WF0122E3	1.96	3/2/2001	Eucampia cornuta	
WF012	F06	WF0122E3	1.96	3/2/2001	Guinardia delicatula	4135.42
WF012	F06	WF0122E3	1.96	3/2/2001	Gymnodinium sp. group 1 5-20 microns wid	604.69
WF012	F06	WF0122E3	1.96	3/2/2001	Protoperidinium brevipes	999.06
WF012	F06	WF0122E3	1.96	3/2/2001	Stephanopyxis turris	6100.60
WF012	F06	WF0122E3	1.96	3/2/2001	Thalassionema nitzschioides	968.04
WF012	F06	WF0122E3	1.96	3/2/2001	Thalassiosira nordenskioldii	1294.74
WF012	F06	WF0122E3	1.96	3/2/2001	Thalassiosira sp. group 3 10-20 microns	298.18
WF012	F06	WF0122E3	1.96	3/2/2001	Unid. micro-phytoflag sp. group 1 length	4133.20
WF012	F06	WF0122E3	1.96	3/2/2001	Unid. micro-phytoflag sp. group 2 length	887.43
WF012	F06	WF0122E1	13.53	3/2/2001	Asterionellopsis glacialis	47.48
WF012	F06	WF0122E1	13.53	3/2/2001	Centric diatom sp. group 1 diam <10 micr	43.26
WF012	F06	WF0122E1	13.53	3/2/2001	Chaetoceros sp. group 2 diam 10-30 micro	881.47
WF012	F06	WF0122E1	13.53	3/2/2001	Cryptomonas sp. group 1 length <10 micro	126.31
WF012	F06	WF0122E1	13.53	3/2/2001	Guinardia delicatula	4261.63

Survey	Sta	Sample	Depth	Sampling	Plankton	Estimated Carbon Equivalence (ng Carbon/I)
WF012	F06	WF0122E1	13.53	3/2/2001	Gymnodinium sp. group 1 5-20 microns wid	279.34
WF012	F06	WF0122E1	13.53	3/2/2001	Pleurosigma spp.	546.65
WF012	F06	WF0122E1	13.53	3/2/2001	Stephanopyxis turris	7515.23
WF012	F06	WF0122E1	13.53	3/2/2001	Thalassionema nitzschioides	813.08
WF012	F06	WF0122E1	13.53	3/2/2001	Thalassiosira nordenskioldii	1050.02
WF012	F06	WF0122E1	13.53	3/2/2001	Thalassiosira sp. group 3 10-20 microns	241.06
WF012	F06	WF0122E1	13.53	3/2/2001	Unid. micro-phytoflag sp. group 1 length	3006.22
WN013	N04	WN013194	1.87	3/26/2001	Centric diatom sp. group 1 diam <10 micr	37.19
WN013	N04	WN013194	1.87	3/26/2001	Chaetoceros borealis	525.08
WN013	N04	WN013194	1.87	3/26/2001	Chaetoceros compressus	1147.37
WN013	N04	WN013194	1.87	3/26/2001	Chaetoceros debilis	10410.03
WN013	N04	WN013194	1.87	3/26/2001	Chaetoceros decipiens	832.07
WN013	N04	WN013194	1.87	3/26/2001	Cryptomonas sp. group 1 length <10 micro	159.25
WN013	N04	WN013194	1.87	3/26/2001	Cylindrotheca closterium	341.74
WN013	N04	WN013194	1.87	3/26/2001	Detonula confervacea	569.71
WN013	N04	WN013194	1.87	3/26/2001	Dinophysis norvegica	2365.47
WN013	N04	WN013194	1.87	3/26/2001	Guinardia delicatula	252.71
WN013	N04	WN013194	1.87	3/26/2001	Gymnodinium sp. group 1 5-20 microns wid	240.13
WN013	N04	WN013194	1.87	3/26/2001	Gymnodinium sp. group 2 21-40 microns wi	4427.06
WN013	N04	WN013194	1.87	3/26/2001	Pennate diatom sp. group 3 31-60 microns	52.37
WN013	N04	WN013194	1.87	3/26/2001	Phaeocystis pouchetii	104.23
WN013	N04	WN013194	1.87	3/26/2001	Pleurosigma spp.	940.07
WN013	N04	WN013194	1.87	3/26/2001	Prorocentrum minimum	344.49
WN013	N04	WN013194	1.87	3/26/2001	Pseudonitzschia pungens	168.38
WN013	N04	WN013194	1.87	3/26/2001	Rhizosolenia setigera	781.16
WN013	N04	WN013194	1.87	3/26/2001	Stephanopyxis turris	6461.92
WN013	N04	WN013194	1.87	3/26/2001	Thalassionema nitzschioides	93.22
WN013	N04	WN013194	1.87	3/26/2001	Thalassiosira nordenskioldii	891.43
WN013	N04	WN013194	1.87	3/26/2001	Thalassiosira sp. group 3 10-20 microns	148.05
WN013	N04	WN013194	1.87	3/26/2001	Thalassiothrix longissima	558.58
WN013	N04	WN013194	1.87	3/26/2001	Unid. micro-phytoflag sp. group 1 length	5680.72
WN013	N04	WN013192	20.98	3/26/2001	Centric diatom sp. group 1 diam <10 micr	84.43
WN013	N04	WN013192	20.98	3/26/2001	Chaetoceros borealis	1490.08
WN013	N04	WN013192	20.98	3/26/2001	Chaetoceros compressus	325.14
WN013	N04	WN013192	20.98	3/26/2001	Chaetoceros debilis	11020.15
WN013	N04	WN013192	20.98	3/26/2001	Chaetoceros decipiens	8512.89
WN013	N04	WN013192	20.98	3/26/2001	Chaetoceros sp. group 2 diam 10-30 micro	1292.38
WN013	N04	WN013192	20.98	3/26/2001	Cryptomonas sp. group 1 length <10 micro	57.52
WN013	N04	WN013192	20.98	3/26/2001	Cylindrotheca closterium	678.86
WN013	N04	WN013192	20.98	3/26/2001	Gymnodinium sp. group 1 5-20 microns wid	136.29

	01-	Sample	Depth	Sampling	Displaton	Estimated Carbon Equivalence
WN013	5ta.	WN013102	20.08	2/26/2001	Gymnodinium sp. group 2 21 40 microns wi	(IIG Carboli/L)
WIN013	N04	WN013192	20.90	3/26/2001	Heterocansa rotundata	26.82
WN013	N04	WN013192	20.98	3/26/2001	Pennate diatom sp. group 3 31-60 microps	20.82
WN013	N04	WN013192	20.98	3/26/2001	Pleurosigma spp	1068 64
WN013	N04	WN013192	20.90	3/26/2001	Prorocentrum minimum	1000.04
WN013	N04	WN013192	20.98	3/26/2001	Protoperidinium depressum	61278.98
WN013	N04	WN013192	20.98	3/26/2001	Pseudonitzschia nungens	191 13
WN013	N04	WN013192	20.98	3/26/2001	Thalassionema nitzschioides	52.91
WN013	N04	WN013192	20.98	3/26/2001	Thalassionenia intersenioldes	1011.89
WN013	N04	WN013192	20.98	3/26/2001	Thalassiosing and roun 3 10-20 microns	201.67
WN013	N04	WN013192	20.98	3/26/2001	Thalassiothrix longissima	634.06
WN013	N04	WN013192	20.98	3/26/2001	Unid micro-phytoflag sp. group 1 length	4175 59
WN013	N18	WN0131B6	20.50	3/26/2001	Centric diatom sp. group 1 diam <10 micr	46.29
WN013	N18	WN0131B6	2	3/26/2001	Ceratium tripos	3513.87
WN013	N18	WN0131B6	2	3/26/2001	Chaetoceros debilis	1941.09
WN013	N18	WN0131B6	2	3/26/2001	Chaetoceros deciniens	1380.84
WN013	N18	WN0131B6	2	3/26/2001	Chaetoceros didymus	207.28
WN013	N18	WN0131B6	2	3/26/2001	Chaetoceros sp. group 2 diam 10-30 micro	157.22
WN013	N18	WN0131B6	2	3/26/2001	Cryptomonas sp. group 1 length <10 micro	666.69
WN013	N18	WN0131B6	2	3/26/2001	Cylindrotheca closterium	283.56
WN013	N18	WN0131B6	2	3/26/2001	Dictyocha fibula	1162.94
WN013	N18	WN0131B6	2	3/26/2001	Dictyocha speculum	222.66
WN013	N18	WN0131B6	2	3/26/2001	Guinardia delicatula	314.54
WN013	N18	WN0131B6	2	3/26/2001	Gymnodinium sp. group 1 5-20 microns wid	1195.52
WN013	N18	WN0131B6	2	3/26/2001	Gymnodinium sp. group 2 21-40 microns wi	3673.41
WN013	N18	WN0131B6	2	3/26/2001	Pennate diatom sp. group 3 31-60 microns	261.12
WN013	N18	WN0131B6	2	3/26/2001	Prorocentrum minimum	214.08
WN013	N18	WN0131B6	2	3/26/2001	Pseudonitzschia pungens	46.57
WN013	N18	WN0131B6	2	3/26/2001	Thalassionema nitzschioides	58.01
WN013	N18	WN0131B6	2	3/26/2001	Thalassiosira nordenskioldii	758.64
WN013	N18	WN0131B6	2	3/26/2001	Thalassiosira sp. group 3 10-20 microns	122.85
WN013	N18	WN0131B6	2	3/26/2001	Unid. micro-phytoflag sp. group 1 length	6201.15
WN013	N18	WN0131B6	2	3/26/2001	Unid. micro-phytoflag sp. group 2 length	701.81
WN013	N18	WN0131B4	12.46	3/26/2001	Centric diatom sp. group 1 diam <10 micr	29.96
WN013	N18	WN0131B4	12.46	3/26/2001	Chaetoceros debilis	1413.68
WN013	N18	WN0131B4	12.46	3/26/2001	Chaetoceros sp. group 2 diam 10-30 micro	3669.45
WN013	N18	WN0131B4	12.46	3/26/2001	Cryptomonas sp. group 1 length <10 micro	209.96
WN013	N18	WN0131B4	12.46	3/26/2001	Cylindrotheca closterium	481.87
WN013	N18	WN0131B4	12.46	3/26/2001	Detonula confervacea	516.42
WN013	N18	WN0131B4	12.46	3/26/2001	Dictyocha speculum	216.21

Survey	Sta.	Sample Number	Depth (m)	Sampling Date	Plankton	Estimated Carbon Equivalence (ng Carbon/L)
WN013	N18	WN0131B4	12.46	3/26/2001	Gymnodinium sp. group 1 5-20 microns wid	1547.88
WN013	N18	WN0131B4	12.46	3/26/2001	Gymnodinium sp. group 2 21-40 microns wi	8025.91
WN013	N18	WN0131B4	12.46	3/26/2001	Pennate diatom sp. group 2 10-30 microns	29.52
WN013	N18	WN0131B4	12.46	3/26/2001	Prorocentrum minimum	277.17
WN013	N18	WN0131B4	12.46	3/26/2001	Protoperidinium bipes	234.71
WN013	N18	WN0131B4	12.46	3/26/2001	Pseudonitzschia delicatissima	18.85
WN013	N18	WN0131B4	12.46	3/26/2001	Pseudonitzschia pungens	22.61
WN013	N18	WN0131B4	12.46	3/26/2001	Stephanopyxis turris	2603.32
WN013	N18	WN0131B4	12.46	3/26/2001	Thalassionema nitzschioides	168.99
WN013	N18	WN0131B4	12.46	3/26/2001	Thalassiosira nordenskioldii	764.30
WN013	N18	WN0131B4	12.46	3/26/2001	Thalassiosira sp. group 3 10-20 microns	95.43
WN013	N18	WN0131B4	12.46	3/26/2001	Unid. micro-phytoflag sp. group 1 length	7353.53
WF014	F23	WF014032	1.81	4/4/2001	Centric diatom sp. group 1 diam <10 micr	268.72
WF014	F23	WF014032	1.81	4/4/2001	Chaetoceros atlanticus	689.69
WF014	F23	WF014032	1.81	4/4/2001	Chaetoceros compressus	752.45
WF014	F23	WF014032	1.81	4/4/2001	Chaetoceros debilis	8757.29
WF014	F23	WF014032	1.81	4/4/2001	Chaetoceros socialis	280.24
WF014	F23	WF014032	1.81	4/4/2001	Chaetoceros sp. group 2 diam 10-30 micro	1493.31
WF014	F23	WF014032	1.81	4/4/2001	Choanoflagellate spp.	59.94
WF014	F23	WF014032	1.81	4/4/2001	Cryptomonas sp. group 1 length <10 micro	361.38
WF014	F23	WF014032	1.81	4/4/2001	Cylindrotheca closterium	1009.97
WF014	F23	WF014032	1.81	4/4/2001	Detonula confervacea	374.16
WF014	F23	WF014032	1.81	4/4/2001	Dinophysis norvegica	3107.07
WF014	F23	WF014032	1.81	4/4/2001	Gymnodinium sp. group 1 5-20 microns wid	315.49
WF014	F23	WF014032	1.81	4/4/2001	Gymnodinium sp. group 2 21-40 microns wi	1453.74
WF014	F23	WF014032	1.81	4/4/2001	Oscillatoria sp. group 1 diam <5um	135.68
WF014	F23	WF014032	1.81	4/4/2001	Pennate diatom sp. group 3 31-60 microns	68.79
WF014	F23	WF014032	1.81	4/4/2001	Phaeocystis pouchetii	19290.84
WF014	F23	WF014032	1.81	4/4/2001	Pseudonitzschia pungens	738.46
WF014	F23	WF014032	1.81	4/4/2001	Stephanopyxis turris	4243.89
WF014	F23	WF014032	1.81	4/4/2001	Thalassionema nitzschioides	183.66
WF014	F23	WF014032	1.81	4/4/2001	Thalassiosira nordenskioldii	810.62
WF014	F23	WF014032	1.81	4/4/2001	Thalassiosira rotula	1618.23
WF014	F23	WF014032	1.81	4/4/2001	Thalassiosira sp. group 3 10-20 microns	155.57
WF014	F23	WF014032	1.81	4/4/2001	Unid. micro-phytoflag sp. group 1 length	6545.82
WF014	F23	WF014030	12.37	4/4/2001	Centric diatom sp. group 1 diam <10 micr	179.41
WF014	F23	WF014030	12.37	4/4/2001	Ceratium tripos	5835.73
WF014	F23	WF014030	12.37	4/4/2001	Chaetoceros compressus	986.78
WF014	F23	WF014030	12.37	4/4/2001	Chaetoceros debilis	9187.58
WF014	F23	WF014030	12.37	4/4/2001	Chaetoceros socialis	245.01

		Sample	Depth	Sampling		Estimated Carbon Equivalence
Survey	Sta.	Number	(m)	Date	Plankton	(ng Carbon/L)
WF014	F23	WF014030	12.37	4/4/2001	Chaetoceros sp. group 2 diam 10-30 micro	4700.06
WF014	F23	WF014030	12.37	4/4/2001	Cryptomonas sp. group I length <10 micro	399.09
WF014	F23	WF014030	12.37	4/4/2001	Cryptomonas sp. group 2 length >10 micro	128.15
WF014	F23	WF014030	12.37	4/4/2001	Cylindrotheca closterium	470.93
WF014	F23	WF014030	12.37	4/4/2001	Grammatophora marina	297.69
WF014	F23	WF014030	12.37	4/4/2001	Gymnodinium sp. group 1 5-20 microns wid	1985.97
WF014	F23	WF014030	12.37	4/4/2001	Heterocapsa triquetra	1165.70
WF014	F23	WF014030	12.37	4/4/2001	Phaeocystis pouchetii	13332.60
WF014	F23	WF014030	12.37	4/4/2001	Pseudonitzschia delicatissima	80.59
WF014	F23	WF014030	12.37	4/4/2001	Pseudonitzschia pungens	232.03
WF014	F23	WF014030	12.37	4/4/2001	Stephanopyxis turris	4452.42
WF014	F23	WF014030	12.37	4/4/2001	Thalassionema nitzschioides	128.46
WF014	F23	WF014030	12.37	4/4/2001	Thalassiosira nordenskioldii	740.21
WF014	F23	WF014030	12.37	4/4/2001	Thalassiosira sp. group 3 10-20 microns	244.83
WF014	F23	WF014030	12.37	4/4/2001	Unid. micro-phytoflag sp. group 1 length	8022.72
WF014	F23	WF014030	12.37	4/4/2001	Unid. micro-phytoflag sp. group 2 length	388.61
WF014	N04	WF014066	2.01	4/4/2001	Centric diatom sp. group 1 diam <10 micr	354.29
WF014	N04	WF014066	2.01	4/4/2001	Ceratium tripos	5378.03
WF014	N04	WF014066	2.01	4/4/2001	Chaetoceros borealis	500.12
WF014	N04	WF014066	2.01	4/4/2001	Chaetoceros debilis	4530.58
WF014	N04	WF014066	2.01	4/4/2001	Chaetoceros decipiens	1320.88
WF014	N04	WF014066	2.01	4/4/2001	Chaetoceros sp. group 2 diam 10-30 micro	360.95
WF014	N04	WF014066	2.01	4/4/2001	Cryptomonas sp. group 1 length <10 micro	73.56
WF014	N04	WF014066	2.01	4/4/2001	Cylindrotheca closterium	108.50
WF014	N04	WF014066	2.01	4/4/2001	Grammatophora marina	34.23
WF014	N04	WF014066	2.01	4/4/2001	Gymnodinium sp. group 1 5-20 microns wid	305.03
WF014	N04	WF014066	2.01	4/4/2001	Gymnodinium sp. group 2 21-40 microns wi	3513.88
WF014	N04	WF014066	2.01	4/4/2001	Pennate diatom sp. group 2 10-30 microns	93.20
WF014	N04	WF014066	2.01	4/4/2001	Pennate diatom sp. group 3 31-60 microns	99.77
WF014	N04	WF014066	2.01	4/4/2001	Pennate diatom sp. group 4 61-100 micron	248.51
WF014	N04	WF014066	2.01	4/4/2001	Phaeocystis pouchetii	35004.43
WF014	N04	WF014066	2.01	4/4/2001	Pleurosigma spp.	298.46
WF014	N04	WF014066	2.01	4/4/2001	Prorocentrum minimum	2187.99
WF014	N04	WF014066	2.01	4/4/2001	Pseudonitzschia delicatissima	22.28
WF014	N04	WF014066	2.01	4/4/2001	Pseudonitzschia pungens	213.83
WF014	N04	WF014066	2.01	4/4/2001	Stephanopyxis turris	3077.41
WF014	N04	WF014066	2.01	4/4/2001	Thalassionema nitzschioides	88.79
WF014	N04	WF014066	2.01	4/4/2001	Thalassiosira nordenskioldii	522.50
WF014	N04	WF014066	2.01	4/4/2001	Unid. micro-phytoflag sp. group 1 length	6092.24
WF014	N04	WF014064	14.13	4/4/2001	Centric diatom sp. group 1 diam <10 micr	381.93

