Semi-annual water column monitoring report: February-July 1995

Massachusetts Water Resources Authority

Environmental Quality Department Technical Report Series No. 97-6

Semi-Annual Water Column Monitoring Report February - July, 1995

submitted to

Massachusetts Water Resources Authority Environmental Quality Department 100 First Avenue Charleston Navy Yard Boston, MA 02129 (617) 242-6000

prepared by

Peggy M. Murray
Stephen J. Cibik
Kristyn B. Lemieux
Rebecca A. Zavistoski
Jessica L. Morton
ENSR
35 Nagog Park
Acton, MA 01720

and

Brian L. Howes
Craig D. Taylor
Woods Hole Oceanographic Institution
Woods Hole, MA 02543

and

Theodore C. Loder, III University of New Hampshire Durham, NH 03824

> Revised September 1997

Citation:

Murray, P.M., S.J. Cibik, K.B. Lemieux, R.A. Zavistoski, J.L. Morton, B.L. Howes, C.D. Taylor, and T.C. Loder III. 1997. **Semi-annual water column monitoring report: February-July 1995**. MWRA Enviro. Quality Dept. Tech. Rpt. Series No. 97-6. Massachusetts Water Resources Authority, Boston, MA. 370 pp.

CONTENTS

1.0	INTI	RODUCT	FION 1-	ĺ
	1.1		n Overview	
	1.2	Organiz	ration of the Semi-Annual Report 1-	1
2.0	MET	CHODS	2	1
3.0	DAT	'A SUMI	MARY PRESENTATION 3-	1
	3.1	Defined	1 Geographic Areas	1
	3.2	Sensor	Data 3-	1
	3.3	Nutrien	ts 3-	2
	3.4	Biologi	cal Water Column Parameters 3-	2
	3.5	Plankto	vn	3
4.0	RES		F WATER COLUMN MEASUREMENTS 4-	
	4.1	Physica	al Characteristics	
		4.1.1	Horizontal Distribution	
		4.1.2	Vertical Distribution	
		4.1.3	Transmissometer Results	
	4.2	Nutrier	nts 4-	
		4.2.1	Horizontal Distribution	
		4.2.2	Vertical Distribution	
	4.3	Chloro	phyll a	
		4.3.1	Horizontal Distribution	
		4.3.2	Vertical Distribution	
	4.4	Dissolv	ved Oxygen	
		4.4.1	Horizontal Distribution	
		4.4.2	Vertical Distribution	.9
	4.5	Summa	ary of Water Column Results 4-1	. 1
5.0	PRO	DUCTI	VITY, RESPIRATION, AND PLANKTON RESULTS 5-	- 1
	5.1	Produc	tivity 5-	-]
		5.1.1	Areal Production	-]
		5.1.2	Chlorophyll-Specific Production	-2
	5.2	Respira	ation	-3
		5.2.1	Water Column Respiration	-3

CONTENTS

		5.2.2		pecific Respiration	
	5.3	Planktor	Results .		5-5
		5.3.1	Phytoplan	akton	5-6
			5.3.1.1	Seasonal Trends in Total Phytoplankton Abundance	5-6
			5.3.1.2	Nearfield Phytoplankton Community Structure	5-7
			5.3.1.3	Regional Phytoplankton Assemblages	5-7
		5.3.2	Zooplank	ton	5-8
			5.3.2.1	Seasonal Trends in Total Zooplankton Abundance	5-8
			5.3.2.2	Nearfield Zooplankton Community Structure	5-8
			5.3.2.3	Regional Zooplankton Assemblages	5-9
	5.4	Summa	ry of Wate	r Column Biological Events	5-9
6.0	A SU	MMAR	Y OF MA	JOR WATER COLUMN EVENTS	6-1
					7 1
7.0	REF	ERENCE	ES		/-1
APP:	ENDI	CES			
A	PRO	DUCTIV	TTY AND	RESPIRATION METHODS	
В	SUR	FACE C	ONTOUR	PLOTS - FARFIELD SURVEYS	
С	TRA	NSECT 1	PLOTS		
D	NUT	RIENT S	SCATTER	PLOTS	
Е	PHO	TOSYN	THESIS-IR	RADIANCE (P-I) CURVES	
F-1	ABU	INDANC	E OF PRE	EVALENT SPECIES IN SURFACE SAMPLE	
F-2	ABU	INDANC	E OF PRE	EVALENT SPECIES IN CHLOROPHYLL a MAXIMUM SAMPLE	
G-1	ABU	INDANC	E OF ALI	LIDENTIFIED TAXA IN SCREENED SAMPLES NEAR THE	
	SUR	FACE			
G-2	ABU	INDANC	E OF ALI	LIDENTIFIED TAXA IN SCREENED SAMPLES NEAR THE	
	CHI	OROPH	VII MAN	IIMUM	
			ITT MY		
H	ZOC)PLANK		CIES DATA	

LIST OF TABLES

1-1	Water Quality Surveys for W9501-W9509 January to July 1995	-3
3-1	Semi-Annual Data Summary Table Event W9501 (2/06/95 - 2/14/95) Combined	
	Nearfield/Farfield Survey	-4
3-2	Semi-Annual Data Summary Table Event W9502 (2/28/95 - 3/05/95) Combined	
	Nearfield/Farfield Survey	-5
3-3	Semi-Annual Data Summary Table Event W9503 (3/20/95 - 3/22/95) Nearfield	
	Survey 3	-6
3-4	Semi-Annual Data Summary Table Event W9504 (4/03/95 - 4/10/95) Combined	
	Nearfield/Farfield Survey	-7
3-5	Semi-Annual Data Summary Table Event W9505 (4/24/95 - 4/27/95) Nearfield	
	Survey 3	-8
3-6	Semi-Annual Data Summary Table Event W9501 (2/06/95 - 2/14/95) Nearfield	
	Survey 3	-9
3-7	Semi-Annual Data Summary Table Event W9507 (6/20/95 - 6/25/95) Combined	
	Nearfield/Farfield Survey 3-	10
3-8	Semi-Annual Data Summary Table Event W9508 (7/05/95 - 7/07/95) Nearfield	
	Survey 3-	11
3-9	Semi-Annual Data Summary Table Event W9509 (7/24/95 - 7/26/95) Nearfield	
	Survey 3-	12
4-1	Summary of first Semi-Annual 1995 Satellite Imagery for Massachusetts and Cape	
	Cod Bays	15

1-1	Farfield Stations Sampled During the First Semi-Annual Period	l-4
1-2	Nearfield Stations Sampled During the First 1995 Semi-annual Period	1-5
1-3	Location of Stations Selected for Vertical Transect Graphics	1-6
4-1	Density Profiles at Productivity/Respiration Station N04 from all Surveys of the First	
	Semi-Annual Period	·16
4-2	Regional Surface Water Contour Plot of Temperature During Survey W9501 in	
		-17
4-3	Regional Surface Water Contour Plot of Salinity During Survey W9501 in February 4-	-18
4-4	Temperature/Salinity Data for Four Farfield Regions During Survey W9501 in	
	February and W9504 in April 4	-19
4-5	Regional Surface Water Contour Plot of Temperature During Survey W9504 in April 4-	-20
4-6	Regional Surface Water Contour Plot of Temperature During Survey W9507 in June 4	-21
4-7	Transects Showing Density Contours During Survey W9501 in February	-22
4-8	Time-Series of Average Surface and Bottom Water Density and Δσ _t in Farfield	
	1100.000	-23
4-9	Time-Series of Average Surface and Bottom Water Density and $\Delta\sigma_t$ in the Inner and	
	Outer Nearfield	-24
4-10	Time-Series of Average Surface and Bottom Water Salinity and ΔSalinity in the Inner	
		-25
4-11	Scatter Plot of Measured Water Temperature with Depth in the Water Column for	
	Pre-Stratification and Early Stratification Surveys 4	-26
4-12	Scatter Plot of the Calculated Beam Attenuation Coefficient and Chlorophyll a for the	
	Winter-Spring and Summer Surveys	-27
4-13	Regional Surface Water Contour Plot of Beam Attenuation During Survey W9502 in	
		-28
4-14	Transects Showing Dissolved Silicate Concentration Contours During Survey W9502	
	AAA AYAMMAA YA Y	-29
4-15	Transects Showing Dissolved Nitrate Concentration Contours During Survey W9501	
	m rectumy	-3 0
4-16	Transects Showing Dissolved Nitrate Concentration Contours During Survey W9502	
	***************************************	1-3 1
4-17	Transects Showing Dissolved Nitrate Concentration Contours During Survey W9504	
		1-32
4-18	Scatter Plot of Nitrate+Nitrite Concentrations and Silicate Concentrations with Depth	
	in the Water Column for the Pre-Stratification Surveys 4	1-33