1

Sumou	Cto	Sample	Depth	Sampling	Plankton	Estimated Carbon Equivalence
WE014	5ta.	WE014064	(m) 14.13			21777 56
WF014	N04	WF014064	14.13	4/4/2001	Chaetoceros debilis	5329.40
WF014	N04	WF014064	14.13	4/4/2001	Chaetoceros deciniens	533.97
WE014	N04	WE014064	14.13	4/4/2001	Chaetoceros sp. group 2 diam 10-30 micro	607.99
WF014	N04	WE014064	14.13	4/4/2001	Coccopeis scutellum	55 29
WE014	N04	WF014064	14.13	4/4/2001	Cryptomonas sp. group 1 length <10 micro	185.85
WE014	N04	WF014064	14.13	4/4/2001	Cylindrotheca closterium	164.48
WF014	N04	WE014064	14.13	4/4/2001	Eutrentia/eutrentiella snn	21.87
WE014	N04	WF014064	14.13	4/4/2001	Gymnodinium sp. group 1 5-20 microns wid	2466.23
WE014	N04	WE014064	14.13	4/4/2001	Gymnodinium sp. group 2 21-40 microns wi	1420 51
WF014	N04	WE014064	14.13	4/4/2001	Pennate diatom sp. group 2 21-40 micron	251.16
WE014	N04	WF014064	14.13	4/4/2001	Phaeocystis pouchetij	10021 70
WF014	N04	WF014004	14.13	4/4/2001	Praudonitzschia delicatissima	30.02
WF014	N04	WF014004	14.13	4/4/2001	Preudonitzschia nungens	126.05
WE014	N04	WE014064	14.13	4/4/2001	Stephanopyvis turris	6220.20
WF014	N04	WF014004	14.13	4/4/2001	The lessioneme pitzschioides	50.82
WF014	N04	WF014004	14.13	4/4/2001	Thalassionema mitzscholdes	401.20
WF014	N04	WF014064	14.13	4/4/2001	Thalassiosita noidenskioldi	491.39
WF014	N04	WF014064	14.13	4/4/2001	Thatassiosira sp. group 3 10-20 microns	/0.01
WF014	N04	WF014064	14.13	4/4/2001	Unid. micro-phytoliag sp. group 1 length	6546.15
WF014	NU4	WF014064	14.13	4/4/2001	Contribution of the second sec	141.44
WF014	N18	WF01409C	1.75	4/4/2001	Centric diatom sp. group 1 diam <10 micr	141.44
WF014	NI8	WF01409C	1.75	4/4/2001		4641.86
WF014	N18	WF01409C	1.75	4/4/2001	Chaetoceros borealis	665.55
WF014	N18	WF01409C	1.75	4/4/2001	Chaetoceros compressus	242.04
WF014	N18	WF01409C	1.75	4/4/2001	Chaetoceros debilis	6622.23
WF014	N18	WF01409C	1.75	4/4/2001	Chaetoceros decipiens	703.12
WF014	N18	WF01409C	1.75	4/4/2001	Cryptomonas sp. group 1 length <10 micro	165.19
WF014	N18	WF01409C	1.75	4/4/2001	Cylindrotheca closterium	288.78
WF014	N18	WF01409C	1.75	4/4/2001	Dactyliosolen fragilissimus	1884.17
WF014	N18	WF01409C	1.75	4/4/2001	Gymnodinium sp. group 1 5-20 microns wid	608.90
WF014	N18	WF01409C	1.75	4/4/2001	Gymnodinium sp. group 2 21-40 microns wi	4676.20
WF014	N18	WF01409C	1.75	4/4/2001	Pennate diatom sp. group 4 61-100 micron	110.24
WF014	N18	WF01409C	1.75	4/4/2001	Phaeocystis pouchetii	22938.66
WF014	N18	WF01409C	1.75	4/4/2001	Prorocentrum minimum	436.76
WF014	N18	WF01409C	1.75	4/4/2001	Pseudonitzschia delicatissima	9.88
WF014	N18	WF01409C	1.75	4/4/2001	Pseudonitzschia pungens	142.28
WF014	N18	WF01409C	1.75	4/4/2001	Stephanopyxis turris	16381.38
WF014	N18	WF01409C	1.75	4/4/2001	Thalassionema nitzschioides	137.85
WF014	N18	WF01409C	1.75	4/4/2001	Thalassiosira nordenskioldii	48.29
WF014	N18	WF01409C	1.75	4/4/2001	Thalassiosira sp. group 3 10-20 microns	75.06

Survey	Sta	Sample Number	Depth	Sampling Date	Plankton	Estimated Carbon Equivalence (ng Carbon/L)
WF014	N18	WF01409C	1 75	4/4/2001	Unid, micro-phytoflag sp. group 1 length	4722.77
WF014	N18	WF01409C	1.75	4/4/2001	Unid. micro-phytoflag sp. group 2 length	357.44
WF014	N18	WF014099	12.33	4/4/2001	Centric diatom sp. group 1 diam <10 micr	238.22
WF014	N18	WF014099	12.33	4/4/2001	Ceratium fusus	1411.20
WF014	N18	WF014099	12.33	4/4/2001	Ceratium longipes	4690.73
WF014	N18	WF014099	12.33	4/4/2001	Chaetoceros borealis	672.56
WF014	N18	WF014099	12.33	4/4/2001	Chaetoceros debilis	7091.46
WF014	N18	WF014099	12.33	4/4/2001	Chaetoceros decipiens	1421.04
WF014	N18	WF014099	12.33	4/4/2001	Chaetoceros socialis	182.19
WF014	N18	WF014099	12.33	4/4/2001	Choanoflagellate spp.	58.45
WF014	N18	WF014099	12.33	4/4/2001	Cryptomonas sp. group 1 length <10 micro	92.74
WF014	N18	WF014099	12.33	4/4/2001	Cylindrotheca closterium	145.91
WF014	N18	WF014099	12.33	4/4/2001	Gymnodinium sp. group 1 5-20 microns wid	922.96
WF014	N18	WF014099	12.33	4/4/2001	Phaeocystis pouchetii	20505.49
WF014	N18	WF014099	12.33	4/4/2001	Prorocentrum minimum	146.87
WF014	N18	WF014099	12.33	4/4/2001	Pseudonitzschia delicatissima	19.98
WF014	N18	WF014099	12.33	4/4/2001	Pseudonitzschia pungens	47.93
WF014	N18	WF014099	12.33	4/4/2001	Thalassionema nitzschioides	79.60
WF014	N18	WF014099	12.33	4/4/2001	Thalassiosira nordenskioldii	78.07
WF014	N18	WF014099	12.33	4/4/2001	Unid. micro-phytoflag sp. group 1 length	6979.75
WF014	F13	WF0141BD	1.57	4/5/2001	Calycomonas wulffii	41.63
WF014	F13	WF0141BD	1.57	4/5/2001	Centric diatom sp. group 1 diam <10 micr	137.83
WF014	F13	WF0141BD	1.57	4/5/2001	Chaetoceros compressus	530.68
WF014	F13	WF0141BD	1.57	4/5/2001	Chaetoceros debilis	5778.98
WF014	F13	WF0141BD	1.57	4/5/2001	Chaetoceros decipiens	1027.76
WF014	F13	WF0141BD	1.57	4/5/2001	Chaetoceros socialis	219.61
WF014	F13	WF0141BD	1.57	4/5/2001	Cryptomonas sp. group 1 length <10 micro	160.97
WF014	F13	WF0141BD	1.57	4/5/2001	Cylindrotheca closterium	52.76
WF014	F13	WF0141BD	1.57	4/5/2001	Dictyocha speculum	82.86
WF014	F13	WF0141BD	1.57	4/5/2001	Dinophysis norvegica	1460.89
WF014	F13	WF0141BD	1.57	4/5/2001	Gymnodinium sp. group 1 5-20 microns wid	890.03
WF014	F13	WF0141BD	1.57	4/5/2001	Gymnodinium sp. group 2 21-40 microns wi	683.52
WF014	F13	WF0141BD	1.57	4/5/2001	Heterocapsa rotundata	58.38
WF014	F13	WF0141BD	1.57	4/5/2001	Heterocapsa triquetra	1044.84
WF014	F13	WF0141BD	1.57	4/5/2001	Pennate diatom sp. group 2 10-30 microns	90.65
WF014	F13	WF0141BD	1.57	4/5/2001	Phaeocystis pouchetii	10144.88
WF014	F13	WF0141BD	1.57	4/5/2001	Prorocentrum micans	213.27
WF014	F13	WF0141BD	1.57	4/5/2001	Prorocentrum minimum	159.34
WF014	F13	WF0141BD	1.57	4/5/2001	Pseudonitzschia delicatissima	21.67
WF014	F13	WF0141BD	1.57	4/5/2001	Pseudonitzschia pungens	34.66

					······································	Estimated
	_	Sample	Depth	Sampling		Equivalence
Survey	Sta.	Number	(m)	Date	Plankton	(ng Carbon/L)
WF014	F13	WF0141BD	1.57	4/5/2001	Stephanopyxis turris	5986.21
WF014	F13	WF0141BD	1.57	4/5/2001	Thalassionema nitzschioides	115.14
WF014	F13	WF0141BD	1.57	4/5/2001	Thalassiosira nordenskioldii	112.93
WF014	F13	WF0141BD	1.57	4/5/2001	Thalassiosira sp. group 3 10-20 microns	109.72
WF014	F13	WF0141BD	1.57	4/5/2001	Unid. micro-phytoflag sp. group 1 length	5350.07
WF014	F13	WF0141BA	17.43	4/5/2001	Amphidinium spp.	346.99
WF014	F13	WF0141BA	17.43	4/5/2001	Centric diatom sp. group 1 diam <10 micr	154.78
WF014	F13	WF0141BA	17.43	4/5/2001	Chaetoceros borealis	794.52
WF014	F13	WF0141BA	17.43	4/5/2001	Chaetoceros compressus	433.41
WF014	F13	WF0141BA	17.43	4/5/2001	Chaetoceros debilis	7256.51
WF014	F13	WF0141BA	17.43	4/5/2001	Chaetoceros sp. group 2 diam 10-30 micro	1146.86
WF014	F13	WF0141BA	17.43	4/5/2001	Cryptomonas sp. group 1 length <10 micro	109.55
WF014	F13	WF0141BA	17.43	4/5/2001	Cryptomonas sp. group 2 length >10 micro	70.36
WF014	F13	WF0141BA	17.43	4/5/2001	Cylindrotheca closterium	258.55
WF014	F13	WF0141BA	17.43	4/5/2001	Gymnodinium sp. group 1 5-20 microns wid	545.17
WF014	F13	WF0141BA	17.43	4/5/2001	Pennate diatom sp. group 3 31-60 microns	39.62
WF014	F13	WF0141BA	17.43	4/5/2001	Phaeocystis pouchetii	17799.37
WF014	F13	WF0141BA	17.43	4/5/2001	Pseudonitzschia delicatissima	8.85
WF014	F13	WF0141BA	17.43	4/5/2001	Pseudonitzschia pungens	276.01
WF014	F13	WF0141BA	17.43	4/5/2001	Stephanopyxis turris	4888.93
WF014	F13	WF0141BA	17.43	4/5/2001	Thalassionema nitzschioides	52.89
WF014	F13	WF0141BA	17.43	4/5/2001	Thalassiosira nordenskioldii	60.53
WF014	F13	WF0141BA	17.43	4/5/2001	Thalassiosira rotula	621.39
WF014	F13	WF0141BA	17.43	4/5/2001	Thalassiosira sp. group 3 10-20 microns	313.63
WF014	F13	WF0141BA	17.43	4/5/2001	Thalassiothrix longissima	422.61
WF014	F13	WF0141BA	17.43	4/5/2001	Unid. micro-phytoflag sp. group 1 length	3065.62
WF014	F22	WF0141F7	1.55	4/5/2001	Centric diatom sp. group 1 diam <10 micr	217.32
WF014	F22	WF0141F7	1.55	4/5/2001	Ceratium longipes	7335.61
WF014	F22	WF0141F7	1.55	4/5/2001	Chaetoceros debilis	2186.76
WF014	F22	WF0141F7	1.55	4/5/2001	Chaetoceros sp. group 2 diam 10-30 micro	1518.20
WF014	F22	WF0141F7	1.55	4/5/2001	Cryptomonas sp. group 1 length <10 micro	48.34
WF014	F22	WF0141F7	1.55	4/5/2001	Cylindrotheca closterium	114.09
WF014	F22	WF0141F7	1.55	4/5/2001	Gymnodinium sp. group 1 5-20 microns wid	801.88
WF014	F22	WF0141F7	1.55	4/5/2001	Gymnodinium sp. group 2 21-40 microns wi	2216.96
WF014	F22	WF0141F7	1.55	4/5/2001	Pennate diatom sp. group 2 10-30 microns	24.46
WF014	F22	WF0141F7	1.55	4/5/2001	Phaeocystis pouchetii	26374.43
WF014	F22	WF0141F7	1.55	4/5/2001	Prorocentrum micans	230.57
WF014	F22	WF0141F7	1.55	4/5/2001	Prorocentrum minimum	229.69
WF014	F22	WF0141F7	1.55	4/5/2001	Pseudonitzschia delicatissima	15.62
WF014	F22	WF0141F7	1.55	4/5/2001	Pseudonitzschia pungens	56.21

	01-	Sample	Depth	Sampling	Displaton	Estimated Carbon Equivalence
Survey	5ta.	Number	(m) 1.55	<i>Jate</i>		(IIG Carbon/L)
WF014	F22	WF0141F7	1.55	4/5/2001	Stephenonyvis turris	5303.28
WF014	E22	WF0141F7	1.55	4/5/2001	The lessionema nitzschioides	62.24
WF014	E22	WF0141F7	1.55	4/5/2001	Thalassionema mizschioldis	45 79
WF014	E22	WF0141F7	1.55	4/5/2001	Thalassiosira nordenskioldii	548.40
WF014	E22	WE0141F7	1.55	4/5/2001	Thalassiosita rouna 3 10 20 microns	197 71
WF014	F22	WE0141F7	1.55	4/5/2001	Unid micro-phytoflag sp. group 1 length	6297.20
WF014	F22	WE0141E7	1.55	4/5/2001	Unid_micro-phytoflag.sp. group 2 length	2353.63
WF014	F22	WE014117	12.20	4/5/2001	Centric diatom sp. group 1 diam <10 micr	154 78
WF014	F22	WF0141F6	12.29	4/5/2001	Chaetoceros compressus	148.98
WF014	E22	WE0141E6	12.29	4/5/2001	Chaetoceros debilis	6266.49
WF014	F22	WF0141F6	12.29	4/5/2001	Chaetoceros deciniens	649.20
WF014	F22	WF0141F6	12.29	4/5/2001	Chaetoceros socialis	351 42
WF014	F22	WF0141F6	12.29	4/5/2001	Chaetoceros sp. group 2 diam 10-30 micro	985 58
WF014	F22	WF0141F6	12.29	4/5/2001	Chaetoceros sp. group 2 diam 10 50 mero	281.66
WF014	F22	WF0141F6	12.29	4/5/2001	Cryptomonas sp. group 1 length < 10 micro	105.45
WF014	F22	WF0141F6	12.29	4/5/2001	Cylindrotheca closterium	399.95
WF014	F22	WF0141F6	12.29	4/5/2001	Gymnodinium sp. group 1 5-20 microns wid	499.74
WF014	F22	WF0141F6	12.29	4/5/2001	Gymnodinium sp. group 2 21-40 microns wi	2878.39
WF014	F22	WF0141F6	12.29	4/5/2001	Pennate diatom sp. group 3 31-60 microns	27.24
WF014	F22	WF0141F6	12.29	4/5/2001	Phaeocystis pouchetii	45472.65
WF014	F22	WF0141F6	12.29	4/5/2001	Pleurosigma spp.	488.97
WF014	F22	WF0141F6	12.29	4/5/2001	Pseudonitzschia delicatissima	24.34
WF014	F22	WF0141F6	12.29	4/5/2001	Pseudonitzschia pungens	87.58
WF014	F22	WF0141F6	12.29	4/5/2001	Rhizosolenia hebetata	161.60
WF014	F22	WF0141F6	12.29	4/5/2001	Stephanopyxis turris	7562.56
WF014	F22	WF0141F6	12.29	4/5/2001	Thalassionema nitzschioides	24.24
WF014	F22	WF0141F6	12.29	4/5/2001	Thalassiosira nordenskioldii	225.89
WF014	F22	WF0141F6	12.29	4/5/2001	Thalassiosira sp. group 3 10-20 microns	107.81
WF014	F22	WF0141F6	12.29	4/5/2001	Thalassiothrix longissima	290.54
WF014	F22	WF0141F6	12.29	4/5/2001	Unid. micro-phytoflag sp. group 1 length	4699.74
WF014	F22	WF0141F6	12.29	4/5/2001	Unid. micro-phytoflag sp. group 2 length	1173.44
WF014	F24	WF01424D	1.49	4/5/2001	Centric diatom sp. group 1 diam <10 micr	170.36
WF014	F24	WF01424D	1.49	4/5/2001	Chaetoceros compressus	583.04
WF014	F24	WF01424D	1.49	4/5/2001	Chaetoceros debilis	9523.65
WF014	F24	WF01424D	1.49	4/5/2001	Chaetoceros decipiens	846.86
WF014	F24	WF01424D	1.49	4/5/2001	Coscinodiscus sp. group 2 diam 40-100 mi	1479.25
WF014	F24	WF01424D	1.49	4/5/2001	Cryptomonas sp. group 1 length <10 micro	110.53
WF014	F24	WF01424D	1.49	4/5/2001	Cylindrotheca closterium	521.72
WF014	F24	WF01424D	1.49	4/5/2001	Dinophysis norvegica	4815.04
Survev	Sta.	Sample Number	Depth (m)	Sampling Date	Plankton	Estimated Carbon Equivalence (ng Carbon/L)
--------	------	------------------	--------------	------------------	--	---
WF014	F24	WF01424D	1.49	4/5/2001	Gymnodinium sp. group 1 5-20 microns wid	1100.07
WF014	F24	WF01424D	1.49	4/5/2001	Gymnodinium sp. group 2 21-40 microns wi	6758.62
WF014	F24	WF01424D	1.49	4/5/2001	Pennate diatom sp. group 3 31-60 microns	53.30
WF014	F24	WF01424D	1.49	4/5/2001	Phaeocystis pouchetii	15195.48
WF014	F24	WF01424D	1.49	4/5/2001	Pleurosigma spp.	478.39
WF014	F24	WF01424D	1.49	4/5/2001	Pseudonitzschia pungens	114.25
WF014	F24	WF01424D	1.49	4/5/2001	Stephanopyxis turris	3288.39
WF014	F24	WF01424D	1.49	4/5/2001	Thalassionema nitzschioides	71.15
WF014	F24	WF01424D	1.49	4/5/2001	Thalassiosira nordenskioldii	290.79
WF014	F24	WF01424D	1.49	4/5/2001	Thalassiosira rotula	3343.69
WF014	F24	WF01424D	1.49	4/5/2001	Thalassiosira sp. group 3 10-20 microns	241.09
WF014	F24	WF01424D	1.49	4/5/2001	Unid. micro-phytoflag sp. group 1 length	6257.09
WF014	F24	WF01424A	8.03	4/5/2001	Centric diatom sp. group 1 diam <10 micr	156.33
WF014	F24	WF01424A	8.03	4/5/2001	Ceratium lineatum	1282.73
WF014	F24	WF01424A	8.03	4/5/2001	Ceratium longipes	6596.33
WF014	F24	WF01424A	8.03	4/5/2001	Chaetoceros compressus	343.95
WF014	F24	WF01424A	8.03	4/5/2001	Chaetoceros debilis	14888.32
WF014	F24	WF01424A	8.03	4/5/2001	Chaetoceros decipiens	999.17
WF014	F24	WF01424A	8.03	4/5/2001	Chaetoceros sp. group 2 diam 10-30 micro	682.60
WF014	F24	WF01424A	8.03	4/5/2001	Cryptomonas sp. group 1 length <10 micro	191.27
WF014	F24	WF01424A	8.03	4/5/2001	Cylindrotheca closterium	512.96
WF014	F24	WF01424A	8.03	4/5/2001	Dictyocha speculum	161.12
WF014	F24	WF01424A	8.03	4/5/2001	Gymnodinium sp. group 1 5-20 microns wid	865.28
WF014	F24	WF01424A	8.03	4/5/2001	Gymnodinium sp. group 2 21-40 microns wi	3987.07
WF014	F24	WF01424A	8.03	4/5/2001	Phaeocystis pouchetii	18304.50
WF014	F24	WF01424A	8.03	4/5/2001	Proboscia alata	1827.92
WF014	F24	WF01424A	8.03	4/5/2001	Prorocentrum minimum	206.54
WF014	F24	WF01424A	8.03	4/5/2001	Protoperidinium sp. group 2 31-75 micron	3709.74
WF014	F24	WF01424A	8.03	4/5/2001	Pseudonitzschia pungens	303.29
WF014	F24	WF01424A	8.03	4/5/2001	Thalassionema nitzschioides	83.95
WF014	F24	WF01424A	8.03	4/5/2001	Thalassiosira nordenskioldii	370.54
WF014	F24	WF01424A	8.03	4/5/2001	Thalassiosira rotula	986.26
WF014	F24	WF01424A	8.03	4/5/2001	Thalassiosira sp. group 3 10-20 microns	355.57
WF014	F24	WF01424A	8.03	4/5/2001	Unid. micro-phytoflag sp. group 1 length	6711.30
WF014	F24	WF01424A	8.03	4/5/2001	Unid. micro-phytoflag sp. group 2 length	338.63
WF014	F25	WF014187	1.82	4/5/2001	Centric diatom sp. group 1 diam <10 micr	125.63
WF014	F25	WF014187	1.82	4/5/2001	Ceratium longipes	29735.76
WF014	F25	WF014187	1.82	4/5/2001	Chaetoceros compressus	967.43
WF014	F25	WF014187	1.82	4/5/2001	Chaetoceros debilis	8138.29
WF014	F25	WF014187	1.82	4/5/2001	Chaetoceros decipiens	843.11