4-19	Scatter Plot of Nitrate+Nitrite and Phosphate Concentrations Over the Semi-Annual	
	Period, Showing the Shift of the NO ₃ +NO ₂ : PO ₄ Ratio Between the Winter-Spring and	
	Summer Surveys	4-34
4-20	Regional Surface Water Contour Plot of Chlorophyll a During Survey W9501 in	
	February	4-35
4-21	Regional Surface Water Contour Plot of Chlorophyll a During Survey W9502 in	
	March	4-36
4-22	Regional Surface Water Contour Plot of Chlorophyll a During Survey W9507 in June .	4-37
4-23	Transects Showing Chlorophyll a Concentration Contours During Survey W9501 in	-
	February	4-38
4-24	Transects Showing Chlorophyll a Concentration Contours During Survey W9502 in	
	March	4-39
4-25	Transects Showing Chlorophyll a Concentration Contours During Survey W9504 in	
	April	4-40
4-26	Time-Series of the Average of Five Maximum Chlorophyll a Values Among all	
	Stations in Each Farfield Region, the Average Water Depth Where the Maximum	
	Value Occurred, and the Same Data for all Stations within the Nearfield Region	4-41
4-27	Transects Showing Chlorophyll a Concentration Contours During Survey W9507 in	
	June	4-42
4-28	Time-Series of Average Surface and Bottom Water Chlorophyll a Values in the Inner	
	and Outer Nearfield	4-43
4-29	Distribution of Average Water Column Chlorophyll a in the Nearfield During the	
	April Spring Bloom	4-44
4-30	Time-Series of Average Surface and Bottom Water DO Concentration for Boundary,	
	Offshore, and Cape Cod Regions	4-45
4-31	Time-Series of Average Surface and Bottom Water DO Concentration and Saturation	
	for Coastal, and Harbor Regions	4-46
4-32	Transects Showing Dissolved Oxygen Saturation Contours During Survey W9507 in	
	June	4-47
4-33	Time-Series of Average Surface and Bottom Water Dissolved Oxygen Concentration	
	and Saturation for Nearfield Region	4-48
5-1	An Example of a Photosynthesis-Irradiance Curve	5-12
5-2	Time-Series of Areal Production and Chlorophyll a Concentration for Productivity	
	Stations	5-13

5-3	Time-Series of Contoured Daily Production Over Water Depth, Showing Location of	
	Discrete Production Measurements at Productivity Stations	5-14
5-4	Time-Series of Contoured Chlorophyll-Specific Production Over Water Depth,	
	Showing Location of Discrete Production Measurements at Productivity Stations	5-15
5-5	Time-Series of Water Column Respiration Measured During Four Farfield Surveys in	
	Surface Symbol and Bottom Water for Respiration Stations F19 and F23 and N07	5-16
5-6	Time-Series of Water Column Respiration Measured During Nine Nearfield Surveys	
	in Surface and Bottom Water for Respiration Stations N04 and N16	5-17
5-7	Time-Series of Water Column Particulate Organic Carbon Measured During Four	
	Farfield Surveys in Surface and Bottom Water for Respiration Stations F19 and F23	
	and N07	5-18
5-8	Time-Series of Water Column Particulate Organic Carbon Measured During Nine	
	Nearfield Surveys in Surface and Bottom Water for Respiration Stations N04 and N16.	5-19
5-9	Time-Series of Carbon-Specific Water Column Respiration Measured During Four	
	Farfield Surveys in Surface and Bottom Water for Respiration Stations and F23 and	
	N07	5-20
5-10	Time-Series of Carbon-Specific Water Column Respiration Measured During Nine	
	Nearfield Surveys in Surface and Bottom Water for Respiration Stations and N04 and	
	N16	5-21
5-11	HOM Plankton Stations Locations	5-22
5-12	Regional Total Phytoplankton Abundance During Pre-Stratification and Early	
	Stratification Periods	5-23
5-13	Distribution of Major Taxonomic Groups Measured During the Semi-Annual Period at	
	Nearfield Stations N10 and N16	5-24
5-14	Dominant Phytoplankton Species by Abundance in the Nearfield	5-25
5-15	Distribution of Carbon by Major Taxonomic Groups Identified During the Semi-	
	Annual Period at Nearfield Station N10	5-26
5-16	Distrubution of Carbon by Major Taxonomic Groups Identified During the Semi-	
	Annual Period at Nearfield Station N16	
5-17	Dominant Phytoplankton Species by Carbon in the Nearfield	5-28
5-18	Total Phytoplankton Abundance by Taxonomic Groups Collected During W9501,	.
	February 6-14, 1995	5-29
5-19	Total Phytoplankton Abundance by Taxonomic Groups Collected During W9502,	
	February 28 - March 5, 1995	5-30

5-20	Total Phytoplankton Abundance by Taxonomic Groups Collected During W9504,	
	April 3-10, 1995	5-31
5-21	Total Phytoplankton Abundance by Taxonomic Groups Collected During W9507,	
	June 20-25, 1995	5-32
5-22	Phytoplankton and Zooplankton Semi-Annual Cycles During Pre-Stratification and	
	Early Stratification Periods	5-33
5-23	Total Zooplankton Abundance by Group in Surface Water During Pre-Stratification	
	and Early Stratification Periods	5-34
5-24	Zooplankton Abundance by Groups Collected During W9501, February 6-14, 1995	5-35
5-25	Zooplankton Abundance by Groups Collected During W9502, February 28 - March 5,	
	1995	5-36
5-26	Zooplankton Abundance by Groups Collected During W9504, April 3-10, 1995	5-37
5-27	Zooplankton Abundance by Groups Collected During W9507, June 20-25, 1995	5-38

SEMI-ANNUAL REPORT 1995, 95-01

EXECUTIVE SUMMARY

Water quality monitoring data presented in this report were collected during the first half of the 1995 Massachusetts Water Resources Authority (MWRA) Harbor and Outfall Monitoring (HOM) Program in the Massachusetts Bay system. The scope of the semi-annual report includes a synthesis of water column data, and a brief analysis of integrated physical and biological results. The horizontal and vertical distribution of water column parameters in the farfield and nearfield from the first nine surveys of 1995 are presented. Finally, key biological events that occurred during the semi-annual period both regionally and within the nearfield are discussed.

Baseline data have been collected to support the HOM Program mission to assess the potential environmental effects of effluent discharge into Massachusetts Bay. The data were collected to establish water quality conditions, and include physical water properties, nutrients, biological respiration and productivity, and plankton measurements. In the first half of 1995, two types of surveys were performed: nine nearfield surveys with stations located in the area over the future outfall site, and four more comprehensive nearfield/farfield combined surveys that included stations in Boston Harbor, Massachusetts Bay, and Cape Cod Bay.

Results from the first semi-annual period are provided in summary tables, then discussed for each parameter measured. The horizontal distribution of physical parameters is presented through regional contour plots, and the vertical distribution through both time-series plots of averaged surface and bottom water column parameters, and along depth transects in the survey area. The timing of water column vertical stratification influences the timing and impact of critical events such as dissolved oxygen depletion in bottom water. Results are organized, therefore, first by presenting data from the pre-stratification phase (W9501-W9506), and then from the early stratification phase (W9507-W9509).

During the pre-stratification phase in the winter-spring of 1995, Cape Cod Bay was the most productive region sampled. There was a regional late winter bloom in early March, as documented by nutrient data, dominated by a centric diatom bloom and a small *Gymnodinium* codominant. Maximum nutrient scavenging occurred in the nearfield and Cape Cod Bay, with regional scavenging of silicate by diatom production.

Productivity and respiration data indicated that there was a productivity event that occurred within the nearfield between the late March and early April surveys. Relatively high values of chlorophyll-specific

production, in tandem with a peak of zooplankton abundance, suggested rapid grazing of newly-produced chlorophyll.

The spring bloom was in full swing by late April, with the maximum production of chlorophyll a centered at nearfield station N21. Chaetoceros spp. and a small (<20µm) Gymnodinium species were dominant during the spring bloom, while Chaetoceros and Thalassiosira decipiens were the dominant carbon producers. The impact of the spring bloom in April was concentrated in the surface water, but by the following survey in May, many bottom water quality parameters were altered, potentially from settling and decomposition of plankton. Supporting physical data indicated that a mixing event also had influenced bottom water parameters measured during this survey within the nearfield.