Survey	Sta	Sample Number	Depth	Sampling Date	Plankton	Estimated Carbon Equivalence (ng Carbon/L)
WF014	F25	WF014187	1.82	4/5/2001	Chaetoceros socialis	168.15
WF014	F25	WF014187	1.82	4/5/2001	Chaetoceros sp. group 2 diam 10-30 micro	511.99
WF014	F25	WF014187	1.82	4/5/2001	Cryptomonas sp. group 1 length <10 micro	332.58
WF014	F25	WF014187	1.82	4/5/2001	Cryptomonas sp. group 2 length >10 micro	125.63
WF014	F25	WF014187	1.82	4/5/2001	Cylindrotheca closterium	403.99
WF014	F25	WF014187	1.82	4/5/2001	Dictyocha speculum	90.63
WF014	F25	WF014187	1.82	4/5/2001	Dinophysis acuminata	142.62
WF014	F25	WF014187	1.82	4/5/2001	Gymnodinium sp. group 1 5-20 microns wid	324.50
WF014	F25	WF014187	1.82	4/5/2001	Gymnodinium sp. group 2 21-40 microns wi	1495.27
WF014	F25	WF014187	1.82	4/5/2001	Phaeocystis pouchetii	7617.02
WF014	F25	WF014187	1.82	4/5/2001	Prorocentrum minimum	931.06
WF014	F25	WF014187	1.82	4/5/2001	Protoperidinium sp. group 2 31-75 micron	2086.89
WF014	F25	WF014187	1.82	4/5/2001	Pseudonitzschia pungens	113.74
WF014	F25	WF014187	1.82	4/5/2001	Stephanopyxis turris	4365.11
WF014	F25	WF014187	1.82	4/5/2001	Thalassionema nitzschioides	15.74
WF014	F25	WF014187	1.82	4/5/2001	Thalassiosira nordenskioldii	324.25
WF014	F25	WF014187	1.82	4/5/2001	Unid. micro-phytoflag sp. group 1 length	6669.87
WF014	F25	WF014184	7.38	4/5/2001	Calycomonas wulffii	19.93
WF014	F25	WF014184	7.38	4/5/2001	Centric diatom sp. group 1 diam <10 micr	197.99
WF014	F25	WF014184	7.38	4/5/2001	Chaetoceros borealis	931.62
WF014	F25	WF014184	7.38	4/5/2001	Chaetoceros compressus	338.80
WF014	F25	WF014184	7.38	4/5/2001	Chaetoceros debilis	5257.37
WF014	F25	WF014184	7.38	4/5/2001	Chaetoceros decipiens	738.15
WF014	F25	WF014184	7.38	4/5/2001	Chaetoceros socialis	231.33
WF014	F25	WF014184	7.38	4/5/2001	Chaetoceros sp. group 2 diam 10-30 micro	784.44
WF014	F25	WF014184	7.38	4/5/2001	Cryptomonas sp. group 1 length <10 micro	85.64
WF014	F25	WF014184	7.38	4/5/2001	Cylindrotheca closterium	202.11
WF014	F25	WF014184	7.38	4/5/2001	Dinophysis acuminata	124.86
WF014	F25	WF014184	7.38	4/5/2001	Gymnodinium sp. group 1 5-20 microns wid	1136.42
WF014	F25	WF014184	7.38	4/5/2001	Gymnodinium sp. group 2 21-40 microns wi	2618.24
WF014	F25	WF014184	7.38	4/5/2001	Pennate diatom sp. group 2 10-30 microns	86.80
WF014	F25	WF014184	7.38	4/5/2001	Phaeocystis pouchetii	9138.65
WF014	F25	WF014184	7.38	4/5/2001	Prorocentrum minimum	152.58
WF014	F25	WF014184	7.38	4/5/2001	Protoperidinium depressum	15940.48
WF014	F25	WF014184	7.38	4/5/2001	Pseudonitzschia pungens	132.78
WF014	F25	WF014184	7.38	4/5/2001	Rhizosolenia hebetata	183.74
WF014	F25	WF014184	7.38	4/5/2001	Stephanopyxis turris	1910.84
WF014	F25	WF014184	7.38	4/5/2001	Thalassionema nitzschioides	96.48
WF014	F25	WF014184	7.38	4/5/2001	Thalassiosira nordenskioldii	351.47
WF014	F25	WF014184	7.38	4/5/2001	Thalassiosira rotula	485.74

Survey	Sta.	Sample Number	Depth (m)	Sampling Date	Plankton	Estimated Carbon Equivalence (ng Carbon/L)
WF014	F25	WF014184	7.38	4/5/2001	Thalassiosira sp. group 3 10-20 microns	52.54
WF014	F25	WF014184	7.38	4/5/2001	Unid. micro-phytoflag sp. group 1 length	5013.17
WF014	F25	WF014184	7.38	4/5/2001	Unid. micro-phytoflag sp. group 2 length	2001.34
WF014	N16	WF014218	1.42	4/5/2001	Centric diatom sp. group 1 diam <10 micr	161.82
WF014	N16	WF014218	1.42	4/5/2001	Ceratium fusus	1643.30
WF014	N16	WF014218	1.42	4/5/2001	Ceratium longipes	2731.09
WF014	N16	WF014218	1.42	4/5/2001	Chaetoceros borealis	261.06
WF014	N16	WF014218	1.42	4/5/2001	Chaetoceros compressus	142.41
WF014	N16	WF014218	1.42	4/5/2001	Chaetoceros debilis	3140.27
WF014	N16	WF014218	1.42	4/5/2001	Chaetoceros sp. group 2 diam 10-30 micro	188.41
WF014	N16	WF014218	1.42	4/5/2001	Cryptomonas sp. group 1 length <10 micro	107.99
WF014	N16	WF014218	1.42	4/5/2001	Cylindrotheca closterium	127.43
WF014	N16	WF014218	1.42	4/5/2001	Detonula confervacea	70.81
WF014	N16	WF014218	1.42	4/5/2001	Gymnodinium sp. group 1 5-20 microns wid	895.63
WF014	N16	WF014218	1.42	4/5/2001	Phaeocystis pouchetii	25262.17
WF014	N16	WF014218	1.42	4/5/2001	Prorocentrum minimum	256.54
WF014	N16	WF014218	1.42	4/5/2001	Protoperidinium brevipes	394.60
WF014	N16	WF014218	1.42	4/5/2001	Pseudonitzschia delicatissima	17.45
WF014	N16	WF014218	1.42	4/5/2001	Pseudonitzschia pungens	69.76
WF014	N16	WF014218	1.42	4/5/2001	Skeletonema costatum	10.62
WF014	N16	WF014218	1.42	4/5/2001	Stephanopyxis turris	8834.99
WF014	N16	WF014218	1.42	4/5/2001	Thalassionema nitzschioides	69.52
WF014	N16	WF014218	1.42	4/5/2001	Thalassiosira nordenskioldii	68.18
WF014	N16	WF014218	1.42	4/5/2001	Thalassiosira rotula	612.52
WF014	N16	WF014218	1.42	4/5/2001	Thalassiosira sp. group 3 10-20 microns	88.33
WF014	N16	WF014218	1.42	4/5/2001	Thalassiothrix longissima	277.71
WF014	N16	WF014218	1.42	4/5/2001	Unid. micro-phytoflag sp. group 1 length	5383.72
WF014	N16	WF014218	1.42	4/5/2001	Unid. micro-phytoflag sp. group 2 length	350.51
WF014	N16	WF014215	22.03	4/5/2001	Centric diatom sp. group 1 diam <10 micr	89.33
WF014	N16	WF014215	22.03	4/5/2001	Ceratium fusus	1323.00
WF014	N16	WF014215	22.03	4/5/2001	Chaetoceros compressus	573.25
WF014	N16	WF014215	22.03	4/5/2001	Chaetoceros debilis	9363.72
WF014	N16	WF014215	22.03	4/5/2001	Cryptomonas sp. group 1 length <10 micro	52.16
WF014	N16	WF014215	22.03	4/5/2001	Cylindrotheca closterium	273.58
WF014	N16	WF014215	22.03	4/5/2001	Grammatophora marina	129.70
WF014	N16	WF014215	22.03	4/5/2001	Gymnodinium sp. group 1 5-20 microns wid	865.28
WF014	N16	WF014215	22.03	4/5/2001	Gymnodinium sp. group 2 21-40 microns wi	1772.03
WF014	N16	WF014215	22.03	4/5/2001	Pennate diatom sp. group 3 31-60 microns	83.85
WF014	N16	WF014215	22.03	4/5/2001	Phaeocystis pouchetii	26955.25
WF014	N16	WF014215	22.03	4/5/2001	Protoperidinium sp. group 2 31-75 micron	7431.96

		Sample	Donth	Sompling		Estimated Carbon
Survey	Sta.	Number	(m)	Date	Plankton	(ng Carbon/L)
WF014	N16	WF014215	22.03	4/5/2001	Pseudonitzschia pungens	67.40
WF014	N16	WF014215	22.03	4/5/2001	Rhizosolenia setigera	625.35
WF014	N16	WF014215	22.03	4/5/2001	Stephanopyxis turris	7772.66
WF014	N16	WF014215	22.03	4/5/2001	Thalassionema nitzschioides	93.28
WF014	N16	WF014215	22.03	4/5/2001	Thalassiosira nordenskioldii	45.75
WF014	N16	WF014215	22.03	4/5/2001	Thalassiosira sp. group 3 10-20 microns	165.93
WF014	N16	WF014215	22.03	4/5/2001	Unid. micro-phytoflag sp. group 1 length	3327.69
WF014	N16	WF014215	22.03	4/5/2001	Unid. micro-phytoflag sp. group 2 length	1185.20
WF014	F26	WF0142AD	1.72	4/6/2001	Centric diatom sp. group 1 diam <10 micr	83.80
WF014	F26	WF0142AD	1.72	4/6/2001	Chaetoceros compressus	64.53
WF014	F26	WF0142AD	1.72	4/6/2001	Chaetoceros debilis	1001.36
WF014	F26	WF0142AD	1.72	4/6/2001	Chaetoceros decipiens	562.38
WF014	F26	WF0142AD	1.72	4/6/2001	Chaetoceros sp. group 2 diam 10-30 micro	2646.70
WF014	F26	WF0142AD	1.72	4/6/2001	Chaetoceros spp.	61.00
WF014	F26	WF0142AD	1.72	4/6/2001	Cryptomonas sp. group 1 length <10 micro	48.93
WF014	F26	WF0142AD	1.72	4/6/2001	Cylindrotheca closterium	269.47
WF014	F26	WF0142AD	1.72	4/6/2001	Dictyocha speculum	60.46
WF014	F26	WF0142AD	1.72	4/6/2001	Dinophysis norvegica	1065.84
WF014	F26	WF0142AD	1.72	4/6/2001	Gymnodinium sp. group 1 5-20 microns wid	1893.96
WF014	F26	WF0142AD	1.72	4/6/2001	Gymnodinium sp. group 2 21-40 microns wi	498.69
WF014	F26	WF0142AD	1.72	4/6/2001	Gyrodinium sp. group 2 21-40 microns wid	498.69
WF014	F26	WF0142AD	1.72	4/6/2001	Gyrodinium spirale	2194.81
WF014	F26	WF0142AD	1.72	4/6/2001	Heterocapsa rotundata	5.32
WF014	F26	WF0142AD	1.72	4/6/2001	Leptocylindrus minimus	8.76
WF014	F26	WF0142AD	1.72	4/6/2001	Pennate diatom sp. group 2 10-30 microns	82.67
WF014	F26	WF0142AD	1.72	4/6/2001	Phaeocystis pouchetii	18895.95
WF014	F26	WF0142AD	1.72	4/6/2001	Prorocentrum minimum	387.50
WF014	F26	WF0142AD	1.72	4/6/2001	Protoperidinium sp. group 2 31-75 micron	1392.01
WF014	F26	WF0142AD	1.72	4/6/2001	Pseudonitzschia pungens	177.03
WF014	F26	WF0142AD	1.72	4/6/2001	Rhizosolenia setigera	351.98
WF014	F26	WF0142AD	1.72	4/6/2001	Stephanopyxis turris	5823.28
WF014	F26	WF0142AD	1.72	4/6/2001	Thalassionema nitzschioides	126.00
WF014	F26	WF0142AD	1.72	4/6/2001	Thalassiosira nordenskioldii	46.35
WF014	F26	WF0142AD	1.72	4/6/2001	Thalassiosira rotula	740.15
WF014	F26	WF0142AD	1.72	4/6/2001	Thalassiosira sp. group 3 10-20 microns	226.81
WF014	F26	WF0142AD	1.72	4/6/2001	Unid. micro-phytoflag sp. group 1 length	4144.67
WF014	F26	WF0142AB	23.12	4/6/2001	Centric diatom sp. group 1 diam <10 micr	131.02
WF014	F26	WF0142AB	23.12	4/6/2001	Ceratium longipes	5159.80
WF014	F26	WF0142AB	23.12	4/6/2001	Chaetoceros borealis	616.51
WF014	F26	WF0142AB	23.12	4/6/2001	Chaetoceros debilis	1812.82

		Sample	Depth	Sampling		Estimated Carbon Equivalence
Survey	Sta.	Number	(m)	Date	Plankton	(ng Carbon/L)
WF014	F26	WF0142AB	23.12	4/6/2001	Chaetoceros decipiens	390.79
WF014	F26	WF0142AB	23.12	4/6/2001	Chaetoceros spp.	636.88
WF014	F26	WF0142AB	23.12	4/6/2001	Cryptomonas sp. group 1 length <10 micro	85.01
WF014	F26	WF0142AB	23.12	4/6/2001	Cylindrotheca closterium	40.12
WF014	F26	WF0142AB	23.12	4/6/2001	Gymnodinium sp. group 1 5-20 microns wid	282.02
WF014	F26	WF0142AB	23.12	4/6/2001	Gymnodinium sp. group 2 21-40 microns wi	1559.39
WF014	F26	WF0142AB	23.12	4/6/2001	Phaeocystis pouchetii	97334.23
WF014	F26	WF0142AB	23.12	4/6/2001	Pseudonitzschia delicatissima	110.05
WF014	F26	WF0142AB	23.12	4/6/2001	Pseudonitzschia pungens	197.70
WF014	F26	WF0142AB	23.12	4/6/2001	Stephanopyxis turris	19726.63
WF014	F26	WF0142AB	23.12	4/6/2001	Thalassionema nitzschioides	120.39
WF014	F26	WF0142AB	23.12	4/6/2001	Thalassiosira sp. group 3 10-20 microns	152.97
WF014	F26	WF0142AB	23.12	4/6/2001	Unid. micro-phytoflag sp. group 1 length	3718.56
WF014	F26	WF0142AB	23.12	4/6/2001	Unid. micro-phytoflag sp. group 2 length	331.10
WF014	F27	WF01429B	1.81	4/6/2001	Centric diatom sp. group 1 diam <10 micr	240.22
WF014	F27	WF01429B	1.81	4/6/2001	Ceratium longipes	3547.55
WF014	F27	WF01429B	1.81	4/6/2001	Chaetoceros debilis	981.99
WF014	F27	WF01429B	1.81	4/6/2001	Chaetoceros decipiens	537.36
WF014	F27	WF01429B	1.81	4/6/2001	Cryptomonas sp. group 1 length <10 micro	116.89
WF014	F27	WF01429B	1.81	4/6/2001	Cylindrotheca closterium	331.05
WF014	F27	WF01429B	1.81	4/6/2001	Detonula confervacea	91.98
WF014	F27	WF01429B	1.81	4/6/2001	Gymnodinium sp. group 1 5-20 microns wid	1938.96
WF014	F27	WF01429B	1.81	4/6/2001	Gymnodinium sp. group 2 21-40 microns wi	2859.03
WF014	F27	WF01429B	1.81	4/6/2001	Pennate diatom sp. group 4 61-100 micron	84.25
WF014	F27	WF01429B	1.81	4/6/2001	Phaeocystis pouchetii	68775.04
WF014	F27	WF01429B	1.81	4/6/2001	Prorocentrum minimum	556.32
WF014	F27	WF01429B	1.81	4/6/2001	Pseudonitzschia delicatissima	7.55
WF014	F27	WF01429B	1.81	4/6/2001	Pseudonitzschia pungens	144.99
WF014	F27	WF01429B	1.81	4/6/2001	Stephanopyxis turris	10432.90
WF014	F27	WF01429B	1.81	4/6/2001	Thalassionema nitzschioides	180.60
WF014	F27	WF01429B	1.81	4/6/2001	Thalassiosira nordenskioldii	14.76
WF014	F27	WF01429B	1.81	4/6/2001	Unid. micro-phytoflag sp. group 1 length	6090.82
WF014	F27	WF01429B	1.81	4/6/2001	Unid. micro-phytoflag sp. group 2 length	1365.87
WF014	F27	WF01429A	16.68	4/6/2001	Amphidinium spp.	52.29
WF014	F27	WF01429A	16.68	4/6/2001	Centric diatom sp. group 1 diam <10 micr	42.48
WF014	F27	WF01429A	16.68	4/6/2001	Ceratium longipes	2509.39
WF014	F27	WF01429A	16.68	4/6/2001	Ceratium tripos	1934.53
WF014	F27	WF01429A	16.68	4/6/2001	Chaetoceros borealis	479.73
WF014	F27	WF01429A	16.68	4/6/2001	Chaetoceros debilis	3900.57
WF014	F27	WF01429A	16.68	4/6/2001	Chaetoceros sp. group 2 diam 10-30 micro	346.23

Survey	Sta.	Sample Number	Depth (m)	Sampling Date	Plankton	Estimated Carbon Equivalence (ng Carbon/L)
WF014	F27	WF01429A	16.68	4/6/2001	Coscinodiscus sp. group 2 diam 40-100 mi	663.95
WF014	F27	WF01429A	16.68	4/6/2001	Cryptomonas sp. group 1 length <10 micro	165.37
WF014	F27	WF01429A	16.68	4/6/2001	Cylindrotheca closterium	273.20
WF014	F27	WF01429A	16.68	4/6/2001	Dictyocha speculum	61.29
WF014	F27	WF01429A	16.68	4/6/2001	Ditylum brightwellii	884.25
WF014	F27	WF01429A	16.68	4/6/2001	Gymnodinium sp. group 1 5-20 microns wid	822.93
WF014	F27	WF01429A	16.68	4/6/2001	Gymnodinium sp. group 2 21-40 microns wi	3033.54
WF014	F27	WF01429A	16.68	4/6/2001	Gyrodinium sp. group 2 21-40 microns wid	505.59
WF014	F27	WF01429A	16.68	4/6/2001	Phaeocystis pouchetii	93163.73
WF014	F27	WF01429A	16.68	4/6/2001	Pseudonitzschia delicatissima	21.37
WF014	F27	WF01429A	16.68	4/6/2001	Pseudonitzschia pungens	269.21
WF014	F27	WF01429A	16.68	4/6/2001	Rhizosolenia hebetata	283.85
WF014	F27	WF01429A	16.68	4/6/2001	Stephanopyxis turris	7379.81
WF014	F27	WF01429A	16.68	4/6/2001	Thalassionema nitzschioides	138.39
WF014	F27	WF01429A	16.68	4/6/2001	Thalassiosira nordenskioldii	62.65
WF014	F27	WF01429A	16.68	4/6/2001	Thalassiosira sp. group 3 10-20 microns	148.79
WF014	F27	WF01429A	16.68	4/6/2001	Unid. micro-phytoflag sp. group 1 length	4521.16
WF014	F27	WF01429A	16.68	4/6/2001	Unid. micro-phytoflag sp. group 2 length	1610.27
WF014	F30	WF0142CA	1.66	4/6/2001	Asterionella formosa	30.98
WF014	F30	WF0142CA	1.66	4/6/2001	Centric diatom sp. group 1 diam <10 micr	74.23
WF014	F30	WF0142CA	1.66	4/6/2001	Chaetoceros compressus	152.43
WF014	F30	WF0142CA	1.66	4/6/2001	Chaetoceros debilis	2614.40
WF014	F30	WF0142CA	1.66	4/6/2001	Chaetoceros didymus	88.50
WF014	F30	WF0142CA	1.66	4/6/2001	Chaetoceros socialis	227.09
WF014	F30	WF0142CA	1.66	4/6/2001	Chaetoceros sp. group 2 diam 10-30 micro	302.52
WF014	F30	WF0142CA	1.66	4/6/2001	Cryptomonas sp. group 1 length <10 micro	269.72
WF014	F30	WF0142CA	1.66	4/6/2001	Cylindrotheca closterium	136.40
WF014	F30	WF0142CA	1.66	4/6/2001	Detonula confervacea	454.78
WF014	F30	WF0142CA	1.66	4/6/2001	Gymnodinium sp. group 1 5-20 microns wid	639.13
WF014	F30	WF0142CA	1.66	4/6/2001	Gymnodinium sp. group 2 21-40 microns wi	589.00
WF014	F30	WF0142CA	1.66	4/6/2001	Gyrosigma spp.	250.14
WF014	F30	WF0142CA	1.66	4/6/2001	Pennate diatom sp. group 3 31-60 microns	55.74
WF014	F30	WF0142CA	1.66	4/6/2001	Phaeocystis pouchetii	3796.82
WF014	F30	WF0142CA	1.66	4/6/2001	Prorocentrum minimum	137.30
WF014	F30	WF0142CA	1.66	4/6/2001	Pseudonitzschia pungens	29.87
WF014	F30	WF0142CA	1.66	4/6/2001	Scenedesmus spp.	14.47
WF014	F30	WF0142CA	1.66	4/6/2001	Thalassionema nitzschioides	49.61
WF014	F30	WF0142CA	1.66	4/6/2001	Thalassiosira nordenskioldii	24.33
WF014	F30	WF0142CA	1.66	4/6/2001	Thalassiosira rotula	437.09
WF014	F30	WF0142CA	1.66	4/6/2001	Thalassiosira sp. group 3 10-20 microns	31.52