The early stratification phase in June began with a bloom concentrated in Boston Harbor, with the highest regional phytoplankton densities measured. Cape Cod Bay was the least productive region during this survey. In the nearfield, the impact of upwelling in July documented by physical data was seen in water column productivity parameters. A peak in chlorophyll-specific production in early July forecasted an onset of productivity. Biological parameters measured in late July, including an increase in carbon-specific respiration, were consistent with a mid-summer pulse of productivity in the nearfield.

1.0 INTRODUCTION

1.1 Program Overview

The Massachusetts Water Resources Authority (MWRA) has implemented a long-term Harbor and Outfall Monitoring (HOM) Program in the Massachusetts Bay system. The objective of the HOM Program is to verify compliance with the discharge permit, and to assess the potential environmental effects of the relocated effluent discharge into Massachusetts Bay. To establish baseline water quality conditions with respect to nutrients, water properties, phytoplankton and zooplankton, and water-column respiration and productivity, ENSR is conducting water quality surveys in the nearfield and farfield region of Massachusetts and Cape Cod Bays.

This report summarizes results from water quality monitoring conducted during the first half of the 1995 monitoring year. Water column monitoring results for the first 9 of 17 surveys conducted in 1995 are included in this report (Table 1-1). There were two types of surveys performed: nine nearfield surveys with stations located in the area over the future outfall site, and four more comprehensive nearfield/farfield combined surveys that included stations in Boston Harbor, Massachusetts Bay, and Cape Cod Bay (Figures 1-1 and 1-2). The stations in these surveys are further separated into regional groupings according to geographic location.

This report presents summarized data from the first nine surveys. A summary of the raw data, along with specific field information, is available in individual survey reports, submitted immediately following each survey. Data reports, including final processed data and regression information, are submitted five times annually. The available data reports are the nutrient data reports (including sensor and water chemistry data), phytoplankton data reports, and the productivity and respiration data reports.

1.2 Organization of the Semi-Annual Report

The scope of the semi-annual report is focused primarily towards providing a synthesis of all of the water column data collected during the reporting period. Secondarily, integrated physical and biological results are discussed for key water column events. The report first provides a summary of the survey and laboratory methods (Section 2.0). The bulk of the report, as discussed in further detail below, presents results of water column data from the first nine surveys of 1995 (Sections 3.0-5.0). Finally, the major findings of the semi-annual period, including integrated physical and biological water column results during water column events are synthesized in Section 6.0.

In the results sections, data are first provided in summary tables (Section 3.0). The data summary tables include the major results of water column surveys in the semi-annual period. A description of data selection, integration information, and statistical analyses conducted are included with that section.

Each of the summary results sections (Sections 4.0, 5.0) includes presentation of the horizontal and vertical distribution of water column parameters in both the farfield and nearfield. The horizontal distribution of physical parameters is presented through regional contour plots. The vertical distribution of water column parameters is presented using both time-series plots of averaged surface and bottom water column parameters, and along three transects in the survey area (Figure 1-3). The time-series plots utilize average values of the surface water sample (the "A" depth, as described in Section 3.0), and the bottom water sample (the "E" depth). Examining data trends along the three transects, Boston-Nearfield, Cohasset, and Marshfield, allows three-dimensional analysis of water column conditions during each survey.

Results of water column physical data, including water properties, nutrients, chlorophyll a, and dissolved oxygen, are provided in Section 4.0. Survey results were organized according to the physical characteristics of the water column during the semi-annual period. The timing of water column vertical stratification, and the physical and biological status of the water column at the onset of stratification, to a large degree determine ecological water quality parameters that are a major focus in assessing effects of the outfall. Because of the importance of this dynamic, this report describes the horizontal and vertical characterization of the water column during the pre-stratification stage (W9501-W9506), and then further delineates processes occurring during the early stratification stage (W9507-W9509). Time-series data are commonly provided for the entire semi-annual period for clarity of data presentation.

Productivity, respiration, and plankton measurements, along with corresponding discussion of chlorophyll and dissolved oxygen results, are provided in Section 5.0. Discussion of the biological processes and trends during the semi-annual period are included in this section. A summary of the major water column events of the semi-annual period is presented in Section 6.0, and finally, references are provided in Section 7.0.

TABLE 1-1

Water Quality Surveys for W9501-W9509 January to July 1995

Survey#	Type of Survey	Survey Dates
W9501	Nearfield/Farfield	February 6-14
W9502	Nearfield/Farfield	February 28-March 5
W9503	Nearfield	March 20-22
W9504	Nearfield/Farfield -	April 3-10
W9505	Nearfield/Farfield	April 24-27
W9506	Nearfield	May 15-173
W9507	Nearfield/Farfield	June 20-25
W9508	Nearfield	July 5-7
W9509	Nearfield	July 24-26

FIGURE 1-1
Farfield Stations Sampled During the First Semi-Annual Period,
Showing Regional Geographic Classifications Used in Text

FIGURE 1-2
Nearfield Stations Sampled During the First 1995 Semi-Annual Period

MWRA 1996 Water Quality Sampling Farfield Transects

FIGURE 1-3
Locations of Stations Selected for Vertical Transect Graphics

2.0 METHODS

Water quality data for this report were collected from the sampling platforms R/V Christopher Andrew and R/V Isabelle S. Continuous vertical profiles of the water column and discrete water samples for analysis were collected using a CTD/Niskin Bottle Rosette system. Hydrographic measurements of the water column included conductivity (salinity), temperature, pressure (depth), dissolved oxygen, transmissometry, irradiance, and relative fluorescence.

Water samples were collected at five depths: bottom, mid-bottom, middle, mid-surface, and surface; generally, the middle water column depth was selected at or near the chlorophyll maximum. All samples were analyzed for dissolved inorganic nutrients (DINuts), including nitrate (NO₃), nitrite (NO₂), phosphate (PO₄), silicate (SiO₄), and ammonia (NH₄). Additional analyses carried out for differing subsets of stations and depths include dissolved organic carbon, total dissolved nitrogen and phosphorous, particulate organic carbon, nitrogen, and phosphorous, biogenic silica, chlorophyll a and phaeopigment, total suspended solids, dissolved oxygen, urea, estimates of plankton productivity and respiration rates, and plankton taxonomy and enumeration.

The sampling schema for these analyses are outlined in Table 1-1. Further details on field sampling and analytical procedures, laboratory sample processing and analysis, sample handling and custody, calibration and preventive maintenance, documentation, data evaluation, and data quality procedures are discussed in the Water Quality Monitoring CW/QAPP (Bowen *et al.*, 1997) and Appendix A for productivity and respiration methods.

Principal deviations from the CW/QAPP plan for each survey are described below. For additional information about a specific survey, the individual survey reports may be consulted.

Deviations from the CW/QAPP for the nearfield/farfield survey in early February (W9501):

- Only 11 of the planned 21 nearfield stations were sampled due to inclement weather conditions and additional time required for areal productivity sampling at stations N04 and N07.
- Only 55 out of the planned 105 samples for DINuts were collected due to decreased number of stations.

Deviations from the CW/QAPP for the nearfield/farfield survey in late February/early March (W9502):

• Only 16 of the planned 21 nearfield stations were sampled due to time limitations.

- Only 80 out of 105 planned samples for DINuts were collected due to the decreased number of stations.
- Dissolved organic carbon (DOC) vials from Station F31 were accidentally labelled Station F23. The laboratory received two sets of DOC vials for Station F23 which could not be differentiated.
- Two urea vials broke after being frozen. The broken bottles and frozen contents were placed in larger plastic bottles and shipped to the laboratory.
- The flowmeter count for the zooplankton net tow was not recorded at Station N16 (first visit).
 This count was estimated using the count obtained on the following day at the same station under similar tow conditions.

Deviations from the CW/QAPP for the nearfield survey in late March (W9503):

- Only 11 out of the planned 21 nearfield stations were sampled due to time limitations.
- Only 55 out of 95 planned samples for DINuts were collected due to the decreased number of stations.

Deviations from the CW/QAPP for the nearfield survey in early April (W9504):

- Only 11 out of the planned 21 nearfield stations were sampled due to time limitations.
- Only 55 out of 95 planned samples for DINuts were collected due to the decreased number of stations.

No deviations were recorded for the late April survey (W9505).

Deviations from the CW/QAPP for the nearfield survey in mid-May (W9506):

• The midsurface bottle did not close at Stations N03, N10, and N18 resulting in no DINuts samples collected at that depth. No chlorophyll samples were collected for that depth at Station N10.

No deviations were recorded for the nearfield/farfield survey in late June (W9507).