ģ

Survey	Sta	Sample Number	Depth (m)	Sampling Date	Plankton	Estimated Carbon Equivalence (ng Carbon/L)
WF014	F30	WF0142CA	1.66	4/6/2001	Unid. micro-phytoflag sp. group 1 length	4275.60
WF014	F30	WF0142C9	4.43	4/6/2001	Asterionella formosa	18.61
WF014	F30	WF0142C9	4.43	4/6/2001	Calycomonas wulffii	16.17
WF014	F30	WF0142C9	4.43	4/6/2001	Centric diatom sp. group 1 diam <10 micr	124.88
WF014	F30	WF0142C9	4.43	4/6/2001	Ceratium longipes	3512.82
WF014	F30	WF0142C9	4.43	4/6/2001	Chaetoceros compressus	366.33
WF014	F30	WF0142C9	4.43	4/6/2001	Chaetoceros debilis	9798.61
WF014	F30	WF0142C9	4.43	4/6/2001	Chaetoceros decipiens	532.10
WF014	F30	WF0142C9	4.43	4/6/2001	Cocconeis scutellum	331.11
WF014	F30	WF0142C9	4.43	4/6/2001	Cryptomonas sp. group 1 length <10 micro	111.12
WF014	F30	WF0142C9	4.43	4/6/2001	Cylindrotheca closterium	163.90
WF014	F30	WF0142C9	4.43	4/6/2001	Detonula confervacea	91.08
WF014	F30	WF0142C9	4.43	4/6/2001	Dictyocha speculum	85.80
WF014	F30	WF0142C9	4.43	4/6/2001	Grammatophora marina	103.43
WF014	F30	WF0142C9	4.43	4/6/2001	Gymnodinium sp. group 1 5-20 microns wid	230.40
WF014	F30	WF0142C9	4.43	4/6/2001	Gymnodinium sp. group 2 21-40 microns wi	707.76
WF014	F30	WF0142C9	4.43	4/6/2001	Licmophora spp.	32.70
WF014	F30	WF0142C9	4.43	4/6/2001	Pennate diatom sp. group 3 31-60 microns	33.49
WF014	F30	WF0142C9	4.43	4/6/2001	Phaeocystis pouchetii	6543.11
WF014	F30	WF0142C9	4.43	4/6/2001	Pleurosigma spp.	601.16
WF014	F30	WF0142C9	4.43	4/6/2001	Pseudonitzschia delicatissima	14.96
WF014	F30	WF0142C9	4.43	4/6/2001	Pseudonitzschia pungens	53.84
WF014	F30	WF0142C9	4.43	4/6/2001	Stephanopyxis turris	7231.54
WF014	F30	WF0142C9	4.43	4/6/2001	Thalassionema nitzschioides	29.81
WF014	F30	WF0142C9	4.43	4/6/2001	Thalassiosira nordenskioldii	277.72
WF014	F30	WF0142C9	4.43	4/6/2001	Thalassiosira rotula	1313.06
WF014	F30	WF0142C9	4.43	4/6/2001	Thalassiosira sp. group 3 10-20 microns	94.68
WF014	F30	WF0142C9	4.43	4/6/2001	Unid. micro-phytoflag sp. group 1 length	3708.07
WF014	F31	WF0142D5	1.99	4/6/2001	Centric diatom sp. group 1 diam <10 micr	43.49
WF014	F31	WF0142D5	1.99	4/6/2001	Ceratium longipes	2569.14
WF014	F31	WF0142D5	1.99	4/6/2001	Chaetoceros compressus	535.84
WF014	F31	WF0142D5	1.99	4/6/2001	Chaetoceros debilis	3063.46
WF014	F31	WF0142D5	1.99	4/6/2001	Cryptomonas sp. group 1 length <10 micro	253.96
WF014	F31	WF0142D5	1.99	4/6/2001	Cylindrotheca closterium	79.91
WF014	F31	WF0142D5	1.99	4/6/2001	Grammatophora marina	50.43
WF014	F31	WF0142D5	1.99	4/6/2001	Gymnodinium sp. group 1 5-20 microns wid	842.52
WF014	F31	WF0142D5	1.99	4/6/2001	Gymnodinium sp. group 2 21-40 microns wi	517.63
WF014	F31	WF0142D5	1.99	4/6/2001	Phaeocystis pouchetii	2522.90
WF014	F31	WF0142D5	1.99	4/6/2001	Prorocentrum minimum	120.66
WF014	F31	WF0142D5	1.99	4/6/2001	Pseudonitzschia pungens	13.12

Survey	Sta	Sample	Depth	Sampling	Plankton	Estimated Carbon Equivalence (ng Carbon/L)
WF014	F31	WF0142D5	1.99	4/6/2001	Rhizosolenia setigera	365.34
WF014	F31	WF0142D5	1.99	4/6/2001	Stephanopyxis turris	3022.21
WF014	F31	WF0142D5	1.99	4/6/2001	Thalassionema nitzschioides	32.70
WF014	F31	WF0142D5	1.99	4/6/2001	Thalassiosira nordenskioldii	21.38
WF014	F31	WF0142D5	1.99	4/6/2001	Thalassiosira sp. group 3 10-20 microns	96.94
WF014	F31	WF0142D5	1.99	4/6/2001	Unid. micro-phytoflag sp. group 1 length	6589.24
WF014	F31	WF0142D4	6.46	4/6/2001	Centric diatom sp. group 1 diam <10 micr	98.50
WF014	F31	WF0142D4	6.46	4/6/2001	Chaetoceros borealis	158.90
WF014	F31	WF0142D4	6.46	4/6/2001	Chaetoceros compressus	606.77
WF014	F31	WF0142D4	6.46	4/6/2001	Chaetoceros debilis	2053.06
WF014	F31	WF0142D4	6.46	4/6/2001	Chaetoceros decipiens	377.71
WF014	F31	WF0142D4	6.46	4/6/2001	Cryptomonas sp. group 1 length <10 micro	153.38
WF014	F31	WF0142D4	6.46	4/6/2001	Cryptomonas sp. group 2 length >10 micro	70.36
WF014	F31	WF0142D4	6.46	4/6/2001	Cylindrotheca closterium	336.12
WF014	F31	WF0142D4	6.46	4/6/2001	Dictyocha fibula	70.59
WF014	F31	WF0142D4	6.46	4/6/2001	Grammatophora marina	32.63
WF014	F31	WF0142D4	6.46	4/6/2001	Gymnodinium sp. group 1 5-20 microns wid	545.17
WF014	F31	WF0142D4	6.46	4/6/2001	Gymnodinium sp. group 2 21-40 microns wi	334.94
WF014	F31	WF0142D4	6.46	4/6/2001	Gyrosigma spp.	142.25
WF014	F31	WF0142D4	6.46	4/6/2001	Licmophora spp.	15.47
WF014	F31	WF0142D4	6.46	4/6/2001	Pennate diatom sp. group 3 31-60 microns	31.70
WF014	F31	WF0142D4	6.46	4/6/2001	Phaeocystis pouchetii	1895.79
WF014	F31	WF0142D4	6.46	4/6/2001	Prorocentrum minimum	26.03
WF014	F31	WF0142D4	6.46	4/6/2001	Pseudonitzschia pungens	25.48
WF014	F31	WF0142D4	6.46	4/6/2001	Stephanopyxis turris	977.79
WF014	F31	WF0142D4	6.46	4/6/2001	Striatella unipunctata	194.74
WF014	F31	WF0142D4	6.46	4/6/2001	Thalassionema nitzschioides	21.16
WF014	F31	WF0142D4	6.46	4/6/2001	Thalassiosira nordenskioldii	44.96
WF014	F31	WF0142D4	6.46	4/6/2001	Thalassiosira sp. group 3 10-20 microns	80.65
WF014	F31	WF0142D4	6.46	4/6/2001	Unid. micro-phytoflag sp. group 1 length	3840.84
WF014	F01	WF014350	2.05	4/9/2001	Calycomonas wulffii	26.50
WF014	F01	WF014350	2.05	4/9/2001	Centric diatom sp. group 1 diam <10 micr	789.64
WF014	F01	WF014350	2.05	4/9/2001	Ceratium tripos	8878.87
WF014	F01	WF014350	2.05	4/9/2001	Chaetoceros borealis	825.68
WF014	F01	WF014350	2.05	4/9/2001	Chaetoceros compressus	900.81
WF014	F01	WF014350	2.05	4/9/2001	Chaetoceros debilis	735.72
WF014	F01	WF014350	2.05	4/9/2001	Chaetoceros socialis	1006.50
WF014	F01	WF014350	2.05	4/9/2001	Chaetoceros sp. group 2 diam 10-30 micro	17678.82
WF014	F01	WF014350	2.05	4/9/2001	Cryptomonas sp. group 1 length <10 micro	478.17
WF014	F01	WF014350	2.05	4/9/2001	Cyclotella sp. group 1 diam <10 microns	43.00

Survey	Sta	Sample Number	Depth	Sampling Date	Plankton	Estimated Carbon Equivalence (ng Carbon/I)
WF014	F01	WF014350	2.05	4/9/2001	Cylindrotheca closterium	179.13
WF014	F01	WF014350	2.05	4/9/2001	Gymnodinium sp. group 1 5-20 microns wid	4910.07
WF014	F01	WF014350	2.05	4/9/2001	Gymnodinium sp. group 2 21-40 microns wi	1160.25
WF014	F01	WF014350	2.05	4/9/2001	Pennate diatom sp. group 2 10-30 microns	115.40
WF014	F01	WF014350	2.05	4/9/2001	Pleurosigma spp.	492.75
WF014	F01	WF014350	2.05	4/9/2001	Prorocentrum minimum	540.93
WF014	F01	WF014350	2.05	4/9/2001	Stephanopyxis turris	8467.75
WF014	F01	WF014350	2.05	4/9/2001	Thalassionema nitzschioides	171.01
WF014	F01	WF014350	2.05	4/9/2001	Thalassiosira nordenskioldii	23.96
WF014	F01	WF014350	2.05	4/9/2001	Thalassiosira sp. group 3 10-20 microns	1086.44
WF014	F01	WF014350	2.05	4/9/2001	Unid. micro-phytoflag sp. group 1 length	11644.81
WF014	F01	WF01434E	12.24	4/9/2001	Calycomonas wulffii	17.29
WF014	F01	WF01434E	12.24	4/9/2001	Centric diatom sp. group 1 diam <10 micr	114.51
WF014	F01	WF01434E	12.24	4/9/2001	Ceratium longipes	1127.40
WF014	F01	WF01434E	12.24	4/9/2001	Ceratium tripos	869.13
WF014	F01	WF01434E	12.24	4/9/2001	Chaetoceros borealis	161.65
WF014	F01	WF01434E	12.24	4/9/2001	Chaetoceros decipiens	256.16
WF014	F01	WF01434E	12.24	4/9/2001	Cryptomonas sp. group 1 length <10 micro	14.86
WF014	F01	WF01434E	12.24	4/9/2001	Cylindrotheca closterium	105.21
WF014	F01	WF01434E	12.24	4/9/2001	Dactyliosolen fragilissimus	38.07
WF014	F01	WF01434E	12.24	4/9/2001	Gymnodinium sp. group 1 5-20 microns wid	2218.31
WF014	F01	WF01434E	12.24	4/9/2001	Gymnodinium sp. group 2 21-40 microns wi	908.59
WF014	F01	WF01434E	12.24	4/9/2001	Pennate diatom sp. group 2 10-30 microns	75.31
WF014	F01	WF01434E	12.24	4/9/2001	Pennate diatom sp. group 3 31-60 microns	32.25
WF014	F01	WF01434E	12.24	4/9/2001	Phaeocystis pouchetii	1428.53
WF014	F01	WF01434E	12.24	4/9/2001	Pleurosigma spp.	192.94
WF014	F01	WF01434E	12.24	4/9/2001	Prorocentrum minimum	370.65
WF014	F01	WF01434E	12.24	4/9/2001	Protoperidinium depressum	5531.73
WF014	F01	WF01434E	12.24	4/9/2001	Pseudonitzschia pungens	5.76
WF014	F01	WF01434E	12.24	4/9/2001	Thalassionema nitzschioides	86.09
WF014	F01	WF01434E	12.24	4/9/2001	Thalassiosira nordenskioldii	4.69
WF014	F01	WF01434E	12.24	4/9/2001	Thalassiosira sp. group 3 10-20 microns	224.85
WF014	F01	WF01434E	12.24	4/9/2001	Unid. micro-phytoflag sp. group 1 length	12521.94
WF014	F02	WF014336	1.81	4/9/2001	Centric diatom sp. group 1 diam <10 micr	65.64
WF014	F02	WF014336	1.81	4/9/2001	Ceratium longipes	1292.39
WF014	F02	WF014336	1.81	4/9/2001	Ceratium tripos	996.32
WF014	F02	WF014336	1.81	4/9/2001	Chaetoceros debilis	82.56
WF014	F02	WF014336	1.81	4/9/2001	Coscinodiscus sp. group 2 diam 40-100 mi	341.95
WF014	F02	WF014336	1.81	4/9/2001	Cryptomonas sp. group 1 length <10 micro	493.99
WF014	F02	WF014336	1.81	4/9/2001	Cylindrotheca closterium	20.10

Survey	Sta.	Sample Number	Depth (m)	Sampling Date	Plankton	Estimated Carbon Equivalence (ng Carbon/L)
WF014	F02	WF014336	1.81	4/9/2001	Dictyocha speculum	632.39
WF014	F02	WF014336	1.81	4/9/2001	Gymnodinium sp. group 1 5-20 microns wid	847.65
WF014	F02	WF014336	1.81	4/9/2001	Gymnodinium sp. group 2 21-40 microns wi	1301.95
WF014	F02	WF014336	1.81	4/9/2001	Pennate diatom sp. group 1 <10 microns l	0.85
WF014	F02	WF014336	1.81	4/9/2001	Pennate diatom sp. group 2 10-30 microns	86.33
WF014	F02	WF014336	1.81	4/9/2001	Prorocentrum minimum	1234.22
WF014	F02	WF014336	1.81	4/9/2001	Protoperidinium brevipes	186.73
WF014	F02	WF014336	1.81	4/9/2001	Thalassionema nitzschioides	65.79
WF014	F02	WF014336	1.81	4/9/2001	Thalassiosira nordenskioldii	8.07
WF014	F02	WF014336	1.81	4/9/2001	Unid. micro-phytoflag sp. group 1 length	4437.85
WF014	F02	WF014336	1.81	4/9/2001	Unid. micro-phytoflag sp. group 2 length	331.73
WF014	F02	WF014334	14.08	4/9/2001	Centric diatom sp. group 1 diam <10 micr	108.74
WF014	F02	WF014334	14.08	4/9/2001	Ceratium fusus	773.03
WF014	F02	WF014334	14.08	4/9/2001	Chaetoceros debilis	54.71
WF014	F02	WF014334	14.08	4/9/2001	Chaetoceros sp. group 2 diam 10-30 micro	88.63
WF014	F02	WF014334	14.08	4/9/2001	Cryptomonas sp. group 1 length <10 micro	237.07
WF014	F02	WF014334	14.08	4/9/2001	Cylindrotheca closterium	19.98
WF014	F02	WF014334	14.08	4/9/2001	Dactyliosolen fragilissimus	43.38
WF014	F02	WF014334	14.08	4/9/2001	Guinardia delicatula	443.28
WF014	F02	WF014334	14.08	4/9/2001	Gymnodinium sp. group 1 5-20 microns wid	842.64
WF014	F02	WF014334	14.08	4/9/2001	Gymnodinium sp. group 2 21-40 microns wi	776.55
WF014	F02	WF014334	14.08	4/9/2001	Phaeocystis pouchetii	2034.88
WF014	F02	WF014334	14.08	4/9/2001	Prorocentrum minimum	2014.72
WF014	F02	WF014334	14.08	4/9/2001	Protoperidinium brevipes	185.62
WF014	F02	WF014334	14.08	4/9/2001	Protoperidinium sp. group 2 31-75 micron	14474.98
WF014	F02	WF014334	14.08	4/9/2001	Thalassionema nitzschioides	49.05
WF014	F02	WF014334	14.08	4/9/2001	Thalassiosira nordenskioldii	8.02
WF014	F02	WF014334	14.08	4/9/2001	Thalassiosira sp. group 3 10-20 microns	41.55
WF014	F02	WF014334	14.08	4/9/2001	Unid. micro-phytoflag sp. group 1 length	5718.72
WF014	F02	WF014334	14.08	4/9/2001	Unid. micro-phytoflag sp. group 2 length	989.30
WF014	F06	WF0142FD	2.48	4/9/2001	Centric diatom sp. group 1 diam <10 micr	58.47
WF014	F06	WF0142FD	2.48	4/9/2001	Chaetoceros compressus	270.13
WF014	F06	WF0142FD	2.48	4/9/2001	Chaetoceros debilis	2647.42
WF014	F06	WF0142FD	2.48	4/9/2001	Chaetoceros decipiens	130.79
WF014	F06	WF0142FD	2.48	4/9/2001	Cryptomonas sp. group 1 length <10 micro	22.76
WF014	F06	WF0142FD	2.48	4/9/2001	Cylindrotheca closterium	26.86
WF014	F06	WF0142FD	2.48	4/9/2001	Dactyliosolen fragilissimus	58.31
WF014	F06	WF0142FD	2.48	4/9/2001	Gymnodinium sp. group 1 5-20 microns wid	2265.20
WF014	F06	WF0142FD	2.48	4/9/2001	Gymnodinium sp. group 2 21-40 microns wi	2087.54
WF014	F06	WF0142FD	2.48	4/9/2001	Phaeocystis pouchetii	6017.24

Cumou	Sto	Sample	Depth	Sampling	Plankton	Estimated Carbon Equivalence
WE014	E06	WE0142ED	2.48	4/9/2001	Prorocentrum minimum	541.60
WE014	F06	WF0142FD	2.40	4/9/2001	Pseudonitzschia pungens	97.04
WF014	F06	WF0142FD	2.40	4/9/2001	Stephanonyxis turris	2031 38
WE014	F06	WE0142FD	2.40	4/9/2001	Thalassionema nitzschioides	146 52
WF014	F06	WF0142FD	2.40	4/9/2001	Thalassiosira nordenskioldij	140.32
WF014	F06	WF0142FD	2.40	4/9/2001	Thalassiosina nordenskiolun Thalassiosina sp. group 3 10-20 microns	46 54
WF014	F06	WE0142FD	2.40	4/9/2001	Unid micro-phytoflag sp. group 1 length	6954 56
WF014	F06	WE0142FB	13.02	4/9/2001	Centric diatom sn. group 1 diam <10 micr	204.63
WE014	F06	WE0142FB	13.02	4/9/2001	Ceratium fusus	519 52
WF014	F06	WE0142FB	13.02	4/9/2001	Ceratium longines	6907 38
WF014	F06	WE0142FB	13.02	4/9/2001	Ceratium trinos	1331.25
WF014	E06	WE0142FB	12.02	4/0/2001	Chaetogeros borealis	495.10
WF014	F00	WF0142FB	12.02	4/9/2001	Chaetoceros debilis	902.78
WF014	F00	WE0142FB	12.02	4/9/2001	Chaetoceros en group 2 diam 10 30 micro	50.57
WF014	F00	WF0142FB	12.02	4/9/2001	Cruntomonas an group 1 length <10 micro	45.52
WF014	F00	WF0142FB	12.02	4/9/2001	Cyptomonias sp. group 1 tengui <10 micro	53 71
WF014	F00	WF0142FB	12.02	4/9/2001	Cymharodinium an aroun 1.5.20 miarons wid	1997.66
WF014	F00	WF0142FB	12.02	4/9/2001	Gymnodinium sp. group 2 21 40 microns wi	2087.54
WF014	FUO	WF0142FB	12.02	4/9/2001	Gynniodnium sp. group 2 21-40 microns wi	2087.34
WF014	F00	WF0142FB	13.02	4/9/2001	Banneta diatam an aroun 2 10 30 miarons	5 76
WF014	FUO	WF0142FB	12.02	4/9/2001	Penhate diatom sp. group 2 10-30 microns	3.70
WF014	FUO	WF0142FB	13.02	4/9/2001	Prennate diatom sp. group 4 01-100 micron	7220.00
WF014	FU6	WF0142FB	13.02	4/9/2001	Phaeocystis pouchetti	/330.09
WF014	F06	WF0142FB	13.02	4/9/2001	Pleurosigma spp.	443.28
WF014	F06	WF0142FB	13.02	4/9/2001	Pseudonitzschia pungens	88.22
WF014	F06	WF0142FB	13.02	4/9/2001	Rhizosolenia setigera	/36.70
WF014	F06	WF0142FB	13.02	4/9/2001	Stephanopyxis turris	4062.75
WF014	F06	WF0142FB	13.02	4/9/2001	Thalassionema nitzschioides	58.61
WF014	F06	WF0142FB	13.02	4/9/2001	Thalassiosira nordenskioldii	7.19
WF014	F06	WF0142FB	13.02	4/9/2001	Thalassiothrix longissima	351.19
WF014	F06	WF0142FB	13.02	4/9/2001	Unid. micro-phytoflag sp. group 1 length	6954.56
WN015	N04	WN015066	1.95	4/26/2001	Alexandrium tamarense	0.51
WN015	N04	WN015066	1.95	4/26/2001	Centric diatom sp. group 1 diam <10 micr	131.31
WN015	N04	WN015066	1.95	4/26/2001	Ceratium fusus	7791.56
WN015	N04	WN015066	1.95	4/26/2001	Ceratium longipes	45246.27
WN015	N04	WN015066	1.95	4/26/2001	Ceratium tripos	4983.00
WN015	N04	WN015066	1.95	4/26/2001	Chaetoceros debilis	8120.34
WN015	N04	WN015066	1.95	4/26/2001	Chaetoceros sp. group 2 diam 10-30 micro	5351.04
WN015	N04	WN015066	1.95	4/26/2001	Cryptomonas sp. group 1 length <10 micro	391.89
WN015	N04	WN015066	1.95	4/26/2001	Cylindrotheca closterium	100.53
WN015	N04	WN015066	1.95	4/26/2001	Dactyliosolen fragilissimus	218.27