Deviations from the CW/QAPP for the nearfield survey in early July (W9508):

- Only 12 out of the planned 21 nearfield stations were sampled due to technical problems resulting from the use of a new vessel.
- Only 59 out of 105 planned samples for DINuts were collected due to the decreased number of stations.

Deviations from the CW/QAPP for the nearfield survey in early July (W9508):

- Only 19 out of the planned 21 nearfield stations were sampled due to time limitations.
- Only 95 out of 105 planned samples for DINuts were collected due to the decreased number of stations.

3.0 DATA SUMMARY PRESENTATION

Data from each survey were compiled from the complete HOM 1995 database and organized to facilitate regional comparisons between surveys, and to allow a quick evaluation of results for contingency planning purposes (Tables 3-1 through 3-9). Each table provides summary data from one survey; the survey dates are provided at the top of each table. Discussions of which parameters were selected, how the data were grouped and integrated, and the assumptions behind the calculation of statistical values (average, minimum, and maximum), are provided in this section. All raw data summarized in this report are available from MWRA in either hardcopy or electronic formats.

The spatial pattern of data summary follows the sample design over major geographic areas of interest in Massachusetts Bay, Cape Cod Bay, and Boston Harbor (Section 3.1). Compilation of data both horizontally by region and vertically over the entire water column was conducted in order to provide an efficient way of assessing the status of the regions during a particular survey. Maximum and minimum values are provided because of the need to assess extremes of pre-outfall conditions relative to criteria being developed for contingency planning purposes (MWRA, 1995).

Prior to regional compilation of data, individual replicate data points were averaged first, followed by replicate datasets (i.e., CTD casts). Significant figures for average values were selected based on the precision of the specific dataset. Detailed considerations for individual datasets are provided in the sections below.

3.1 Defined Geographic Areas

The primary partitioning of data is between the nearfield and farfield stations (Figures 1-1 and 1-2). Farfield data were additionally segmented into five geographic areas: three stations in Boston Harbor (F23, F30, and F31), six coastal stations (F05, F13, F14, F18, F24, F25), eight offshore stations (F06, F07, F10, F15, F16, F17, F19, and F22), five boundary region stations (FF12, F26, F27, F28, F29), and three Cape Cod Bay stations (F01, F02, and F03). These regions are shown in Figure 1-1.

The data summary tables include data that are derived from all of the station data collected in each region. Average, maximum, and minimum values are reported from the cumulative horizontal and vertical dataset as described for each data type below.

3.2 Sensor Data

Six CTD profile parameters provided in the data summary tables include: temperature, salinity, density (σ_t) , fluorescence (chlorophyll a), transmissivity, and dissolved oxygen (DO) concentration. Statistical parameters (maximum, minimum, and average) were calculated from the five upcast sensor readings collected at five depths through the water column (defined as A-E). The five depth values, rather than the entire set of profile data, were selected in order to reduce the statistical weighting of deep water data at the offshore and boundary stations. Generally, the samples were collected in an even depth-distributed pattern. One of the mid-depth samples (B, C, or D) was typically located at the fluorescence (chlorophyll) peak in the water column, depending on the relative depth of the chlorophyll maximum. Details of the collection, calibration, and processing of CTD data are provided in the Water Column Monitoring CW/QAPP (Bowen et al., 1997).

Fluorescence data were calibrated to the amount of chlorophyll a in discrete water samples collected at the depth of the sensor reading. The calibrated chlorophyll sensor values were used for all discussions of chlorophyll in this report. Results for phaeopigments, also from analysis of discrete water samples, are included in the summary data tables as part of the nutrient parameters discussed below.

In addition to DO concentration, the derived percent saturation, calculated from the potential saturation value of the water (a function of the physical properties of the water), was also provided. Finally, the derived beam attenuation coefficient from the transmissometer ("transmissivity") was provided on the summary tables. Beam attenuation is calculated from the ratio of light transmission relative to the initial light incidence over a fixed distance in the water column, and is provided in units of m⁻¹.

3.3 Nutrients

Analytical results for dissolved nutrient concentrations were extracted from the HOM database, and include: ammonium (NH₄), nitrite (NO₂), nitrite + nitrate (NO₂ + NO₃), phosphate (PO₄), and silicate (SiO₄). Results of total dissolved inorganic nitrogen (DIN) are presented in graphical products of this report; DIN consists of NO₃, NO₂, and NH₄. Nutrients were measured in water samples collected at each of the A-E depths during the CTD casts. Information on the collection, processing, and analysis of nutrient samples can be found in the CW/QAPP (Bowen *et al.*, 1997).

3.4 Biological Water Column Parameters

Three productivity parameters were selected for inclusion in the data summary tables. Areal production, which is determined by integrating the measured productivity over the photic zone, is included for the productivity stations (F23 representing the harbor, and N04, N10, and N16, representing the nearfield). Because areal production is already depth-integrated, averages were calculated only among productivity

stations for the two regions sampled. The derived parameters α (gC[gChla]⁻¹h⁻¹[μ Em⁻²s⁻¹]⁻¹) and Pmax (gC[gChla]⁻¹h⁻¹) were also included (Appendix A).

A suite of other water column biological parameters were summarized on the data tables. Respiration rates were averaged over the respiration stations (the same harbor and nearfield stations as productivity, and additionally one offshore station [F19]), and over the three water column depths sampled (upper, mid-, and lower water column). The water column depths of the respiration samples typically coincided with the water depths of the productivity measurements.

Dissolved and particulate organic parameters were also summarized for the tables, including: biogenic silica (BIOSI), dissolved and particulate organic carbon (DOC and POC), particulate and total dissolved phosphate (PART P, TDP), particulate organic and total dissolved nitrogen (PON and TDN), and urea. Total suspended solids (TSS) data are provided as a baseline for total particulate matter in the water column. Dissolved and particulate constituents were measured from water samples collected from each of the five (A-E) depths during CTD casts. Detailed methods of sample collection, processing, and analysis are available in the CW/QAPP (Bowen et al., 1997).

3.5 Plankton

Plankton results were extracted from the HOM database and include whole water phytoplankton, screened phytoplankton, and zooplankton. Phytoplankton measurements included whole-water collections at the surface (depth A) and at the water column chlorophyll a maximum (typically depth C) during the water column casts. Additional samples were taken at these two depths and screened through 20 µm Nitex mesh to retain and concentrate larger dinoflagellate species. Zooplankton measurements were collected through oblique tows at all stations. Detailed methods of sample collection, processing, and analysis are available in the CW/QAPP (Bowen et al., 1997).

Final plankton values were derived for each cast by first averaging analytical replicates, then averaging station visits. Values were calculated from the data for the following parameters: nuisance algae (Alexandrium tamarense, Phaeocystits pouchetii, and Pseudo-nitzschia pungens), total phytoplankton, total zooplankton, and total centric diatoms. Only the maximum of each plankton parameter is presented in the summary tables.

TABLE 3-1
Semi-Annual Data Summary Table
Event W9501 (2/06/95 - 2/14/95)
Combined Nearfield/Farfield Survey

		Avg		2.1	32.4	25.9	2.1	0.51		3	0.64	9.1	8.5	0.81	9.6			9.0	98							4.84	2.1	0.24	21.9	4.15	40.4	0.93	9.7	9.9		٦		П			
	Cape Cod Bay	Max		4.5	32.5	25.9	2.3	0.51	-		7.02	0.23	6.6	0.90	12.1	2.07		10.7	26					H		5.06	3.0	0.28	26.3	5.35	48.9	0.97	18.0	1.70		0.9	0.43	ΝP	ΝD	1.00E-03	11625
	ape C			0	2	80	1/	 				<u>.</u>	7		8.9	=		.5	94							35	1.0	O.	.7	98		=	0.	<u>¥</u>		_	_	L	L	1.0	_
	O	Min		0.0	32.2	25.8	1.7	0.51								0.01		10.5								4.55								0.64			L				Ц
		Avg		9.0	32.7	25.9	4.3	0.39					9.6	26'0		0.55		-	96							1.54	1.0				44.5		4.5				L				
	Boundary	Max		2.7	33.0	26.1	5.1	0.44			1.16	0.20	10.1	1.03	14.6	0.74		10.4	96							1.74	1.0	0.09	14.3	0.76	45.3	1.04	10.0	0.20		0.5	0.02	ğ	A.	1.15E-04	8703
	Bo	Min		0.0	32.2	25.6	3.2	0.33	-		0.31	0.15	8.8	0.91	10.5	0.34		9.7	92					-		1.23	0.1	0.07	12.8	0.67	44.1	0.99	0.0	0.20			\vdash	\vdash			H
		Avg		8.0	32.6	25.9	3.8	0.40			0.84	0.19	6.6	26.0	13.1	0.70		10.1	92					0.05		2.78	2.0	0.14	34.9	1.28	61.2	1.08	2.1	0.39			┝	├	\vdash		H
p)s	Je.	93384		1.4		1_	5.1	_	_				10.2	1.05	13.8	0.85		10.3	26					0.05		2.78	2.0		58.7			1.11		0.56		0.5	0.03	 <u>₽</u>	皇	ĀN	378
Farfield	Offshore	Max										0																													ြိ
		Min		0.0	32.4	25.8	2.6	0.34			0.34	0.16	9.6	0.93	12.3	0.59		9.7	93					0.04		2.77	2.0	0.14	8.9	1.13	54.4	1.06	0'0	0.21		L					
		Avg		1.	32.3	25.8	2.3	0.44	5		2.93	0.23	10.0	1.05	14.2	0.68		10.4	94							2.08	1.8	0.20	20.2	1.51	53.4	1.21	3.7	0.43							
	Coastal	Max		2.0	32.6	25.9	3.3	0.53	7.0		6.26	0.27	10.6	1.22	16.0	0.95		10.5	96							2.78	3.0	0.28	22.0	2.18	76.2	1.37	18.0	0.80		1.5	0.14	å	₽	2.00E-03	29240
	ပြီ	L		0.3	31.9	25.5	1.3	0 37			0.67	0.18	9.4	0.91	13.1	0.25		10.2	92					-		0.89	0.	0.15	17.2	1.29	42.5	1.05	0.0	0.14		┝	\dotplus	+	+	2	\vdash
	L	Min	-	90			L				7.49 0	0.28 0	10.6	1.23 0	16.3	0.28 0		10.3	35		0.05	1 5	8	0.13		1.82		0.31	32.2	3.59	49.9	1.44	11.3	0.54		L	╀	\downarrow	╀	-	\vdash
		Avg				1.		١	_		L		Ļ	_	<u> </u>						L	3 405 3	1	Ţ	-		1				ļ				_	1.8		Ð	9		122
	Harbor	Max		13	32.4	25	2.8	200	5		9.85	0.35	11.7	1.39	19.5	0.88		10.6	ľ		0.07	405.3		0.23		2.65	10.0	0.35	73.3	6.29	54.8	1.60	28.0	0.77		-	0.18	2			10323
		Min	1	6	2 5	24.9	80	3 6	0.38		2.75	0.20	9.6	1.01	13.3	0.16		10.2	8		0.03	405.3	4 5	0.08		0.87	-	0.16	16.9	1.82	43.5	1.19	2.0	0.35							
	<u> </u>	Ava		7	300	25.9	3.4	,	0.3/		1.13	0.18	9.6	0.94	12.8	0.38	-	10.2	95	-	0.04	781.8	9	80.0	-	183	2.8	0.74	12.8	1.20	44.3	1.06	12.9	0.37			T	T	T	1	T
Nearfield	2	F	1	ر م	3 6	25.0	0 6	; ;	0.47		5.41	0.26	6.6	E	14.8	1.03		10.7	86	-	0.07	0 908	200	0.1		232	<u>4</u>	0.31	39.6	2.81	84.2	1.29	30.0	0.53	1	1.0	200	9 9	2	2.00E-03	15414
Nea		Max	4	 -	,	- 4		2 10	_		2	 -				20		8	<u></u>		_	 	۵	ي ه	-	<u>-</u>			4	le le	-	9	0	1	_	_	\downarrow	1	+	2	1
		£ ∑		-	9.0	32.0	-	- 3	0.33		0.32	0.14	9.0	0.88	11.8	0.15	_	8.8	83	_	0.01	680.6	3.0	0.06	_	n 98	10	0.08	8.4	0.60	29.1	0.99	0.0	0.17	_	_	\downarrow	\downarrow	1	1	\downarrow
		Init		-	hg/L	nsd		ပ	д- <u>-</u> 1		Mu	Z	M	Z	2	/01	ı Î	/bu	200	?	see text	300 toxt	2 11/2	see text	2	*4.	MIN I	M.	2	Z Z	2	N N	J/02	N.	(Aluc	Modili	MUCHILL MADE	Modifi	MCGII/L	Mcell/I	#/m3
				 - 	MI a	Salinity		ture	ivity		Į, Į	Š	Ž Š	PO .	SIO.	Jen 4	2	i,	100	TION T	Alnhai			Pmax		10010	3 5	DART P	200	NO	TON	TDP	SSL	lrea E	mulae	1000		SIMO	asus	3 2	ر اور خ
				- -	Chlorophyll a	Na Na	Sigma	Temperature	Transmissivity				NO. + NO.	2		Phaeonioment	602	Concentration	Coturation	Sala	١		Areal Production	Paenire Jeenire	I Vespii alloii		۔ ا	DAG	-						رعده هد	45,000	lotal Phytopianikton	Centric diatoms	Alexandrium tamarense	Prideocysus pouchett	Total Zoonlankton
		وا			5			-	Trai	S						Pha	-	3	3	Wife	i i	1000	ALCA		1	Oldi) Q	140 1-1	lai rii	<u>آ</u> و	arium		ouno.
	holina	Paramet		rnysical						Nutrients	200000000000000000000000000000000000000						00	2		Droductivity	2000				2000	water column									(vigo sejudas espira) udificial		-		Alexar	L D	2 -

Semi-Annual Data Summary Table Event W9502 (2/28/95 - 3/05/95) Combined Nearfield/Farfield Survey

			Nearfield	7.							Ш	Farfield							
2000			Acai iic	5		Harbor			Coastal			Offshore		ш	Boundary		Car	Cape Cod Bay	J.
Region	100	NAIO.	Max		Min	Max	Ava	- uM	Max	Ava	Μin	Max	Avg	Min	Max	Avg	Min	Max	Avg
Parameter) Colling	T IIIM	IVIGA	6AV	Tillat	VANA	2												
Physical		0	7	, c	0	11	80	0.0	1.7	0.8	0.1	1.5	0.8	0.5	2.5	1.3	2.3	5.4	3.8
Chlorophyll a	MIN.	2 6	300	1	2 6	32.0	31.4	31.5	32.5	32.2	32.4	32.7	32.6	32.0	32.7	32.5	32.1	32.5	32.2
Salinity	nsd	25.5	25.9		24.2	25.6	25.0	25.2	25.9	25.7	25.8	26.0	25.9	25.5	26.0		25.6	25.9	25.7
1 Billian	S	23	3.7		1.9	2.3	2.1	2.0	2.8	2.5	2.9	4.3	3.5	2.5	4.2	3.5	1.7	2.6	2.1
Temperature	2	1 6	97.0		87.0	0.73	0.64	0.37	0.69	0.46	0.28	0.71	0.33	0.27	0.51	0.34	0.39	0.72	0.52
Transmissivity	m-1	0.27	0.40		25.0		23	-		-	-			-					
Nutrients							70,	-	7 50	306	og o	4 83	1 13	0 36	1.40	0.86	0.57	1.72	0.97
NH₄	Mμ	0.81	4.49		\perp	7.40	9. G	02.1	00.7	5	0.03	10.0	18	4	0.21		0.08	0.21	0.14
NO2	Μπ	0.14	0.29	0.18	٥	0.43	0.33	0.15	U.31	0.24	<u>.</u>	0.21	9	5	17.0		2	2.7	۲
NO, + NO	M	3.4	6.1	4.4	9.0	11.1	7.8	2.9	7.4	9.8	4. č.	8.0	6.9	4.2	8.9		2	3.7	2
PO,	M	0.55	0.80	0.63	0.92	1.02	96.0	0.57	76.0	0.87	0.77	1.02	0.87	99.0	0.89		0.31	0.62	0.44
Cig	N.	22	5.4	3.2	5.2	12.8	7.8	2.2	7.1	5.0	3.4	10.6	7.6	3.7	9.4		1.0	3.3	
4000		00 0	1 36	0.40	0.53	0.78	0.64	0.33	0.77	0.49	0.23	0.41	0.32	0.17	0.32	0.22	0.37	1.22	0.78
Phaeopigment	hg/r	3					-												
00	*		7	7	10	10.8	10.5	10.1	11.0	10.6	9.6	11.1	10.4	9.5	10.4	6.6	10.2	10.7	10.5
Concentration	mg/i	100	2.1.2		-	70	95	9	ē	98	8	104	97	8	95	83	93	97	98
Saturation	%	ŝ	201		25	10	,	3											
Productivity																		000000000000000000000000000000000000000	
	see text	0.02	0.05	0.03	0.03	0.04	0.03												
Areal Production	mgC/m²/d	328.0	8	552.5	32	324.5	324.5												
Pmax	see text	2.0	6.5	3.9	3.3	4.6	4.1				Ì						ľ		Ī
Respiration	n/lomn	0.03	0.09	0.07	0.11	0.19	0.16				0.04	0.07	0.05		000000000000000000000000000000000000000			000000000000000000000000000000000000000	8888
Water Column																			
Water Column	Mil	0.74	2.63	1.36	2.06	3.79	2.57	1.55	2.84	2.19	1.63	1.79		1.00	1.13	٦	1.75	2.79	2.2
SOG	1/Day	1.0	8.0	L	1.0	2.0	1.8	1.0	10.0	4.3	1.0	1.0		1.0	1.0		1.0	3.0	1.5
DAG TANG	W.	0.10	0.30	0.18	0.29	0.53	0.43	0.24	0.43	0.31	60.0	0.09		0.05	0.11	ا	0.20	0.24	0.22
	N.	2.4	44.9	16.1	24.0	46.5	32.8	18.9	34.3	24.8	8.7	30.0		7.3	7.8		23.7	37.2	28.1
NCA	N.	0.17	8.90		L	7.83	5.44	2.96	5.02	4.11	1.51	2.90		1.71	4.02		3.00	5.07	3.59
NOT	N.	17.9	32.1	25.0		46.8	40.7	26.8	41.7	35.0	29.1	30.6	29.9	28.0	31.7		22.1	29.7	72.4
au.	W	0.63	1.13	0.78	1.06	1.19	1.13	0.99	1.21	1.06	0.98	1.01	. :	٦	0.96		0.57	0.75	0.67
10 L	1/504	0.0		14.0	L	27.0	9.5	0.0	19.0	3.9	0.0	0.0	0.0		20.0		0.0	15.0	10.2
502	Į.	0.45			0.81	5.73	1.78	0.52	0.95	0.75	0.43	2.38		0.39	0.84	0.62	0.64	2.91	1.27
Olea	IAIN T																		
Plankton (Surface samples only)	s only.		6	_		1 0		_	1.2			0.2			0.3			1.6	
Total Phytoplankton	Mcell/L		5			800		\dagger	0.05		Ī	0.02			0.01			0.22	
Centric diatoms	Mcell/L		0.04					†	O.A.		T	dN			A.			₽	
Alexandrium tamarense	Mcell/L		Δ			Ž		†	i i						2			ď	
Phaeocystis pouchetti	Mcell/L		ΡĀ			dN Portor		†	NP 2775 C	T	T	2 52E-05			2 2			1.00E-03	
Pseudo-nitzschia sp	Mcell/L		2.12E-03			1.79E-05		†	2.115	T	1	13234			8126			28164	
Total Zooplankton	#/m3		24628	8		21108			33895			777							