		Sample	Depth	Sampling		Estimated Carbon Equivalence
Survey	Sta.	Number	(m)	Date	Plankton	(ng Carbon/L)
WN015	N04	WN015066	1.95	4/26/2001	Gymnodinium sp. group 1 5-20 microns wid	1978.40
WN015	N04	WN015066	1.95	4/26/2001	Gyrodinium spirale	22965.29
WN015	N04	WN015066	1.95	4/26/2001	Prorocentrum minimum	1216.37
WN015	N04	WN015066	1.95	4/26/2001	Pseudonitzschia delicatissima	233.98
WN015	N04	WN015066	1.95	4/26/2001	Pseudonitzschia pungens	132.09
WN015	N04	WN015066	1.95	4/26/2001	Skeletonema costatum	854.56
WN015	N04	WN015066	1.95	4/26/2001	Thalassionema nitzschioides	82.26
WN015	N04	WN015066	1.95	4/26/2001	Thalassiosira nordenskioldii	134.48
WN015	N04	WN015066	1.95	4/26/2001	Thalassiosira rotula	966.44
WN015	N04	WN015066	1.95	4/26/2001	Thalassiosira sp. group 3 10-20 microns	2334.41
WN015	N04	WN015066	1.95	4/26/2001	Unid. micro-phytoflag sp. group 1 length	10960.68
WN015	N04	WN015064	14.82	4/26/2001	Centric diatom sp. group 1 diam <10 micr	590.48
WN015	N04	WN015064	14.82	4/26/2001	Ceratium longipes	5580.93
WN015	N04	WN015064	14.82	4/26/2001	Chaetoceros compressus	582.01
WN015	N04	WN015064	14.82	4/26/2001	Chaetoceros debilis	2257.86
WN015	N04	WN015064	14.82	4/26/2001	Chaetoceros sp. group 2 diam 10-30 micro	962.54
WN015	N04	WN015064	14.82	4/26/2001	Cryptomonas sp. group 1 length <10 micro	147.12
WN015	N04	WN015064	14.82	4/26/2001	Cylindrotheca closterium	173.60
WN015	N04	WN015064	14.82	4/26/2001	Gymnodinium sp. group 1 5-20 microns wid	2135.24
WN015	N04	WN015064	14.82	4/26/2001	Gymnodinium sp. group 2 21-40 microns wi	1124.44
WN015	N04	WN015064	14.82	4/26/2001	Pseudonitzschia delicatissima	29.71
WN015	N04	WN015064	14.82	4/26/2001	Pseudonitzschia pungens	14.26
WN015	N04	WN015064	14.82	4/26/2001	Skeletonema costatum	466.58
WN015	N04	WN015064	14.82	4/26/2001	Thalassionema nitzschioides	59.19
WN015	N04	WN015064	14.82	4/26/2001	Thalassiosira nordenskioldii	98.69
WN015	N04	WN015064	14.82	4/26/2001	Thalassiosira sp. group 3 10-20 microns	1338.71
WN015	N04	WN015064	14.82	4/26/2001	Unid. micro-phytoflag sp. group 1 length	10705.77
WN015	N18	WN015091	2.19	4/26/2001	Centric diatom sp. group 1 diam <10 micr	283.43
WN015	N18	WN015091	2.19	4/26/2001	Ceratium longipes	34880.82
WN015	N18	WN015091	2.19	4/26/2001	Ceratium tripos	5378.03
WN015	N18	WN015091	2.19	4/26/2001	Chaetoceros debilis	742.72
WN015	N18	WN015091	2.19	4/26/2001	Cryptomonas sp. group 1 length <10 micro	422.96
WN015	N18	WN015091	2.19	4/26/2001	Cylindrotheca closterium	108.50
WN015	N18	WN015091	2.19	4/26/2001	Dactyliosolen fragilissimus	1887.79
WN015	N18	WN015091	2.19	4/26/2001	Dictyocha speculum	170.39
WN015	N18	WN015091	2.19	4/26/2001	Gymnodinium sp. group 1 5-20 microns wid	4270.47
WN015	N18	WN015091	2.19	4/26/2001	Heterocapsa rotundata	29.96
WN015	N18	WN015091	2.19	4/26/2001	Prorocentrum minimum	546.08
WN015	N18	WN015091	2.19	4/26/2001	Pseudonitzschia delicatissima	29.71
WN015	N18	WN015091	2.19	4/26/2001	Skeletonema costatum	284.83

Survoy	Sta	Sample	Depth	Sampling Date	Plankton	Estimated Carbon Equivalence (ng Carbon/L)
WN015	N18	WN015091	2.19	4/26/2001	Thalassionema nitzschioides	118.38
WN015	N18	WN015091	2.19	4/26/2001	Thalassiosira nordenskioldij	174.17
WN015	N18	WN015091	2.19	4/26/2001	Thalassiosira sp. group 3 10-20 microns	2895.51
WN015	N18	WN015091	2.19	4/26/2001	Unid, micro-phytoflag sp. group 1 length	15555.90
WN015	N18	WN015091	2.19	4/26/2001	Unid. micro-phytoflag sp. group 2 length	358.13
WN015	N18	WN01508F	11.34	4/26/2001	Centric diatom sp. group 1 diam <10 micr	145.98
WN015	N18	WN01508F	11.34	4/26/2001	Ceratium fusus	1441.26
WN015	N18	WN01508F	11.34	4/26/2001	Ceratium longipes	38325.14
WN015	N18	WN01508F	11.34	4/26/2001	Chaetoceros debilis	918.07
WN015	N18	WN01508F	11.34	4/26/2001	Chaetoceros sp. group 2 diam 10-30 micro	826.24
WN015	N18	WN01508F	11.34	4/26/2001	Cryptomonas sp. group 1 length <10 micro	322.02
WN015	N18	WN01508F	11.34	4/26/2001	Cryptomonas sp. group 2 length >10 micro	121.65
WN015	N18	WN01508F	11.34	4/26/2001	Dactyliosolen fragilissimus	161.77
WN015	N18	WN01508F	11.34	4/26/2001	Gymnodinium sp. group 1 5-20 microns wid	2827.87
WN015	N18	WN01508F	11.34	4/26/2001	Gymnodinium sp. group 2 21-40 microns wi	3860.86
WN015	N18	WN01508F	11.34	4/26/2001	Pennate diatom sp. group 3 31-60 microns	45.67
WN015	N18	WN01508F	11.34	4/26/2001	Prorocentrum minimum	450.00
WN015	N18	WN01508F	11.34	4/26/2001	Pseudonitzschia delicatissima	61.20
WN015	N18	WN01508F	11.34	4/26/2001	Skeletonema costatum	65.20
WN015	N18	WN01508F	11.34	4/26/2001	Thalassionema nitzschioides	101.62
WN015	N18	WN01508F	11.34	4/26/2001	Thalassiosira nordenskioldii	69.77
WN015	N18	WN01508F	11.34	4/26/2001	Thalassiosira sp. group 3 10-20 microns	1833.46
WN015	N18	WN01508F	11.34	4/26/2001	Unid. micro-phytoflag sp. group 1 length	10235.69
WN016	N04	WN01603D	2.15	5/18/2001	Calycomonas wulffii	36.66
WN016	N04	WN01603D	2.15	5/18/2001	Centric diatom sp. group 1 diam <10 micr	20.23
WN016	N04	WN01603D	2.15	5/18/2001	Ceratium longipes	3983.16
WN016	N04	WN01603D	2.15	5/18/2001	Ceratium tripos	6141.35
WN016	N04	WN01603D	2.15	5/18/2001	Chaetoceros decipiens	905.01
WN016	N04	WN01603D	2.15	5/18/2001	Chaetoceros sp. group 2 diam 10-30 micro	549.58
WN016	N04	WN01603D	2.15	5/18/2001	Cryptomonas sp. group 1 length <10 micro	47.25
WN016	N04	WN01603D	2.15	5/18/2001	Guinardia delicatula	91.62
WN016	N04	WN01603D	2.15	5/18/2001	Gymnodinium sp. group 1 5-20 microns wid	1306.23
WN016	N04	WN01603D	2.15	5/18/2001	Gyrodinium spirale	3532.03
WN016	N04	WN01603D	2.15	5/18/2001	Pennate diatom sp. group 4 61-100 micron	94.59
WN016	N04	WN01603D	2.15	5/18/2001	Protoperidinium bipes	211.22
WN016	N04	WN01603D	2.15	5/18/2001	Pseudonitzschia delicatissima	1017.76
WN016	N04	WN01603D	2.15	5/18/2001	Pseudonitzschia pungens	20.35
WN016	N04	WN01603D	2.15	5/18/2001	Skeletonema costatum	13730.28
WN016	N04	WN01603D	2.15	5/18/2001	Unid. micro-phytoflag sp. group 1 length	9371.59
WN016	N04	WN01603B	18.57	5/18/2001	Centric diatom sp. group 1 diam <10 micr	137.41

J

		Sample	Depth	Sampling		Estimated Carbon Equivalence
Survey	Sta.	Number	(m)	Date	Plankton	(ng Carbon/L)
WN016	N04	WN01603B	18.57	5/18/2001	Ceratium tusus	1017.53
WN016	N04	WN01603B	18.57	5/18/2001	Ceratium longipes	3382.20
WN016	N04	WN01603B	18.57	5/18/2001	Chaetoceros decipiens	256.16
WN016	N04	WN01603B	18.57	5/18/2001	Chaetoceros sp. group 2 diam 10-30 micro	1283.32
WN016	N04	WN01603B	18.57	5/18/2001	Cryptomonas sp. group 1 length <10 micro	160.48
WN016	N04	WN01603B	18.57	5/18/2001	Gymnodinium sp. group 1 5-20 microns wid	2661.97
WN016	N04	WN01603B	18.57	5/18/2001	Gymnodinium sp. group 2 21-40 microns wi	681.44
WN016	N04	WN01603B	18.57	5/18/2001	Gyrodinium spirale	24033.44
WN016	N04	WN01603B	18.57	5/18/2001	Protoperidinium sp. group 2 31-75 micron	1902.13
WN016	N04	WN01603B	18.57	5/18/2001	Pseudonitzschia delicatissima	309.67
WN016	N04	WN01603B	18.57	5/18/2001	Pseudonitzschia pungens	17.28
WN016	N04	WN01603B	18.57	5/18/2001	Skeletonema costatum	2084.52
WN016	N04	WN01603B	18.57	5/18/2001	Thalassionema nitzschioides	14.35
WN016	N04	WN01603B	18.57	5/18/2001	Unid. micro-phytoflag sp. group 1 length	13305.76
WN016	N18	WN016067	2.22	5/18/2001	Calycomonas wulffii	163.03
WN016	N18	WN016067	2.22	5/18/2001	Centric diatom sp. group 1 diam <10 micr	67.47
WN016	N18	WN016067	2.22	5/18/2001	Ceratium longipes	13284.89
WN016	N18	WN016067	2.22	5/18/2001	Chaetoceros decipiens	670.77
WN016	N18	WN016067	2.22	5/18/2001	Chaetoceros sp. group 2 diam 10-30 micro	763.75
WN016	N18	WN016067	2.22	5/18/2001	Chaetoceros spp.	109.13
WN016	N18	WN016067	2.22	5/18/2001	Choanoflagellate spp.	165.55
WN016	N18	WN016067	2.22	5/18/2001	Cryptomonas sp. group 1 length <10 micro	472.77
WN016	N18	WN016067	2.22	5/18/2001	Gymnodinium sp. group 1 5-20 microns wid	1452.21
WN016	N18	WN016067	2.22	5/18/2001	Gymnodinium sp. group 2 21-40 microns wi	1784.42
WN016	N18	WN016067	2.22	5/18/2001	Gyrodinium spirale	47200.33
WN016	N18	WN016067	2.22	5/18/2001	Heterocapsa triquetra	170.19
WN016	N18	WN016067	2.22	5/18/2001	Leptocylindrus minimus	31.34
WN016	N18	WN016067	2.22	5/18/2001	Licmophora spp.	247.74
WN016	N18	WN016067	2.22	5/18/2001	Prorocentrum minimum	416.66
WN016	N18	WN016067	2.22	5/18/2001	Protoperidinium bipes	234.82
WN016	N18	WN016067	2.22	5/18/2001	Pseudonitzschia delicatissima	820.34
WN016	N18	WN016067	2.22	5/18/2001	Skeletonema costatum	29028.82
WN016	N18	WN016067	2.22	5/18/2001	Unid. micro-phytoflag sp. group 1 length	11432.65
WN016	N18	WN016067	2.22	5/18/2001	Unid. micro-phytoflag sp. group 2 length	2727.97
WN016	N18	WN016064	16.38	5/18/2001	Calycomonas wulffii	20.75
WN016	N18	WN016064	16.38	5/18/2001	Centric diatom sp. group 1 diam <10 micr	22.90
WN016	N18	WN016064	16.38	5/18/2001	Ceratium fusus	2035.07
WN016	N18	WN016064	16.38	5/18/2001	Ceratium lineatum	1315.41
WN016	N18	WN016064	16.38	5/18/2001	Ceratium longipes	67643.93
WN016	N18	WN016064	16.38	5/18/2001	Ceratium tripos	5214.77

		Sample	Depth	Sampling		Estimated Carbon Equivalence
Survey	Sta.	Number	(m)	Date	Plankton	(ng Carbon/L)
WN016	N18	WN016064	16.38	5/18/2001	Chaetoceros debilis	864.21
WN016	N18	WN016064	16.38	5/18/2001	Chaetoceros sp. group 2 diam 10-30 micro	2804.67
WN016	N18	WN016064	16.38	5/18/2001	Choanoflagellate spp.	56.19
WN016	N18	WN016064	16.38	5/18/2001	Cryptomonas sp. group 1 length <10 micro	285.30
WN016	N18	WN016064	16.38	5/18/2001	Gymnodinium sp. group 1 5-20 microns wid	1183.10
WN016	N18	WN016064	16.38	5/18/2001	Gyrodinium spirale	11996.53
WN016	N18	WN016064	16.38	5/18/2001	Heterocapsa rotundata	116.41
WN016	N18	WN016064	16.38	5/18/2001	Prorocentrum minimum	105.90
WN016	N18	WN016064	16.38	5/18/2001	Pseudonitzschia delicatissima	244.86
WN016	N18	WN016064	16.38	5/18/2001	Skeletonema costatum	4247.95
WN016	N18	WN016064	16.38	5/18/2001	Thalassionema nitzschioides	86.09
WN016	N18	WN016064	16.38	5/18/2001	Thalassiosira sp. group 3 10-20 microns	72.93
WN016	N18	WN016064	16.38	5/18/2001	Unid. micro-phytoflag sp. group 1 length	13133.70
WF017	F01	WF017038	2.58	6/19/2001	Calycomonas wulffii	19.48
WF017	F01	WF017038	2.58	6/19/2001	Centric diatom sp. group 1 diam <10 micr	150.46
WF017	F01	WF017038	2.58	6/19/2001	Ceratium fusus	763.99
WF017	F01	WF017038	2.58	6/19/2001	Ceratium tripos	11746.15
WF017	F01	WF017038	2.58	6/19/2001	Chaetoceros decipiens	576.99
WF017	F01	WF017038	2.58	6/19/2001	Chaetoceros sp. group 2 diam 10-30 micro	1051.14
WF017	F01	WF017038	2.58	6/19/2001	Cryptomonas sp. group 1 length <10 micro	602.47
WF017	F01	WF017038	2.58	6/19/2001	Cylindrotheca closterium	236.97
WF017	F01	WF017038	2.58	6/19/2001	Gymnodinium sp. group 1 5-20 microns wid	4996.68
WF017	F01	WF017038	2.58	6/19/2001	Gymnodinium sp. group 2 21-40 microns wi	2558.22
WF017	F01	WF017038	2.58	6/19/2001	Gyrodinium sp. group 2 21-40 microns wid	4604.80
WF017	F01	WF017038	2.58	6/19/2001	Gyrodinium spirale	4503.65
WF017	F01	WF017038	2.58	6/19/2001	Heterocapsa rotundata	54.63
WF017	F01	WF017038	2.58	6/19/2001	Leptocylindrus danicus	188.37
WF017	F01	WF017038	2.58	6/19/2001	Licmophora spp.	236.78
WF017	F01	WF017038	2.58	6/19/2001	Pennate diatom sp. group 2 10-30 microns	8.47
WF017	F01	WF017038	2.58	6/19/2001	Proboscia alata	703.71
WF017	F01	WF017038	2.58	6/19/2001	Protoperidinium bipes	134.66
WF017	F01	WF017038	2.58	6/19/2001	Skeletonema costatum	74.06
WF017	F01	WF017038	2.58	6/19/2001	Thalassionema nitzschioides	161.60
WF017	F01	WF017038	2.58	6/19/2001	Unid. micro-phytoflag sp. group 1 length	17655.27
WF017	F01	WF017036	17.16	6/19/2001	Amphidinium spp.	384.86
WF017	F01	WF017036	17.16	6/19/2001	Calycomonas ovalis	20.72
WF017	F01	WF017036	17.16	6/19/2001	Centric diatom sp. group 1 diam <10 micr	625.33
WF017	F01	WF017036	17.16	6/19/2001	Ceratium fusus	3175.21
WF017	F01	WF017036	17.16	6/19/2001	Ceratium longipes	44855.07
WF017	F01	WF017036	17.16	6/19/2001	Ceratium tripos	16272.68

Survey	Sta	Sample	Depth	Sampling Date	Plankton	Estimated Carbon Equivalence (ng Carbon/L)
WF017	F01	WF017036	17.16	6/19/2001	Chaetoceros borealis	126.10
WF017	F01	WF017036	17.16	6/19/2001	Chaetoceros decipiens	399.67
WF017	F01	WF017036	17.16	6/19/2001	Chaetoceros sp. group 2 diam 10-30 micro	637.09
WF017	F01	WF017036	17.16	6/19/2001	Corethron criophilum	818.88
WF017	F01	WF017036	17.16	6/19/2001	Cryptomonas sp. group 1 length <10 micro	921.58
WF017	F01	WF017036	17.16	6/19/2001	Cryptomonas sp. group 2 length >10 micro	111.67
WF017	F01	WF017036	17.16	6/19/2001	Cylindrotheca closterium	246.22
WF017	F01	WF017036	17.16	6/19/2001	Dictyocha fibula	112.04
WF017	F01	WF017036	17.16	6/19/2001	Dictyocha speculum	645.54
WF017	F01	WF017036	17.16	6/19/2001	Gymnodinium sp. group 1 5-20 microns wid	2595.83
WF017	F01	WF017036	17.16	6/19/2001	Gymnodinium sp. group 2 21-40 microns wi	2658.05
WF017	F01	WF017036	17.16	6/19/2001	Gyrodinium spirale	23436.34
WF017	F01	WF017036	17.16	6/19/2001	Heterocapsa rotundata	737.89
WF017	F01	WF017036	17.16	6/19/2001	Leptocylindrus danicus	146.79
WF017	F01	WF017036	17.16	6/19/2001	Licmophora spp.	24.56
WF017	F01	WF017036	17.16	6/19/2001	Proboscia alata	731.17
WF017	F01	WF017036	17.16	6/19/2001	Prorocentrum minimum	41.31
WF017	F01	WF017036	17.16	6/19/2001	Protoperidinium bipes	139.92
WF017	F01	WF017036	17.16	6/19/2001	Pseudonitzschia delicatissima	5.62
WF017	F01	WF017036	17.16	6/19/2001	Thalassionema nitzschioides	391.77
WF017	F01	WF017036	17.16	6/19/2001	Unid. micro-phytoflag sp. group 1 length	13031.11
WF017	F01	WF017036	17.16	6/19/2001	Unid. micro-phytoflag sp. group 2 length	338.63
WF017	F02	WF017047	2.33	6/19/2001	Amphidinium spp.	87.02
WF017	F02	WF017047	2.33	6/19/2001	Calycomonas ovalis	39.36
WF017	F02	WF017047	2.33	6/19/2001	Calycomonas wulffii	57.65
WF017	F02	WF017047	2.33	6/19/2001	Centric diatom sp. group 1 diam <10 micr	381.76
WF017	F02	WF017047	2.33	6/19/2001	Ceratium fusus	10051.20
WF017	F02	WF017047	2.33	6/19/2001	Ceratium tripos	19316.83
WF017	F02	WF017047	2.33	6/19/2001	Chaetoceros sp. group 1 diam <10 microns	43.97
WF017	F02	WF017047	2.33	6/19/2001	Chaetoceros sp. group 2 diam 10-30 micro	432.16
WF017	F02	WF017047	2.33	6/19/2001	Cryptomonas sp. group 1 length <10 micro	330.26
WF017	F02	WF017047	2.33	6/19/2001	Cylindrotheca closterium	129.90
WF017	F02	WF017047	2.33	6/19/2001	Gymnodinium sp. group 1 5-20 microns wid	8522.38
WF017	F02	WF017047	2.33	6/19/2001	Gymnodinium sp. group 2 21-40 microns wi	841.41
WF017	F02	WF017047	2.33	6/19/2001	Gyrodinium sp. group 2 21-40 microns wid	1682.82
WF017	F02	WF017047	2.33	6/19/2001	Leptocylindrus danicus	309.78
WF017	F02	WF017047	2.33	6/19/2001	Proboscia alata	6955.27
WF017	F02	WF017047	2.33	6/19/2001	Thalassionema nitzschioides	283.47
WF017	F02	WF017047	2.33	6/19/2001	Unid. micro-phytoflag sp. group 1 length	17473.83
WF017	F02	WF017045	21.63	6/19/2001	Centric diatom sp. group 1 diam <10 micr	185.14

0

Survey	Sta	Sample Number	Depth	Sampling Date	Plankton	Estimated Carbon Equivalence (ng Carbon/L)
WF017	F02	WF017045	21.63	6/19/2001	Ceratium fusus	685.48
WF017	F02	WF017045	21.63	6/19/2001	Ceratium longipes	177721.14
WF017	F02	WF017045	21.63	6/19/2001	Ceratium tripos	87825.57
WF017	F02	WF017045	21.63	6/19/2001	Chaetoceros borealis	871.17
WF017	F02	WF017045	21.63	6/19/2001	Chaetoceros debilis	1455.47
WF017	F02	WF017045	21.63	6/19/2001	Chaetoceros sp. group 2 diam 10-30 micro	392.97
WF017	F02	WF017045	21.63	6/19/2001	Corethron criophilum	707.14
WF017	F02	WF017045	21.63	6/19/2001	Cryptomonas sp. group 1 length <10 micro	306.32
WF017	F02	WF017045	21.63	6/19/2001	Cylindrotheca closterium	35.44
WF017	F02	WF017045	21.63	6/19/2001	Gymnodinium sp. group 1 5-20 microns wid	597.76
WF017	F02	WF017045	21.63	6/19/2001	Gyrodinium spirale	48571.65
WF017	F02	WF017045	21.63	6/19/2001	Heterocapsa rotundata	529.36
WF017	F02	WF017045	21.63	6/19/2001	Leptocylindrus danicus	84.51
WF017	F02	WF017045	21.63	6/19/2001	Licmophora spp.	21.21
WF017	F02	WF017045	21.63	6/19/2001	Protoperidinium depressum	134381.39
WF017	F02	WF017045	21.63	6/19/2001	Pseudonitzschia pungens	419.75
WF017	F02	WF017045	21.63	6/19/2001	Rhizosolenia setigera	1944.06
WF017	F02	WF017045	21.63	6/19/2001	Skeletonema costatum	93.03
WF017	F02	WF017045	21.63	6/19/2001	Stephanopyxis turris	670.07
WF017	F02	WF017045	21.63	6/19/2001	Thalassionema nitzschioides	503.48
WF017	F02	WF017045	21.63	6/19/2001	Thalassiosira nordenskioldii	52.14
WF017	F02	WF017045	21.63	6/19/2001	Thalassiosira sp. group 3 10-20 microns	49.13
WF017	F02	WF017045	21.63	6/19/2001	Unid. micro-phytoflag sp. group 1 length	10605.71
WF017	F06	WF0170C7	1.66	6/20/2001	Amphidinium spp.	62.96
WF017	F06	WF0170C7	1.66	6/20/2001	Calycomonas ovalis	71.19
WF017	F06	WF0170C7	1.66	6/20/2001	Calycomonas wulffii	111.24
WF017	F06	WF0170C7	1.66	6/20/2001	Centric diatom sp. group 2 diam 10-30 mi	307.59
WF017	F06	WF0170C7	1.66	6/20/2001	Ceratium fusus	909.07
WF017	F06	WF0170C7	1.66	6/20/2001	Ceratium lineatum	587.60
WF017	F06	WF0170C7	1.66	6/20/2001	Ceratium longipes	9064.98
WF017	F06	WF0170C7	1.66	6/20/2001	Ceratium tripos	34941.66
WF017	F06	WF0170C7	1.66	6/20/2001	Chaetoceros compressus	5987.16
WF017	F06	WF0170C7	1.66	6/20/2001	Cylindrotheca closterium	47.00
WF017	F06	WF0170C7	1.66	6/20/2001	Dactyliosolen fragilissimus	612.23
WF017	F06	WF0170C7	1.66	6/20/2001	Gymnodinium sp. group 1 5-20 microns wid	4161.86
WF017	F06	WF0170C7	1.66	6/20/2001	Gymnodinium sp. group 2 21-40 microns wi	49921.79
WF017	F06	WF0170C7	1.66	6/20/2001	Leptocylindrus minimus	64.26
WF017	F06	WF0170C7	1.66	6/20/2001	Prorocentrum minimum	47.31
WF017	F06	WF0170C7	1.66	6/20/2001	Skeletonema costatum	17.62
WF017	F06	WF0170C7	1.66	6/20/2001	Thalassionema nitzschioides	51.28

		Comula	Denth	Someling		Estimated Carbon
Survey	Sta.	Number	Deptn (m)	Date	Plankton	(ng Carbon/L)
WF017	F06	WF0170C7	1.66	6/20/2001	Unid. micro-phytoflag sp. group 1 length	16486.07
WF017	F06	WF0170C7	1.66	6/20/2001	Unid. micro-phytoflag sp. group 2 length	1396.08
WF017	F06	WF0170C5	17.36	6/20/2001	Calycomonas wulffii	19.35
WF017	F06	WF0170C5	17.36	6/20/2001	Centric diatom sp. group 1 diam <10 micr	128.15
WF017	F06	WF0170C5	17.36	6/20/2001	Ceratium fusus	2530.44
WF017	F06	WF0170C5	17.36	6/20/2001	Ceratium longipes	479425.77
WF017	F06	WF0170C5	17.36	6/20/2001	Ceratium tripos	35662.82
WF017	F06	WF0170C5	17.36	6/20/2001	Chaetoceros compressus	14034.21
WF017	F06	WF0170C5	17.36	6/20/2001	Chaetoceros sp. group 2 diam 10-30 micro	1740.76
WF017	F06	WF0170C5	17.36	6/20/2001	Cryptomonas sp. group 1 length <10 micro	116.40
WF017	F06	WF0170C5	17.36	6/20/2001	Cylindrotheca closterium	130.81
WF017	F06	WF0170C5	17.36	6/20/2001	Gymnodinium sp. group 1 5-20 microns wid	275.83
WF017	F06	WF0170C5	17.36	6/20/2001	Gyrodinium sp. group 2 21-40 microns wid	5092.47
WF017	F06	WF0170C5	17.36	6/20/2001	Pseudonitzschia delicatissima	26.86
WF017	F06	WF0170C5	17.36	6/20/2001	Pyramimonas sp. group 1 10-20 microns le	102.19
WF017	F06	WF0170C5	17.36	6/20/2001	Unid. micro-phytoflag sp. group 1 length	5936.82
WF017	F06	WF0170C5	17.36	6/20/2001	Unid. micro-phytoflag sp. group 2 length	647.68
WF017	F26	WF017081	2.84	6/20/2001	Calycomonas ovalis	36.61
WF017	F26	WF017081	2.84	6/20/2001	Calycomonas wulffii	71.51
WF017	F26	WF017081	2.84	6/20/2001	Centric diatom sp. group 1 diam <10 micr	197.29
WF017	F26	WF017081	2.84	6/20/2001	Centric diatom sp. group 2 diam 10-30 mi	169.48
WF017	F26	WF017081	2.84	6/20/2001	Cerataulina pelagica	1412.15
WF017	F26	WF017081	2.84	6/20/2001	Ceratium longipes	34963.28
WF017	F26	WF017081	2.84	6/20/2001	Chaetoceros compressus	62592.14
WF017	F26	WF017081	2.84	6/20/2001	Cryptomonas sp. group 1 length <10 micro	691.24
WF017	F26	WF017081	2.84	6/20/2001	Cryptomonas sp. group 2 length >10 micro	591.88
WF017	F26	WF017081	2.84	6/20/2001	Cylindrotheca closterium	543.78
WF017	F26	WF017081	2.84	6/20/2001	Guinardia delicatula	1340.40
WF017	F26	WF017081	2.84	6/20/2001	Gymnodinium sp. group 1 5-20 microns wid	3057.55
WF017	F26	WF017081	2.84	6/20/2001	Leptocylindrus minimus	165.24
WF017	F26	WF017081	2.84	6/20/2001	Licmophora spp.	108.48
WF017	F26	WF017081	2.84	6/20/2001	Odontella aurita	2750.12
WF017	F26	WF017081	2.84	6/20/2001	Pennate diatom sp. group 2 10-30 microns	700.64
WF017	F26	WF017081	2.84	6/20/2001	Pennate diatom sp. group 3 31-60 microns	333.34
WF017	F26	WF017081	2.84	6/20/2001	Pseudonitzschia delicatissima	372.24
WF017	F26	WF017081	2.84	6/20/2001	Skeletonema costatum	181.58
WF017	F26	WF017081	2.84	6/20/2001	Unid. micro-phytoflag sp. group 1 length	15266.60
WF017	F26	WF01707F	20.6	6/20/2001	Centric diatom sp. group 1 diam <10 micr	8.93
WF017	F26	WF01707F	20.6	6/20/2001	Ceratium longipes	79156.00
WF017	F26	WF01707F	20.6	6/20/2001	Chaetoceros compressus	19261.15

Survey	Sta.	Sample Number	Depth (m)	Sampling Date	Plankton	Estimated Carbon Equivalence (ng Carbon/L)
WF017	F26	WF01707F	20.6	6/20/2001	Cryptomonas sp. group 1 length <10 micro	97.37
WF017	F26	WF01707F	20.6	6/20/2001	Cylindrotheca closterium	123.11
WF017	F26	WF01707F	20.6	6/20/2001	Gymnodinium sp. group 1 5-20 microns wid	1038.33
WF017	F26	WF01707F	20.6	6/20/2001	Gyrodinium sp. group 2 21-40 microns wid	2130.02
WF017	F26	WF01707F	20.6	6/20/2001	Pleurosigma spp.	225.77
WF017	F26	WF01707F	20.6	6/20/2001	Pseudonitzschia delicatissima	67.53
WF017	F26	WF01707F	20.6	6/20/2001	Thalassionema nitzschioides	11.19
WF017	F26	WF01707F	20.6	6/20/2001	Thalassiosira sp. group 3 10-20 microns	56.99
WF017	F26	WF01707F	20.6	6/20/2001	Unid. micro-phytoflag sp. group 1 length	3691.21
WF017	F27	WF017092	1.98	6/20/2001	Calycomonas wulffii	37.30
WF017	F27	WF017092	1.98	6/20/2001	Centric diatom sp. group 1 diam <10 micr	41.16
WF017	F27	WF017092	1.98	6/20/2001	Ceratium fusus	3657.64
WF017	F27	WF017092	1.98	6/20/2001	Chaetoceros compressus	103013.92
WF017	F27	WF017092	1.98	6/20/2001	Chaetoceros sp. group 1 diam <10 microns	204.82
WF017	F27	WF017092	1.98	6/20/2001	Chaetoceros sp. group 2 diam 10-30 micro	25581.31
WF017	F27	WF017092	1.98	6/20/2001	Cryptomonas sp. group 1 length <10 micro	208.31
WF017	F27	WF017092	1.98	6/20/2001	Cylindrotheca closterium	2079.95
WF017	F27	WF017092	1.98	6/20/2001	Eutreptia/eutreptiella spp.	151.13
WF017	F27	WF017092	1.98	6/20/2001	Guinardia delicatula	2516.90
WF017	F27	WF017092	1.98	6/20/2001	Gymnodinium sp. group 1 5-20 microns wid	2126.39
WF017	F27	WF017092	1.98	6/20/2001	Pennate diatom sp. group 2 10-30 microns	487.26
WF017	F27	WF017092	1.98	6/20/2001	Proboscia alata	6749.40
WF017	F27	WF017092	1.98	6/20/2001	Pseudonitzschia delicatissima	1087.27
WF017	F27	WF017092	1.98	6/20/2001	Scenedesmus quadricauda	14.56
WF017	F27	WF017092	1.98	6/20/2001	Skeletonema costatum	2032.81
WF017	F27	WF017092	1.98	6/20/2001	Unid. micro-phytoflag sp. group 1 length	15410.44
WF017	F27	WF017092	1.98	6/20/2001	Unid. micro-phytoflag sp. group 2 length	312.06
WF017	F27	WF017090	32.18	6/20/2001	Centric diatom sp. group 1 diam <10 micr	1.68
WF017	F27	WF017090	32.18	6/20/2001	Ceratium longipes	270140.84
WF017	F27	WF017090	32.18	6/20/2001	Ceratium tripos	16019.66
WF017	F27	WF017090	32.18	6/20/2001	Chaetoceros compressus	3173.18
WF017	F27	WF017090	32.18	6/20/2001	Chaetoceros sp. group 2 diam 10-30 micro	2969.54
WF017	F27	WF017090	32.18	6/20/2001	Cryptomonas sp. group 1 length <10 micro	2.61
WF017	F27	WF017090	32.18	6/20/2001	Gymnodinium sp. group 1 5-20 microns wid	21.63
WF017	F27	WF017090	32.18	6/20/2001	Gyrodinium sp. group 2 21-40 microns wid	598.11
WF017	F27	WF017090	32.18	6/20/2001	Pseudonitzschia delicatissima	12.64
WF017	F27	WF017090	32.18	6/20/2001	Unid. micro-phytoflag sp. group 1 length	398.51
WF017	F31	WF0170E4	2.14	6/20/2001	Calycomonas ovalis	31.77
WF017	F31	WF0170E4	2.14	6/20/2001	Centric diatom sp. group 1 diam <10 micr	582.16
WF017	F31	WF0170E4	2.14	6/20/2001	Chaetoceros sp. group 2 diam 10-30 micro	697.77

		Sample	Depth	Sampling		Estimated Carbon Equivalence
Survey	Sta.	Number	(m)	Date	Plankton	(ng Carbon/L)
WF017	F31	WF0170E4	2.14	6/20/2001	Cryptomonas sp. group 1 length <10 micro	1946.33
WF017	F31	WF0170E4	2.14	6/20/2001	Cryptomonas sp. group 2 length >10 micro	3253.23
WF017	F31	WF0170E4	2.14	6/20/2001	Cylindrotheca closterium	3932.69
WF017	F31	WF0170E4	2.14	6/20/2001	Dictyocha speculum	989.84
WF017	F31	WF0170E4	2.14	6/20/2001	Grammatophora marina	99.27
WF017	F31	WF0170E4	2.14	6/20/2001	Guinardia delicatula	8389.66
WF017	F31	WF0170E4	2.14	6/20/2001	Gymnodinium sp. group 1 5-20 microns wid	6191.54
WF017	F31	WF0170E4	2.14	6/20/2001	Heterocapsa rotundata	696.26
WF017	F31	WF0170E4	2.14	6/20/2001	Heterocapsa triquetra	388.73
WF017	F31	WF0170E4	2.14	6/20/2001	Leptocylindrus minimus	232.64
WF017	F31	WF0170E4	2.14	6/20/2001	Licmophora spp.	94.15
WF017	F31	WF0170E4	2.14	6/20/2001	Pennate diatom sp. group 2 10-30 microns	135.12
WF017	F31	WF0170E4	2.14	6/20/2001	Pleurosigma spp.	865.45
WF017	F31	WF0170E4	2.14	6/20/2001	Pseudonitzschia delicatissima	236.90
WF017	F31	WF0170E4	2.14	6/20/2001	Skeletonema costatum	20722.09
WF017	F31	WF0170E4	2.14	6/20/2001	Thalassionema nitzschioides	171.63
WF017	F31	WF0170E4	2.14	6/20/2001	Thalassiosira sp. group 3 10-20 microns	381.64
WF017	F31	WF0170E4	2.14	6/20/2001	Unid. micro-phytoflag sp. group 1 length	19723.76
WF017	F31	WF0170E3	7.24	6/20/2001	Calycomonas ovalis	62.73
WF017	F31	WF0170E3	7.24	6/20/2001	Centric diatom sp. group 1 diam <10 micr	1149.39
WF017	F31	WF0170E3	7.24	6/20/2001	Ceratium longipes	13312.94
WF017	F31	WF0170E3	7.24	6/20/2001	Chaetoceros sp. group 1 diam <10 microns	898.66
WF017	F31	WF0170E3	7.24	6/20/2001	Chaetoceros sp. group 2 diam 10-30 micro	1148.04
WF017	F31	WF0170E3	7.24	6/20/2001	Cryptomonas sp. group 1 length <10 micro	4298.98
WF017	F31	WF0170E3	7.24	6/20/2001	Cryptomonas sp. group 2 length >10 micro	8789.42
WF017	F31	WF0170E3	7.24	6/20/2001	Cylindrotheca closterium	3209.34
WF017	F31	WF0170E3	7.24	6/20/2001	Eutreptia/eutreptiella spp.	41.30
WF017	F31	WF0170E3	7.24	6/20/2001	Guinardia delicatula	2756.06
WF017	F31	WF0170E3	7.24	6/20/2001	Gymnodinium sp. group 1 5-20 microns wid	3201.61
WF017	F31	WF0170E3	7.24	6/20/2001	Heterocapsa rotundata	171.83
WF017	F31	WF0170E3	7.24	6/20/2001	Leptocylindrus minimus	588.88
WF017	F31	WF0170E3	7.24	6/20/2001	Pennate diatom sp. group 2 10-30 microns	110.97
WF017	F31	WF0170E3	7.24	6/20/2001	Pleurosigma spp.	569.57
WF017	F31	WF0170E3	7.24	6/20/2001	Prorocentrum micans	418.45
WF017	F31	WF0170E3	7.24	6/20/2001	Pseudonitzschia delicatissima	255.13
WF017	F31	WF0170E3	7.24	6/20/2001	Skeletonema costatum	28416.02
WF017	F31	WF0170E3	7.24	6/20/2001	Thalassionema nitzschioides	339.44
WF017	F31	WF0170E3	7.24	6/20/2001	Thalassiosira sp. group 3 10-20 microns	322.93
WF017	F31	WF0170E3	7.24	6/20/2001	Unid. micro-phytoflag sp. group 1 length	35837.73
WF017	F31	WF0170E3	7.24	6/20/2001	Unid. micro-phytoflag sp. group 2 length	341.72