TABLE 3-3
Semi-Annual Data Summary Table
Event W9503 (3/20/95 - 3/22/95)
Nearfield Survey

0.00 3.1.2 24.8 3.1 3.1 0.04 0.04 0.04 0.01 0.01 0.01 0.01 0.			Ž	Nearfield	
Chlorophyll a μg/L 0.00 Salinity psu 24.8 Salinity psu 24.8 Femperature C 3.1 Temperature C 1.4 NO2 + NO3 μM 0.04 Phaeopigment μg/L 0.04 Saturation mg/l 8.9 Saturation mg/l 8.9 Saturation mg/l 0.01 Saturation mg/l 0.01 Saturation mg/l 0.01 Saturation mg/l 0.01 FART P μM 0.04 PART P μM 0.04 TOP μM 0.76 TOP μM 0.76 Total Phytoplanikton Moell/L 0.00 Total Phytoplanikton Moell/L 0.00 Paeudo-nifzsohis sp Moell/L 0.001 Paeudo-nifzsohis sp Mo	egion				
Signa T 24.8 3.1.2 3.1	arameter	Unit	Min	Max	Avg
Salinity psu 31.2 Salinity psu 31.2 Salinity psu 31.2 Salinity psu 31.2 Sigma T 24.8 Transmissivity m-1 0.34 NO ₂ + NO ₂ μΜ 0.14 NO ₂ + NO ₃ μΜ 0.14 Phaeopigment μg/L 0.06 Saturation πg/L 0.06 Saturation πg/L 0.07 Areal Production mg/L 0.01 Areal Production mg/L 0.01 Areal Production μπο/h 0.01 PART P μΜ 0.21 POC μΜ 0.21 POC μΜ 0.16 Foculo-nicasismiples snih/) mg/L 0.06 TSS mg/L 0.06 TSS mg/L 0.06 TSS mg/L 0.07 Total Phytoplankton Mcell/L Phaeorysits pouchettif Mcell/L Phaendrium fantenense Mcell/L Phaendrium fantenen	Wsical				
Salinity psu 31.2 Sigma_T °C 3.1 Transmissivity m-1 0.24.8 NO2+NO3 μM 0.34 PO4 μM 0.14 PO4 μM 0.14 PO4 μM 0.14 Phaeopigment μM 0.14 Phaeopigment μM 0.14 Phaeopigment mg/L 0.04 Phaeopigment mg/L 0.04 Areal Production mg/Lm/T 0.01 Areal Production μm/Lm/T 0.01 PARTP μM 0.01 PARTP μM 0.04 POC μM 0.04 PON μM 0.04 Catal TDP μM 0.06 Catal TDP μM <td></td> <td>mg/L</td> <td>00:00</td> <td>0.18</td> <td>0.08</td>		mg/L	00:00	0.18	0.08
Sigma_T C 3.1 Temperature C 3.1 Transmissivity m-1 0.24.8 NO ₂ + NO ₃ μM 0.04 NO ₂ + NO ₃ μM 0.04 PO ₄ μM 0.04 Phaeopigment μg/L 0.04 Phaeopigment μg/L 0.04 Alpha see text 0.27 Saturation mg/Lm ² /d 131.1 Areal Production mg/Lm ² /d 131.1 Areal Production μMO/Lm ² /d 131.1 Areal Production μmo/lm 0.01 BIOSI μM 0.27 POR μM 0.04 POR μM 0.04 PON μM 0.04 FON μM 0.04 TOR μM 0.04 Caurface samples only) 0.0 Calexandrium tamarense Mocell/L Chalexandrium tamarense Mocell/L Phaeocystis pouchetti Mocell/L </td <td>Salinity</td> <td>nsd</td> <td>31.2</td> <td>32.6</td> <td>32.0</td>	Salinity	nsd	31.2	32.6	32.0
Temperature C 3.1 Transmissivity m-1 0.2 NNO ₂ + NO ₃ μΜ 0.14 NO ₂ + NO ₃ μΜ 0.14 NO ₂ + NO ₃ μΜ 0.14 SiO ₄ μΜ 0.14 Phaeopigment μg/L 0.04 Saturation mg/l 89 Saturation mg/l 3.1 Alpha see text 0.00 Saturation mg/l 131.1 Areal Production μπο/l 0.01 Milm BIOSI μΜ 0.27 DOC μΜ 0.21 PON μΜ 0.76 TOR μΜ 0.76 TOR μΜ 0.16 Urea μΜ 0.16 Urea μΜ 0.16 Centric diatoms Mcell/L Centric diatoms Mcell/L Pheacocysits pouchetif Mcell/L P	Sigma_T		24.8	25.9	25.5
Transmissivity m-1 0.2 NO ₂ μM 0.14 NO ₂ μM 0.14 NO ₂ μM 0.14 SIO ₄ μM 0.068 SIO ₄ μM 0.04 Phaeopigment μg/L 0.00 Areal Production mg/l 89 89 Alpha see text 0.00 Areal Production mg/l 0.01 Areal Production mg/l 0.01 Areal Production mg/l 0.01 Areal Production μm/l 0.01 DOC μM 0.13 FON μM 0.76 TDP μM 0.76 TDP μM 0.76 TDP μM 0.76 Total Phytoplankton Mcell/L Centric diatoms Mcell/L Phaeocystls pouchetti Mcell/L Phaeocystls po	Temperature	ပ္	3.1	4.2	3.6
NH ₄ μM 0.94 NO ₂ μM 0.14 NO ₂ μM 0.14 SIO ₄ μM 0.08 SIO ₄ μM 7.7 Phaeopigment μg/L 0.04 Alexandrium tamarense μM 0.27 Total Phytoplankton μM 0.21 Total Phytoplankton μM 0.76 Total Phytoplankton μM 0.76 Total Phytoplankton μcell/L Centric diatoms Moell/L Phaeocystls pouchetti Moell/L	Transmissivity	H-T	0.2	0.5	0.3
NO ₂ μM 0.14 NO ₂ μM 0.14 NO ₂ + NO ₃ μM 0.14 SlO ₄ μM 0.68 Saturation mg/l 89 Saturation mg/l 0.00 Areal Production mg/l 131.1 Areal Production mg/l 131.1 DOC mg/l 1.0 PART P μM 0.27 POC μM 6.1 POC μM 6.1 POC μM 13.4 Total Phytoplankton Mcell/L Centric diatoms Mcell/L Centric diatoms Mcell/L Poseudo-nitzschia sp Mcell/L Poceudo-nitzschia sp Mcell/L Poceudo-nitzschia sp Mcell/L Poceudo-nitzschia sp Mcell/L Poceudo-nitzschia sp Mcell/L Poceudo-nitz					
NO2 + NO3 μM 5.9 SIO4 μM 5.9 SIO4 μM 7.7 Phaeopigment μg/L 0.04 Concentration mg/l 89 Concentration mg/l 89 Areal Production mg/l 131.1 Areal Production mg/l 131.1 Pmax see text 0.00 Areal Production mg/l 131.1 Pmax see text 0.07 Pmax see text 0.07 PMAT μM 0.01 For Column μM 13.4 Total Phytoplankton μM 0.76 Urea μM 0.76 Urea μM 0.89 Urea μM μM 0.89 Urea μM μM μM μM μM μM μM μ		MI	0.94	90.9	1.84