		Sample	Denth	Sampling		Estimated Carbon Equivalence
Survey	Sta.	Number	(m)	Date	Plankton	(ng Carbon/L)
WF017	F13	WF017131	2.68	6/21/2001	Calycomonas ovalis	144.02
WF017	F13	WF017131	2.68	6/21/2001	Calycomonas wulffii	168.79
WF017	F13	WF017131	2.68	6/21/2001	Centric diatom sp. group 1 diam <10 micr	62.09
WF017	F13	WF017131	2.68	6/21/2001	Ceratium longipes	7335.61
WF017	F13	WF017131	2.68	6/21/2001	Ceratium tripos	7068.91
WF017	F13	WF017131	2.68	6/21/2001	Chaetoceros compressus	764.99
WF017	F13	WF017131	2.68	6/21/2001	Chaetoceros sp. group 2 diam 10-30 micro	379.55
WF017	F13	WF017131	2.68	6/21/2001	Cryptomonas sp. group 1 length <10 micro	169.20
WF017	F13	WF017131	2.68	6/21/2001	Cryptomonas sp. group 2 length >10 micro	155.23
WF017	F13	WF017131	2.68	6/21/2001	Cylindrotheca closterium	28.52
WF017	F13	WF017131	2.68	6/21/2001	Eucampia cornuta	
WF017	F13	WF017131	2.68	6/21/2001	Guinardia delicatula	337.47
WF017	F13	WF017131	2.68	6/21/2001	Gymnodinium sp. group 1 5-20 microns wid	4009.38
WF017	F13	WF017131	2.68	6/21/2001	Gymnodinium sp. group 2 21-40 microns wi	1108.48
WF017	F13	WF017131	2.68	6/21/2001	Heterocapsa rotundata	78.90
WF017	F13	WF017131	2.68	6/21/2001	Heterocapsa triquetra	70.48
WF017	F13	WF017131	2.68	6/21/2001	Leptocylindrus minimus	32.45
WF017	F13	WF017131	2.68	6/21/2001	Licmophora spp.	17.07
WF017	F13	WF017131	2.68	6/21/2001	Prorocentrum minimum	28.71
WF017	F13	WF017131	2.68	6/21/2001	Skeletonema costatum	235.72
WF017	F13	WF017131	2.68	6/21/2001	Thalassionema nitzschioides	62.24
WF017	F13	WF017131	2.68	6/21/2001	Thalassiosira sp. group 3 10-20 microns	19.77
WF017	F13	WF017131	2.68	6/21/2001	Unid. micro-phytoflag sp. group 1 length	19902.56
WF017	F13	WF017131	2.68	6/21/2001	Unid. micro-phytoflag sp. group 2 length	941.45
WF017	F13	WF01712E	11.2	6/21/2001	Calycomonas wulffii	81.63
WF017	F13	WF01712E	11.2	6/21/2001	Centric diatom sp. group 1 diam <10 micr	150.14
WF017	F13	WF01712E	11.2	6/21/2001	Ceratium fusus	3735.48
WF017	F13	WF01712E	11.2	6/21/2001	Ceratium longipes	33701.71
WF017	F13	WF01712E	11.2	6/21/2001	Ceratium tripos	24613.72
WF017	F13	WF01712E	11.2	6/21/2001	Chaetoceros compressus	416.20
WF017	F13	WF01712E	11.2	6/21/2001	Chaetoceros sp. group 2 diam 10-30 micro	305.92
WF017	F13	WF01712E	11.2	6/21/2001	Cryptomonas sp. group 1 length <10 micro	350.68
WF017	F13	WF01712E	11.2	6/21/2001	Cylindrotheca closterium	55.17
WF017	F13	WF01712E	11.2	6/21/2001	Dactyliosolen fragilissimus	359.39
WF017	F13	WF01712E	11.2	6/21/2001	Ebria tripartita	87.93
WF017	F13	WF01712E	11.2	6/21/2001	Guinardia flaccida	49663.42
WF017	F13	WF01712E	11.2	6/21/2001	Gymnodinium sp. group 1 5-20 microns wid	1938.96
WF017	F13	WF01712E	11.2	6/21/2001	Gyrodinium sp. group 2 21-40 microns wid	357.38
WF017	F13	WF01712E	11.2	6/21/2001	Leptocylindrus minimus	21.97
WF017	F13	WF01712E	11.2	6/21/2001	Licmophora spp.	16.51

Survey	Sta	Sample	Depth	Sampling	Plankton	Estimated Carbon Equivalence
WF017	F13	WF01712E	11.2	6/21/2001	Pennate diatom sp. group 2 10-30 microns	118.48
WF017	F13	WF01712E	11.2	6/21/2001	Pseudonitzschia delicatissima	151.33
WF017	F13	WF01712E	11.2	6/21/2001	Skeletonema costatum	268.99
WF017	F13	WF01712E	11.2	6/21/2001	Thalassionema nitzschioides	452.26
WF017	F13	WF01712E	11.2	6/21/2001	Thalassiosira sp. group 3 10-20 microns	28.68
WF017	F13	WF01712E	11.2	6/21/2001	Unid, micro-phytoflag sp. group 1 length	19024.43
WF017	F13	WF01712E	11.2	6/21/2001	Unid, micro-phytoflag sp. group 2 length	1365.87
WF017	F22	WF017177	1.83	6/21/2001	Amphidinium crassum	69.83
WF017	F22	WF017177	1.83	6/21/2001	Calycomonas ovalis	125.89
WF017	F22	WF017177	1.83	6/21/2001	Calycomonas wulffii	430.32
WF017	F22	WF017177	1.83	6/21/2001	Centric diatom sp. group 1 diam <10 micr	316.60
WF017	F22	WF017177	1.83	6/21/2001	Ceratium fusus	1339.65
WF017	F22	WF017177	1.83	6/21/2001	Ceratium longipes	13358.61
WF017	F22	WF017177	1.83	6/21/2001	Ceratium tripos	27462.28
WF017	F22	WF017177	1.83	6/21/2001	Chaetoceros compressus	8126.43
WF017	F22	WF017177	1.83	6/21/2001	Cryptomonas sp. group 1 length <10 micro	158.46
WF017	F22	WF017177	1.83	6/21/2001	Cylindrotheca closterium	831.06
WF017	F22	WF017177	1.83	6/21/2001	Dactyliosolen fragilissimus	601.47
WF017	F22	WF017177	1.83	6/21/2001	Guinardia delicatula	2458.24
WF017	F22	WF017177	1.83	6/21/2001	Gymnodinium sp. group 1 5-20 microns wid	9053.66
WF017	F22	WF017177	1.83	6/21/2001	Gymnodinium sp. group 2 21-40 microns wi	897.16
WF017	F22	WF017177	1.83	6/21/2001	Gyrodinium sp. group 2 21-40 microns wid	897.16
WF017	F22	WF017177	1.83	6/21/2001	Gyrodinium spirale	3948.54
WF017	F22	WF017177	1.83	6/21/2001	Heterocapsa rotundata	9.56
WF017	F22	WF017177	1.83	6/21/2001	Leptocylindrus minimus	354.54
WF017	F22	WF017177	1.83	6/21/2001	Proboscia alata	1233.94
WF017	F22	WF017177	1.83	6/21/2001	Prorocentrum micans	279.93
WF017	F22	WF017177	1.83	6/21/2001	Pseudonitzschia delicatissima	37.93
WF017	F22	WF017177	1.83	6/21/2001	Skeletonema costatum	1930.60
WF017	F22	WF017177	1.83	6/21/2001	Thalassionema nitzschioides	18.89
WF017	F22	WF017177	1.83	6/21/2001	Thalassiosira sp. group 3 10-20 microns	24.00
WF017	F22	WF017177	1.83	6/21/2001	Unid. micro-phytoflag sp. group 1 length	27239.50
WF017	F22	WF017177	1.83	6/21/2001	Unid. micro-phytoflag sp. group 2 length	342.89
WF017	F22	WF017175	16.34	6/21/2001	Calycomonas wulffii	20.36
WF017	F22	WF017175	16.34	6/21/2001	Ceratium longipes	269927.47
WF017	F22	WF017175	16.34	6/21/2001	Chaetoceros compressus	27572.54
WF017	F22	WF017175	16.34	6/21/2001	Chaetoceros sp. group 2 diam 10-30 micro	2289.55
WF017	F22	WF017175	16.34	6/21/2001	Cryptomonas sp. group 1 length <10 micro	34.99
WF017	F22	WF017175	16.34	6/21/2001	Cylindrotheca closterium	275.29
WF017	F22	WF017175	16.34	6/21/2001	Gymnodinium sp. group 1 5-20 microns wid	1451.14

		Sample	Depth	Sampling	Dissilator	Estimated Carbon Equivalence
Survey	Sta.	Number	(m)		Plankton	(Ing Carbon/L)
WF017	F22	WF017175	10.34	6/21/2001	Bratanaridinium democranum	42424.00
WF017	F22	WF017175	16.34	6/21/2001	Protoperiamium depressum	43424.00
WF017	F22	WF01/1/5	16.34	6/21/2001	Pseudonitzschia delicatissima	6077.02
WF017	F22	WF01/1/5	16.34	6/21/2001	Unid. micro-phytofiag sp. group 1 length	0077.92
WF017	F24	WF017ICI	1.//	6/21/2001	Calycomonas ovalis	41.90
WF017	F24	WF0171C1	1.77	6/21/2001	Calycomonas wulffii	81.97
WF017	F24	WF0171C1	1.77	6/21/2001	Centric diatom sp. group 1 diam <10 micr	339.21
WF017	F24	WF0171C1	1.77	6/21/2001	Ceratium longipes	4452.87
WF017	F24	WF0171C1	1.77	6/21/2001	Chaetoceros sp. group 2 diam 10-30 micro	1843.16
WF017	F24	WF0171C1	1.77	6/21/2001	Cryptomonas sp. group 1 length <10 micro	3098.84
WF017	F24	WF0171C1	1.77	6/21/2001	Cryptomonas sp. group 2 length >10 micro	3166.00
WF017	F24	WF0171C1	1.77	6/21/2001	Cylindrotheca closterium	1038.82
WF017	F24	WF0171C1	1.77	6/21/2001	Dictyocha speculum	653.66
WF017	F24	WF0171C1	1.77	6/21/2001	Ebria tripartita	662.18
WF017	F24	WF0171C1	1.77	6/21/2001	Guinardia delicatula	2458.24
WF017	F24	WF0171C1	1.77	6/21/2001	Gymnodinium sp. group 1 5-20 microns wid	6133.13
WF017	F24	WF0171C1	1.77	6/21/2001	Gymnodinium sp. group 2 21-40 microns wi	1794.32
WF017	F24	WF0171C1	1.77	6/21/2001	Heterocapsa rotundata	402.32
WF017	F24	WF0171C1	1.77	6/21/2001	Heterocapsa triquetra	1028.56
WF017	F24	WF0171C1	1.77	6/21/2001	Leptocylindrus minimus	512.11
WF017	F24	WF0171C1	1.77	6/21/2001	Pseudonitzschia delicatissima	227.56
WF017	F24	WF0171C1	1.77	6/21/2001	Pseudonitzschia pungens	45.50
WF017	F24	WF0171C1	1.77	6/21/2001	Skeletonema costatum	18367.27
WF017	F24	WF0171C1	1.77	6/21/2001	Thalassionema nitzschioides	227.07
WF017	F24	WF0171C1	1.77	6/21/2001	Thalassiosira sp. group 3 10-20 microns	168.02
WF017	F24	WF0171C1	1.77	6/21/2001	Unid. micro-phytoflag sp. group 1 length	26956.35
WF017	F24	WF0171C1	1.77	6/21/2001	Unid. micro-phytoflag sp. group 2 length	342.89
WF017	F24	WF0171BF	8.66	6/21/2001	Calycomonas wulffii	99.62
WF017	F24	WF0171BF	8.66	6/21/2001	Centric diatom sp. group 1 diam <10 micr	21.99
WF017	F24	WF0171BF	8.66	6/21/2001	Ceratium longipes	29223.09
WF017	F24	WF0171BF	8.66	6/21/2001	Chaetoceros sp. group 2 diam 10-30 micro	1008.02
WF017	F24	WF0171BF	8.66	6/21/2001	Cocconeis scutellum	408.07
WF017	F24	WF0171BF	8.66	6/21/2001	Corethron criophilum	2015.45
WF017	F24	WF0171BF	8.66	6/21/2001	Cryptomonas sp. group 1 length <10 micro	1318.13
WF017	F24	WF0171BF	8.66	6/21/2001	Cylindrotheca closterium	353.50
WF017	F24	WF0171BF	8.66	6/21/2001	Eucampia cornuta	
WF017	F24	WF0171BF	8.66	6/21/2001	Guinardia delicatula	1717.84
WF017	F24	WF0171BF	8.66	6/21/2001	Gymnodinium sp. group 1 5-20 microns wid	2555.57
WF017	F24	WF0171BF	8.66	6/21/2001	Gymnodinium sp. group 2 21-40 microns wi	654.21
WF017	F24	WF0171BF	8.66	6/21/2001	Heterocapsa rotundata	20.92

		Sample	Depth	Sampling		Estimated Carbon Equivalence
Survey	Sta.	Number	(m)	Date	Plankton	(ng Carbon/L)
WF017	F24	WF0171BF	8.00	6/21/2001	Leptocylindrus danicus	1930.09
WF017	F24	WF0171BF	8.00	6/21/2001	Deprocepting minimum	153.12
WF017	F24	WF0171BF	8.00	6/21/2001	Protocentrum minimum	110.81
WF017	F24	WF0171BF	8.66	6/21/2001	Pseudonitzschia delicatissima	1565.61
WF017	F24	WF017IBF	8.66	6/21/2001	Skeletonema costatum	1565.61
WF017	F24	WF0171BF	8.66	6/21/2001	Thalassionema nitzschioides	68.87
WF017	F24	WF0171BF	8.66	6/21/2001	Unid. micro-phytoflag sp. group I length	13930.18
WF017	F25	WF017101	1.99	6/21/2001	Calycomonas ovalis	21.52
WF017	F25	WF017101	1.99	6/21/2001	Calycomonas wulffii	168.16
WF017	F25	WF017101	1.99	6/21/2001	Centric diatom sp. group 1 diam <10 micr	394.36
WF017	F25	WF017101	1.99	6/21/2001	Cerataulina pelagica	1106.95
WF017	F25	WF017101	1.99	6/21/2001	Ceratium fusus	1374.22
WF017	F25	WF017101	1.99	6/21/2001	Ceratium lineatum	1776.51
WF017	F25	WF017101	1.99	6/21/2001	Ceratium longipes	9135.57
WF017	F25	WF017101	1.99	6/21/2001	Ceratium tripos	17606.87
WF017	F25	WF017101	1.99	6/21/2001	Chaetoceros sp. group 2 diam 10-30 micro	2205.85
WF017	F25	WF017101	1.99	6/21/2001	Cryptomonas sp. group 1 length <10 micro	650.21
WF017	F25	WF017101	1.99	6/21/2001	Cylindrotheca closterium	3694.19
WF017	F25	WF017101	1.99	6/21/2001	Dactyliosolen fragilissimus	1388.24
WF017	F25	WF017101	1.99	6/21/2001	Ebria tripartita	452.85
WF017	F25	WF017101	1.99	6/21/2001	Guinardia delicatula	4202.79
WF017	F25	WF017101	1.99	6/21/2001	Guinardia flaccida	2127.95
WF017	F25	WF017101	1.99	6/21/2001	Gymnodinium sp. group 1 5-20 microns wid	3295.50
WF017	F25	WF017101	1.99	6/21/2001	Heterocapsa triquetra	175.55
WF017	F25	WF017101	1.99	6/21/2001	Leptocylindrus danicus	338.83
WF017	F25	WF017101	1.99	6/21/2001	Leptocylindrus minimus	525.33
WF017	F25	WF017101	1.99	6/21/2001	Licmophora spp.	42.52
WF017	F25	WF017101	1.99	6/21/2001	Prorocentrum minimum	143.02
WF017	F25	WF017101	1.99	6/21/2001	Pseudonitzschia delicatissima	671.11
WF017	F25	WF017101	1.99	6/21/2001	Skeletonema costatum	43447.00
WF017	F25	WF017101	1.99	6/21/2001	Thalassionema nitzschioides	329.43
WF017	F25	WF017101	1.99	6/21/2001	Thalassiosira sp. group 3 10-20 microns	147.73
WF017	F25	WF017101	1.99	6/21/2001	Unid. micro-phytoflag sp. group 1 length	27303.44
WF017	F25	WF0170FF	7.08	6/21/2001	Calycomonas wulffii	83.01
WF017	F25	WF0170FF	7.08	6/21/2001	Centric diatom sp. group 1 diam <10 micr	343.54
WF017	F25	WF0170FF	7.08	6/21/2001	Ceratium longipes	27057.57
WF017	F25	WF0170FF	7.08	6/21/2001	Ceratium tripos	20859.09
WF017	F25	WF0170FF	7.08	6/21/2001	Chaetoceros compressus	3879.83
WF017	F25	WF0170FF	7.08	6/21/2001	Chaetoceros sp. group 2 diam 10-30 micro	3739.56
WF017	F25	WF0170FF	7.08	6/21/2001	Corethron criophilum	4198.72

						Estimated Carbon
Survey	Sta.	Sample Number	Depth (m)	Sampling Date	Plankton	Equivalence (ng Carbon/L)
WF017	F25	WF0170FF	7.08	6/21/2001	Cryptomonas sp. group 1 length <10 micro	1194.70
WF017	F25	WF0170FF	7.08	6/21/2001	Cylindrotheca closterium	3997.81
WF017	F25	WF0170FF	7.08	6/21/2001	Guinardia delicatula	4364.05
WF017	F25	WF0170FF	7.08	6/21/2001	Gymnodinium sp. group 1 5-20 microns wid	6802.81
WF017	F25	WF0170FF	7.08	6/21/2001	Heterocapsa triquetra	1041.66
WF017	F25	WF0170FF	7.08	6/21/2001	Leptocylindrus danicus	1003.54
WF017	F25	WF0170FF	7.08	6/21/2001	Leptocylindrus minimus	1486.59
WF017	F25	WF0170FF	7.08	6/21/2001	Pseudonitzschia delicatissima	864.21
WF017	F25	WF0170FF	7.08	6/21/2001	Skeletonema costatum	34198.90
WF017	F25	WF0170FF	7.08	6/21/2001	Thalassionema nitzschioides	401.76
WF017	F25	WF0170FF	7.08	6/21/2001	Unid. micro-phytoflag sp. group 1 length	32232.05
WF017	F30	WF0171CE	2.48	6/21/2001	Asterionella formosa	9.56
WF017	F30	WF0171CE	2.48	6/21/2001	Calycomonas ovalis	21.25
WF017	F30	WF0171CE	2.48	6/21/2001	Ceratium longipes	27103.10
WF017	F30	WF0171CE	2.48	6/21/2001	Ceratium tripos	6257.73
WF017	F30	WF0171CE	2.48	6/21/2001	Chaetoceros compressus	1413.22
WF017	F30	WF0171CE	2.48	6/21/2001	Cryptomonas sp. group 1 length <10 micro	2621.21
WF017	F30	WF0171CE	2.48	6/21/2001	Cryptomonas sp. group 2 length >10 micro	3320.84
WF017	F30	WF0171CE	2.48	6/21/2001	Cylindrotheca closterium	2107.65
WF017	F30	WF0171CE	2.48	6/21/2001	Ebria tripartita	2418.29
WF017	F30	WF0171CE	2.48	6/21/2001	Guinardia delicatula	933.58
WF017	F30	WF0171CE	2.48	6/21/2001	Gymnodinium sp. group 1 5-20 microns wid	5619.71
WF017	F30	WF0171CE	2.48	6/21/2001	Gymnodinium sp. group 2 21-40 microns wi	545.15
WF017	F30	WF0171CE	2.48	6/21/2001	Heterocapsa rotundata	640.27
WF017	F30	WF0171CE	2.48	6/21/2001	Leptocylindrus minimus	71.81
WF017	F30	WF0171CE	2.48	6/21/2001	Licmophora spp.	25.19
WF017	F30	WF0171CE	2.48	6/21/2001	Melosira sp. group 1 diam <20 microns	12.43
WF017	F30	WF0171CE	2.48	6/21/2001	Pennate diatom sp. group 2 10-30 microns	180.74
WF017	F30	WF0171CE	2.48	6/21/2001	Pennate diatom sp. group 3 31-60 microns	77.39
WF017	F30	WF0171CE	2.48	6/21/2001	Pennate diatom sp. group 4 61-100 micron	64.26
WF017	F30	WF0171CE	2.48	6/21/2001	Pseudonitzschia delicatissima	17.28
WF017	F30	WF0171CE	2.48	6/21/2001	Pyramimonas sp. group 1 10-20 microns le	328.74
WF017	F30	WF0171CE	2.48	6/21/2001	Scenedesmus quadricauda	16.21
WF017	F30	WF0171CE	2.48	6/21/2001	Skeletonema costatum	874.73
WF017	F30	WF0171CE	2.48	6/21/2001	Thalassionema nitzschioides	22.96
WF017	F30	WF0171CE	2.48	6/21/2001	Thalassiosira sp. group 3 10-20 microns	43.76
WF017	F30	WF0171CE	2.48	6/21/2001	Unid. micro-phytoflag sp. group 1 length	22998.31
WF017	F30	WF0171CD	4.07	6/21/2001	Calycomonas ovalis	90.40
WF017	F30	WF0171CD	4.07	6/21/2001	Calycomonas wulffii	29.43
WF017	F30	WF0171CD	4.07	6/21/2001	Centric diatom sp. group 1 diam <10 micr	292.29

		Sample	Depth	Sampling		Estimated Carbon Equivalence
Survey	Sta.	Number	(m)	Date		(ng Carbon/L)
WF017	F30	WF01/ICD	4.07	6/21/2001		1154.54
WF017	F30	WF01/ICD	4.07	6/21/2001		2057.05
WF017	F30	WF01/ICD	4.07	6/21/2001	Ceratium tripos	2937.93
WF017	F30	WF017ICD	4.07	6/21/2001	Chaetoceros sp. group 2 diam 10-30 micro	329.40
WF017	F30	WF0171CD	4.07	6/21/2001	Cryptomonas sp. group 1 length <10 micro	2958.40
WF017	F30	WF0171CD	4.07	6/21/2001	Cryptomonas sp. group 2 length >10 micro	2922.93
WF017	F30	WF0171CD	4.07	6/21/2001	Cylindrotheca closterium	179.03
WF017	F30	WF0171CD	4.07	6/21/2001	Ebria tripartita	190.20
WF017	F30	WF0171CD	4.07	6/21/2001	Guinardia delicatula	1235.62
WF017	F30	WF0171CD	4.07	6/21/2001	Gymnodinium sp. group 1 5-20 microns wid	7969.11
WF017	F30	WF0171CD	4.07	6/21/2001	Gyrosigma spp.	3288.66
WF017	F30	WF0171CD	4.07	6/21/2001	Heterocapsa rotundata	990.49
WF017	F30	WF0171CD	4.07	6/21/2001	Leptocylindrus minimus	40.73
WF017	F30	WF0171CD	4.07	6/21/2001	Melosira sp. group 1 diam <20 microns	35.26
WF017	F30	WF0171CD	4.07	6/21/2001	Pennate diatom sp. group 2 10-30 microns	12.79
WF017	F30	WF0171CD	4.07	6/21/2001	Pseudonitzschia delicatissima	16.34
WF017	F30	WF0171CD	4.07	6/21/2001	Scenedesmus quadricauda	46.04
WF017	F30	WF0171CD	4.07	6/21/2001	Skeletonema costatum	589.33
WF017	F30	WF0171CD	4.07	6/21/2001	Thalassionema nitzschioides	163.05
WF017	F30	WF0171CD	4.07	6/21/2001	Thalassiosira sp. group 3 10-20 microns	20.68
WF017	F30	WF0171CD	4.07	6/21/2001	Unid. micro-phytoflag sp. group 1 length	34321.01
WF017	N16	WF017185	2.01	6/21/2001	Calycomonas wulffii	66.94
WF017	N16	WF017185	2.01	6/21/2001	Centric diatom sp. group 1 diam <10 micr	221.62
WF017	N16	WF017185	2.01	6/21/2001	Ceratium fusus	1750.47
WF017	N16	WF017185	2.01	6/21/2001	Ceratium longipes	14546.05
WF017	N16	WF017185	2.01	6/21/2001	Ceratium tripos	11213.76
WF017	N16	WF017185	2.01	6/21/2001	Chaetoceros compressus	1289.39
WF017	N16	WF017185	2.01	6/21/2001	Cryptomonas sp. group 1 length <10 micro	191.72
WF017	N16	WF017185	2.01	6/21/2001	Cylindrotheca closterium	271.48
WF017	N16	WF017185	2.01	6/21/2001	Guinardia delicatula	1340.63
WF017	N16	WF017185	2.01	6/21/2001	Gymnodinium sp. group 1 5-20 microns wid	2862.13
WF017	N16	WF017185	2.01	6/21/2001	Gymnodinium sp. group 2 21-40 microns wi	586.15
WF017	N16	WF017185	2.01	6/21/2001	Leptocylindrus minimus	257.80
WF017	N16	WF017185	2.01	6/21/2001	Prorocentrum minimum	456.22
WF017	N16	WF017185	2.01	6/21/2001	Pseudonitzschia delicatissima	43.36
WF017	N16	WF017185	2.01	6/21/2001	Rhizosolenia hebetata	164.54
WF017	N16	WF017185	2.01	6/21/2001	Skeletonema costatum	1148.20
WF017	N16	WF017185	2.01	6/21/2001	Thalassionema nitzschioides	24.68
WF017	N16	WF017185	2.01	6/21/2001	Thalassiosira sp. group 3 10-20 microns	62.73
WF017	N16	WF017185	2.01	6/21/2001	Unid. micro-phytoflag sp. group 1 length	9558.05

Survey	Sta	Sample	Depth	Sampling	Diankton	Estimated Carbon Equivalence
WF017	N16	WF017183	11.07	6/21/2001	Calycomonas wulffii	20.32
WF017	N16	WF017183	11.07	6/21/2001	Centric diatom sp. group 1 diam <10 micr	44.85
WF017	N16	WF017183	11.07	6/21/2001	Centric diatom sp. group 2 diam 10-30 mi	38.53
WF017	N16	WF017183	11.07	6/21/2001	Ceratium fusus	398.52
WF017	N16	WF017183	11.07	6/21/2001	Ceratium longipes	15895.89
WF017	N16	WF017183	11.07	6/21/2001	Chaetoceros compressus	1139.67
WF017	N16	WF017183	11.07	6/21/2001	Chaetoceros sp. group 2 diam 10-30 micro	915.39
WF017	N16	WF017183	11.07	6/21/2001	Cryptomonas sp. group 1 length <10 micro	122.22
WF017	N16	WF017183	11.07	6/21/2001	Cylindrotheca closterium	20.60
WF017	N16	WF017183	11.07	6/21/2001	Pseudonitzschia delicatissima	8.46
WF017	N16	WF017183	11.07	6/21/2001	Skeletonema costatum	23.18
WF017	N16	WF017183	11.07	6/21/2001	Thalassiosira sp. group 3 10-20 microns	7.14
WF017	N16	WF017183	11.07	6/21/2001	Unid. micro-phytoflag sp. group 1 length	6233.32
WF017	F23	WF0171EA	2.27	6/25/2001	Calycomonas wulffii	111.82
WF017	F23	WF0171EA	2.27	6/25/2001	Centric diatom sp. group 1 diam <10 micr	658.14
WF017	F23	WF0171EA	2.27	6/25/2001	Ceratium longipes	2429.84
WF017	F23	WF0171EA	2.27	6/25/2001	Ceratium tripos	1873.20
WF017	F23	WF0171EA	2.27	6/25/2001	Chaetoceros sp. group 2 diam 10-30 micro	670.52
WF017	F23	WF0171EA	2.27	6/25/2001	Cryptomonas sp. group 1 length <10 micro	1953.59
WF017	F23	WF0171EA	2.27	6/25/2001	Cryptomonas sp. group 2 length >10 micro	2570.87
WF017	F23	WF0171EA	2.27	6/25/2001	Cylindrotheca closterium	566.87
WF017	F23	WF0171EA	2.27	6/25/2001	Dictyocha speculum	59.35
WF017	F23	WF0171EA	2.27	6/25/2001	Ebria tripartita	602.23
WF017	F23	WF0171EA	2.27	6/25/2001	Guinardia delicatula	614.81
WF017	F23	WF0171EA	2.27	6/25/2001	Gymnodinium sp. group 1 5-20 microns wid	2921.75
WF017	F23	WF0171EA	2.27	6/25/2001	Gymnodinium sp. group 2 21-40 microns wi	1468.69
WF017	F23	WF0171EA	2.27	6/25/2001	Heterocapsa rotundata	156.81
WF017	F23	WF0171EA	2.27	6/25/2001	Leptocylindrus minimus	219.26
WF017	F23	WF0171EA	2.27	6/25/2001	Melosira sp. group 1 diam <20 microns	122.82
WF017	F23	WF0171EA	2.27	6/25/2001	Pennate diatom sp. group 3 31-60 microns	92.67
WF017	F23	WF0171EA	2.27	6/25/2001	Prorocentrum minimum	152.16
WF017	F23	WF0171EA	2.27	6/25/2001	Protoperidinium sp. group 2 31-75 micron	13688.29
WF017	F23	WF0171EA	2.27	6/25/2001	Pseudonitzschia delicatissima	5.17
WF017	F23	WF0171EA	2.27	6/25/2001	Scenedesmus quadricauda	17.46
WF017	F23	WF0171EA	2.27	6/25/2001	Skeletonema costatum	793.66
WF017	F23	WF0171EA	2.27	6/25/2001	Thalassionema nitzschioides	103.26
WF017	F23	WF0171EA	2.27	6/25/2001	Thalassiosira sp. group 3 10-20 microns	52.39
WF017	F23	WF0171EA	2.27	6/25/2001	Unid. micro-phytoflag sp. group 1 length	31159.94
WF017	F23	WF0171EA	2.27	6/25/2001	Unid. micro-phytoflag sp. group 2 length	1247.38
WF017	F23	WF0171E9	5.8	6/25/2001	Asterionella formosa	5.88

Survey	Sta.	Sample Number	Depth (m)	Sampling Date	Plankton	Estimated Carbon Equivalence (ng Carbon/L)
WF017	F23	WF0171E9	5.8	6/25/2001	Calycomonas ovalis	20.90
WF017	F23	WF0171E9	5.8	6/25/2001	Centric diatom sp. group 1 diam <10 micr	360.50
WF017	F23	WF0171E9	5.8	6/25/2001	Cerataulina pelagica	1612.69
WF017	F23	WF0171E9	5.8	6/25/2001	Ceratium longipes	13309.42
WF017	F23	WF0171E9	5.8	6/25/2001	Ceratium tripos	2565.11
WF017	F23	WF0171E9	5.8	6/25/2001	Chaetoceros didymus	201.80
WF017	F23	WF0171E9	5.8	6/25/2001	Chaetoceros sp. group 2 diam 10-30 micro	688.64
WF017	F23	WF0171E9	5.8	6/25/2001	Cryptomonas sp. group 1 length <10 micro	2929.55
WF017	F23	WF0171E9	5.8	6/25/2001	Cryptomonas sp. group 2 length >10 micro	2478.41
WF017	F23	WF0171E9	5.8	6/25/2001	Cylindrotheca closterium	1397.25
WF017	F23	WF0171E9	5.8	6/25/2001	Dactyliosolen fragilissimus	112.36
WF017	F23	WF0171E9	5.8	6/25/2001	Eutreptia/eutreptiella spp.	20.65
WF017	F23	WF0171E9	5.8	6/25/2001	Guinardia delicatula	535.76
WF017	F23	WF0171E9	5.8	6/25/2001	Gymnodinium sp. group 1 5-20 microns wid	2909.78
WF017	F23	WF0171E9	5.8	6/25/2001	Leptocylindrus danicus	123.41
WF017	F23	WF0171E9	5.8	6/25/2001	Leptocylindrus minimus	694.69
WF017	F23	WF0171E9	5.8	6/25/2001	Pennate diatom sp. group 2 10-30 microns	266.71
WF017	F23	WF0171E9	5.8	6/25/2001	Pennate diatom sp. group 3 31-60 microns	95.17
WF017	F23	WF0171E9	5.8	6/25/2001	Prorocentrum minimum	156.27
WF017	F23	WF0171E9	5.8	6/25/2001	Protoperidinium sp. group 2 31-75 micron	1871.28
WF017	F23	WF0171E9	5.8	6/25/2001	Pseudonitzschia delicatissima	7.08
WF017	F23	WF0171E9	5.8	6/25/2001	Scenedesmus quadricauda	31.94
WF017	F23	WF0171E9	5.8	6/25/2001	Skeletonema costatum	1242.08
WF017	F23	WF0171E9	5.8	6/25/2001	Thalassionema nitzschioides	113.12
WF017	F23	WF0171E9	5.8	6/25/2001	Unid. micro-phytoflag sp. group 1 length	32047.96
WF017	F23	WF0171E9	5.8	6/25/2001	Unid. micro-phytoflag sp. group 2 length	341.63
WF017	N04	WF01721D	0.58	6/25/2001	Calycomonas ovalis	20.84
WF017	N04	WF01721D	0.58	6/25/2001	Calycomonas wulffii	81.40
WF017	N04	WF01721D	0.58	6/25/2001	Centric diatom sp. group 1 diam <10 micr	291.96
WF017	N04	WF01721D	0.58	6/25/2001	Ceratium fusus	2280.68
WF017	N04	WF01721D	0.58	6/25/2001	Ceratium longipes	24637.59
WF017	N04	WF01721D	0.58	6/25/2001	Ceratium tripos	14610.37
WF017	N04	WF01721D	0.58	6/25/2001	Chaetoceros compressus	1877.59
WF017	N04	WF01721D	0.58	6/25/2001	Chaetoceros sp. group 2 diam 10-30 micro	784.47
WF017	N04	WF01721D	0.58	6/25/2001	Corethron criophilum	588.18
WF017	N04	WF01721D	0.58	6/25/2001	Cryptomonas sp. group 1 length <10 micro	104.91
WF017	N04	WF01721D	0.58	6/25/2001	Cylindrotheca closterium	885.76
WF017	N04	WF01721D	0.58	6/25/2001	Guinardia delicatula	698.68
WF017	N04	WF01721D	0.58	6/25/2001	Gymnodinium sp. group 1 5-20 microns wid	1160.15
WF017	N04	WF01721D	0.58	6/25/2001	Gymnodinium sp. group 2 21-40 microns wi	1909.22

						Estimated
		Sample	Depth	Sampling		Equivalence
Survey	Sta.	Number	(m)	Date	Plankton	(ng Carbon/L)
WF017	N04	WF01721D	0.58	6/25/2001	Leptocylindrus minimus	423.22
WF017	N04	WF01721D	0.58	6/25/2001	Pennate diatom sp. group 3 31-60 microns	36.14
WF017	N04	WF01721D	0.58	6/25/2001	Pseudonitzschia delicatissima	32.28
WF017	N04	WF01721D	0.58	6/25/2001	Skeletonema costatum	703.78
WF017	N04	WF01721D	0.58	6/25/2001	Thalassiosira nordenskioldii	7.89
WF017	N04	WF01721D	0.58	6/25/2001	Unid. micro-phytoflag sp. group 1 length	16928.25
WF017	N04	WF01721D	0.58	6/25/2001	Unid. micro-phytoflag sp. group 2 length	2383.65
WF017	N04	WF01721B	14.6	6/25/2001	Centric diatom sp. group 1 diam <10 micr	45.93
WF017	N04	WF01721B	14.6	6/25/2001	Ceratium fusus	1360.50
WF017	N04	WF01721B	14.6	6/25/2001	Ceratium longipes	352731.37
WF017	N04	WF01721B	14.6	6/25/2001	Ceratium tripos	3486.23
WF017	N04	WF01721B	14.6	6/25/2001	Chaetoceros compressus	9314.04
WF017	N04	WF01721B	14.6	6/25/2001	Chaetoceros sp. group 2 diam 10-30 micro	8750.03
WF017	N04	WF01721B	14.6	6/25/2001	Cryptomonas sp. group 1 length <10 micro	11.92
WF017	N04	WF01721B	14.6	6/25/2001	Cylindrotheca closterium	563.61
WF017	N04	WF01721B	14.6	6/25/2001	Dictyocha speculum	110.45
WF017	N04	WF01721B	14.6	6/25/2001	Leptocylindrus danicus	335.45
WF017	N04	WF01721B	14.6	6/25/2001	Pseudonitzschia delicatissima	48.15
WF017	N04	WF01721B	14.6	6/25/2001	Skeletonema costatum	52.75
WF017	N04	WF01721B	14.6	6/25/2001	Unid. micro-phytoflag sp. group 1 length	4831.06
WF017	N18	WF01724D	2.18	6/25/2001	Amphidinium spp.	55.36
WF017	N18	WF01724D	2.18	6/25/2001	Calycomonas wulffii	264.90
WF017	N18	WF01724D	2.18	6/25/2001	Centric diatom sp. group 1 diam <10 micr	337.32
WF017	N18	WF01724D	2.18	6/25/2001	Ceratium fusus	9607.68
WF017	N18	WF01724D	2.18	6/25/2001	Ceratium longipes	50479.02
WF017	N18	WF01724D	2.18	6/25/2001	Ceratium tripos	55300.32
WF017	N18	WF01724D	2.18	6/25/2001	Chaetoceros compressus	415.59
WF017	N18	WF01724D	2.18	6/25/2001	Chaetoceros sp. group 2 diam 10-30 micro	91.64
WF017	N18	WF01724D	2.18	6/25/2001	Corethron criophilum	824.55
WF017	N18	WF01724D	2.18	6/25/2001	Cryptomonas sp. group 1 length <10 micro	560.28
WF017	N18	WF01724D	2.18	6/25/2001	Cylindrotheca closterium	702.45
WF017	N18	WF01724D	2.18	6/25/2001	Ebria tripartita	131.70
WF017	N18	WF01724D	2.18	6/25/2001	Eutreptia/eutreptiella spp.	82.43
WF017	N18	WF01724D	2.18	6/25/2001	Guinardia delicatula	2077.82
WF017	N18	WF01724D	2.18	6/25/2001	Gymnodinium sp. group 1 5-20 microns wid	3485.06
WF017	N18	WF01724D	2.18	6/25/2001	Gymnodinium sp. group 2 21-40 microns wi	2141.15
WF017	N18	WF01724D	2.18	6/25/2001	Heterocapsa rotundata	5.71
WF017	N18	WF01724D	2.18	6/25/2001	Heterocapsa triquetra	102.11
WF017	N18	WF01724D	2.18	6/25/2001	Leptocylindrus minimus	188.03
WF017	N18	WF01724D	2.18	6/25/2001	Licmophora spp.	98.92

201

Survey	Sta.	Sample Number	Depth (m)	Sampling Date	Plankton	Estimated Carbon Equivalence (ng Carbon/L)
WF017	N18	WF01724D	2.18	6/25/2001	Protoperidinium sp. group 2 31-75 micron	2988.33
WF017	N18	WF01724D	2.18	6/25/2001	Pseudonitzschia delicatissima	5.66
WF017	N18	WF01724D	2.18	6/25/2001	Rhizosolenia hebetata	150.26
WF017	N18	WF01724D	2.18	6/25/2001	Skeletonema costatum	129.14
WF017	N18	WF01724D	2.18	6/25/2001	Thalassionema nitzschioides	112.90
WF017	N18	WF01724D	2.18	6/25/2001	Unid. micro-phytoflag sp. group 1 length	22469.48
WF017	N18	WF01724B	10.69	6/25/2001	Calycomonas wulffii	77.12
WF017	N18	WF01724B	10.69	6/25/2001	Centric diatom sp. group 1 diam <10 micr	234.04
WF017	N18	WF01724B	10.69	6/25/2001	Ceratium fusus	945.28
WF017	N18	WF01724B	10.69	6/25/2001	Ceratium longipes	267073.45
WF017	N18	WF01724B	10.69	6/25/2001	Ceratium tripos	24222.46
WF017	N18	WF01724B	10.69	6/25/2001	Chaetoceros compressus	12205.61
WF017	N18	WF01724B	10.69	6/25/2001	Chaetoceros spp.	232.30
WF017	N18	WF01724B	10.69	6/25/2001	Cryptomonas sp. group 1 length <10 micro	33.13
WF017	N18	WF01724B	10.69	6/25/2001	Cylindrotheca closterium	195.47
WF017	N18	WF01724B	10.69	6/25/2001	Guinardia delicatula	505.92
WF017	N18	WF01724B	10.69	6/25/2001	Gymnodinium sp. group 1 5-20 microns wid	824.32
WF017	N18	WF01724B	10.69	6/25/2001	Gymnodinium sp. group 2 21-40 microns wi	633.06
WF017	N18	WF01724B	10.69	6/25/2001	Gyrodinium spirale	22326.92
WF017	N18	WF01724B	10.69	6/25/2001	Heterocapsa rotundata	54.07
WF017	N18	WF01724B	10.69	6/25/2001	Heterocapsa triquetra	241.52
WF017	N18	WF01724B	10.69	6/25/2001	Prorocentrum minimum	49.19
WF017	N18	WF01724B	10.69	6/25/2001	Protoperidinium depressum	15416.83
WF017	N18	WF01724B	10.69	6/25/2001	Skeletonema costatum	18.33
WF017	N18	WF01724B	10.69	6/25/2001	Unid. micro-phytoflag sp. group 1 length	7672.33
WF017	N18	WF01724B	10.69	6/25/2001	Unid. micro-phytoflag sp. group 2 length	645.20

Massachusetts Water Resources Authority Charlestown Navy Yard 100 First Avenue Boston, MA 02129 (617) 242-6000 http://www.mwra.state.ma.us