NO2+NO3 μM 5.9 SIO4 μM 0.68 SIO4 μM 7.7 SIO4 μM 7.7 Phaeopigment μg/L 0.04 Concentration πg/l 8.5 Saturation πg/l 8.5 Areal Production mgC/m²/d 131.1 Pmax Respiration μmol/h 0.01 Pmax Respiration μmol/h 0.01 PART P μM 0.01 POC μM 6.1 PON μM 0.76 TDN μM 0.76 TDN μM 0.76 TSS mg/L 0.0 Total Phytoplankton Mcell/L Centric diatoms Mcell/L Phaeocystis pouchetti Mcell/L Phaeocystis pouc	NOS	M	0.14	0.31	0.19
PO ₄ μM 0.68 SiO ₄ μM 7.7 Phaeopigment μg/L 0.04 Concentration mg/l 9.5 Areal Production mgC/m²/d 131.1 Areal Production mgC/m²/d 131.1 Pmx see text 0.00 Areal Production mgC/m²/d 131.1 Pmx see text 0.01 Pmx pm mol/h 0.76 TDN μM 0.76 TDN μM 0.76 Total Phytoplankton Mcell/L 0.89 Mkton (Surface samples orly) Total Phytoplankton Mcell/L Phaeocystis pouchetti Mcell/L	NO ₃ + NO ₃	MI	5.9	7.5	6.8
SiO ₄ μM 7.7 Phaeopigment μg/L 0.04 Concentration mg/l 89 Concentration mg/l 89 Concentration mg/l 89 Areal Production mgC/m²/d 131.1 Areal Production mgC/m²/d 131.1 Respiration μmol/h 0.07 For Column BiOS μM 0.01 For Column μM 13.4 TDN μM 0.76 TSS mg/L 0.0 TSS mg/L 0.08 Total Phytoplankton Mcell/L Total Phytoplankton Mcell/L Centric diatoms Mcell/L Mcell/L Phaeocystis pouchetti Mcell/L Phaeocyst	PO	E.	0.68	1.00	0.82
Concentration mg/l % 89 89 89 89 89 89 89 89	7OIS	E.	7.7	11.2	9.3
Concentration mg/l 9.5 ductivity Alpha see text 0.00 Areal Production mgC/m²/d 131.1 Areal Production mgC/m²/d 0.27 Respiration μmol/h 0.01 Et Column BIOSI μM 0.01 PART P μM 0.04 POC μM 6.1 PON μM 0.04 TDN μM 0.04 TSS mg/L 0.0 TSS mg/L 0.09 Into Table Phytoplankton Mcell/L 0.09 Alexandrium tamarense Mcell/L 0.09 Phaeocystis pouchetti Mcell/L 0.09 Phaeocystis pouchetti Mcell/L 0.09 Phaeocystis pouchetti Mcell/L 0.09	Phaeopigment	ng/L	0.04	0.29	0.12
Concentration mg/l 85 Saturation					
Saturation % 89 Alpha see text 0.00 Areal Production mgC/m²/d 131.1 Pmax see text 0.27 Pmax see text 0.27 Pmax see text 0.27 Pmax see text 0.01 Pmax see text 0.01 Pmax see text 0.01 PM mg/L 0.04 PART P μM 0.14 PON μM 0.76 TDP μM 0.089 urface samples only): mg/L 0.089 urface samples only): Mcell/L 0.089 urface samples only): Mcell/L 0.09 Phaeocystis pouchetti Mcell/L Mcell/L Phaeocystis pouchetti Mcell/L Mcell/L Pseudo-nitzschia sp Mcell/L Mcell/L		mg/l	9.5	10.6	10.1
Alpha see text 0.00 Areal Production mgC/m²/d 131.1 Pmax see text 0.27 Pmax see text 0.27 Respiration μmol/h 0.01 DOC mg/L 1.0 PART P μM 0.04 POC μM 6.1 PON μM 0.76 TDP μM 0.76 TSS mg/L 0.0 Ureal μM 0.89 urface samples only): Total Phytoplankton Mcell/L Centric diatoms Mcell/L 0.09 Phaeocystis pouchetti Mcell/L Phaeocystis pouchetti Pseudo-nitzschia sp Mcell/L Mcell/L	Saturation	%	68	66	95
Alpha see text 0.00 Areal Production mgC/m²/d 131.1 Pmax see text 0.27 m Do.27 0.01 PART P μM 0.21 PART P μM 0.04 POC μM 0.04 PON μM 0.0 PON μM 0.76 TDP μM 0.76 Total Phytoplankton Mcell/L 0.0 Centric diatoms Mcell/L 0.09 Centric diatoms Mcell/L 0.09 Phaeocystis pouchetti Mcell/L Paseudo-nitzschia sp Pseudo-nitzschia sp Mcell/L Mcell/L					
mgC/m²/d 131.1		see text	0.00	0.01	0.00
mol/h		ngC/m²/d	131.1	133.7	132.4
		see text	0.27	0.89	0.58
I I I I I I I I I I	Respiration	h/lomn	0.01	0.03	0.02
I I I I I I I I I I					
December 1.0		Mil	0.21	1.38	0.68
Р µМ 0.04 С µМ 6.1 N µМ 0.76 S mg/L 0.0 S mg/L 0.089 Moeli/L Moeli/L Moeli/L Moeli/L Moeli/L Moeli/L	DOC	mg/L	1.0	2.0	1.6
С µМ 6.1 N µМ 0.76 N µМ 0.76 S mg/L 0.0 Moeli/L Moeli/L Moeli/L Moeli/L	PART P	Mμ	0.04	0.18	0.10
N μM 13.4 N μM 0.76 S mg/L 0.0 S mg/L 0.89 II Mcell/L	POC	Mη	6.1	40.5	13.6
N μM 13.4 P μM 0.76 S mg/L 0.0 a μM 0.89 n Mcell/L s Mcell/L i Mcell/L i Mcell/L i Mcell/L	PON	Mμ	0	6.5	1.8
Р µМ 0.76 S mg/L 0.0 a µМ 0.89 m Mcell/L s Mcell/L i Mcell/L i Mcell/L i Mcell/L i Mcell/L	NOL	Mu	13.4	20.1	15.7
S mg/L 0.0 a µM 0.89 in Mcell/L is Mcell/L in Mcell/L in Mcell/L in Mcell/L in Mcell/L in Mcell/L	TDP	Mil	0.76	1.06	0.86
ia µM 0.89	TSS	mg/L	0.0	30.0	11.3
in Mcell/L is Mcell/L in Mcell/L in Mcell/L in Mcell/L in Mcell/L	Urea	WI	0.89	3.59	1.80
is Mcell/L Mcell/L ii Mcell/L p Mcell/L	lankton (Surface samples only)				
Mcell/L Mcell/L Mcell/L Mcell/L	Total Phytoplankton	Mcell/L		0.23	
Mcell/L Mcell/L Mcell/L	Centric diatoms	Mcell/L		0.002	
Mcell/L Mcell/L	Alexandrium tamarense	Mcell/L		<u>Q</u>	
Mcell/L	Phaeocystis pouchetti	Mcell/L		S D	
	Pseudo-nitzschia sp	Mcell/L		ď	
#/m3	Total Zooplankton	#/m3		33748	

TABLE 3-4
Semi-Annual Data Summary Table
Event W9504 (4/03/95 - 4/10/95)
Combined Nearfield/Farfield Survey

	tay	Avg						0.49		0.52		4				1.59		9.6	92						000000000		2.97			ļ				14.6			_	<u> </u>					
	Cape Cod Bay	Max		4.2	31.9	25.3	4.5	0.81		1.24	0.21		. o	0.72	7.7	3.05		10.2	97								4.21	2.0	0.32	43.0	4.43	15.6	0.91	19.0	0.72		2.9	0.02	P	N N	: \ \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	25515	
	Cap	Min		0.5	31.6	25.1	2.2	0.35		0.16	0 12	;	7	0.36	3.8	0.66		9.2	18								2.24	1.0	0.22	21.8	1.90	6.6	0.55	5.0	0.24				T	T	T	T	1
		Avg		9.0	32.1	25.5	9. 0.	0.32		1.15	0 1/	,	6.4	0.81	8.7	0.19		9.8	8					Ī			0.66	1.0	0.10	12.9	1.96	13.4	0.74	7.4	0.78								
	Boundary	Max		2.0	32.5	25.9	4.4	1.14		263	0 21	7.5	7.2	1.00	10.5	0.64		10.3	96								0.75	1.0	0.11	13.1	2.49	15.6	0.75	10.0	0.80		0.4	0.001	ď	2	ž d	18953	
	B	Min		0.2	31.4	25.0	3.7	0.21		0.67	2 0	2	8.	99.0	6.8	0.11		9.3	88					ł	_		0.57	1.0	60.0	12.6	1.40	11.4	0.72	6.0	0.77				 	\dagger	+	+	
		Avg		9.0	32.0	25.4	9.0	0.32		1 24	1	5	6.3	0.79	9.8	0.19		9.8	93	7				Ì	0.00		0.50	1.0	0.12	11.7	2.00	14.2	0.74	4.7	0.85		Γ		T	T	T	Ť	1
Farfield	Offshore	Max		1.2	32.6	25.9	4.2	2.15		2 76	27.70	0.64	7.8	1.03	11.6	0.23		10.4	8	3					0.0		0.55	6.	0.12	13.8	2.92	15.4	0.79	11.0	0.90		0.6	0.01	2	2 2	Ž Ž	17124	1. 14.
Ĕ	ō	Z Will		0.3	31.6	25.1	3.5	0.21	_	890	0.00	- - -	5.5	0.71	7.6	0.16		9.0	85	3					0.00		0.44	1.0	0.12	6.5	1.28	13.0	99.0	0.0	0.81		_	 	+	\dagger	\dagger	\dagger	-
		Avg		0.5	31.5	25.0	4.1	0.30	-	20 %	20.00	0.23	5.7	0.84	7.7	0.24		10.0	8	F							0.92	2.1	0.18	17.4	2.62	17.0	0.92	17.1	1.09		-	\dagger	T	\dagger	1	†	
	Coastal	-		0.8	31.9	25.3	4.3	0.46		5 27	0.67	U.42	6.2	0.94	8.4	0.40		10.3	6	26							1.63	4.0	0.28	26.8	3.76	20.0	1.14	28.0	2.12		2.1	0.0	19	ž	2 2	AN SOS	43000
	ŭ	Min		0.3 E.0	31.1	24.7	3.9	0.21	_	100	1.38	0.16	5.2	0.75	7.0	0.08		96	8	ne.							0.25	1.0	0.12	11.6	1.64	13.1	0.77	5.0	0.64	_	-	+	+	+	+	+	-
		Avg		0.7	30.8	24.4	4.5	0.54	-	7	9. 6 9. 19	0.34	6.4	1.09	9.3	0.42		10 1		cs S		0.02	178.0	2.8	0.11		1.46	2.4	0.39	37.5	4.73	34.0	1.20	9.2	1.12	-		\dagger	+	†	\dagger	†	_
	Harbor		ł	1.0	31.1	24.7	5.3	0.65		,	11.84	0.53	10.8	1.31	15.4	0.70		40 2		, a/		0.03	178.0	4.5	0.18		2.37	3.0	0.54	45.3	5.62	50.3	1.37	24.0	1.47		3.0	600	3 1	d I	d !	d S	23052
	I	Min	-	0.5	29.4	23.2	4.3	0.48		3	5.81	0.26	5.3	0.89	7.9	0.28		α	25	3		0.02	178.0	2.3	90.0		0.43	2.0	0.03	30.2	3.14	22.0	96.0	0.0	0.58	_	_	+	+	\dagger	\dagger	+	
		Avo	-	0.4	31.8	25.2	4.1	0.23			99.	0.17	6.1	0.80	8.3	0.12		10	3 1	9/		0.01	353.3	1.6	0.05		0.38	8.	0.10	10.7	1.41	15.3	0.77	10.1	1.39		-	†	†	1	1	1	
Nearfield	5	Max	- 000	60	32.3	25.7	5.4	0.34	3	1	5.76	0.25	7.8	1.02	11.3	0.40		40	2 3	19		0.02	380.7	3.6	0.10	•	0.92	4	0.17	15.7	2.65	20.8	0.95	25.0	3 65	,	1-	. 6	, O. U.	₽	ď	₽	43373
Z				0.0	31.3	24.8	3.6	0 10	2		0.67	0.15	5.3	0.73	7.4	0.04		0	0.0	92		0.01	302.8	0.5	0.00		800	0	90.0	9	0.00	12.2	0.67	0.0	030		-	†	†	+	1		
		Hu!		_ 	I Dell		ړ	,	1-11		Mμ	μМ	MI	N N	P	1/2	1/6r	-	mg/i	%		see text	mgC/m ² /d	see text	mol/h		M:	May !		2	¥ 2	¥	N.	//	2	MIT		MCell/L	Mcell/L	Mcell/L	Mcell/L	Mcell/L	#/m3
				L	\perp	 -	 - @		_		4	2	15	1						nc			L		_		Ī			 - اد	2 2			l		Ed	in cald		_	_		_	L
				Il dans	Cilioropinyii a	Signa	Temperature	iii pelatu	ransmissivity		NH⁴	NO,	NO, + NO	PO,	SIO	Carolado	riiaeopigiiidii	: - 	Concentration	Saturation		Alpha	Areal Production	Pmax	Respiration		10010		DART P		NO NO NO NO NO NO NO NO NO NO NO NO NO N	NOT NOT	÷∣⊧ ا	۲		Olea	Flankton (Surface samples only)	l otal Phytoplankton	Centric diatoms	Alexandrium tamarense	Phaeocystis pouchetti	Pseudo-nitzschia sp	Total Zooplankton
		Totor.	ובובו	000	3			=	- 1	suts						o do	7116		ි		Productivity		Areal			March Collins											me) 1101)	lotal Pn	Cen	andrium	aeocyst	2-opnas	Total Z
	200	De Sam	משווכוכו	Fuysi						Nutrients							Ç	2			Produ					(V)	, a									i c	<u> </u>			Alex	đ	Ĺ	L

TABLE 3-5
Semi-Annual Data Summary Table
Event W9505 (4/24/95 - 4/27/95)
Nearfield Survey

	Min Max 0.32 31.5 24.6 4.0 0.21 0.05 0.05 0.05 0.06 0.06 0.23 88	8.93 2.60 32.3 31.9 25.6 25.1 7.7 5.5 0.66 0.36 0.81 0.19 7.8 4.4 0.96 0.62 10.9 6.1 2.46 0.83
tier Chlorophyll a Salinity Sigma_T Temperature Transmissivity ts NO2+NO3 NO2+NO3 NO2+NO3 SIO4 SIO4 SIO4 Aneal Production Saturation Saturation Saturation Saturation Saturation Saturation Saturation Saturation Solumn	0.32 31.5 24.6 4.0 0.21 0.05 0.05 0.05 0.03 88	Avg
Chlorophyll a Salinity Sigma_T Temperature Transmissivity NO2+NO3 NO2+NO4 SIO4 SIO4 SIO4 SIO4 SAturation Saturation Saturation Saturation Saturation Wheal Production Separation Wheal Production		
Chlorophyll a Salinity Sigma_T Temperature Transmissivity NO2+NO3 NO2+NO3 NO2+NO3 SIO4 Phaeopigment Concentration Saturation Saturation Areal Production Phase Respiration		
Salinity Sigma_T Temperature Transmissivity NO ₂ +NO ₃ NO ₂ +NO ₃ NO ₂ +NO ₃ SIO ₄		
Sigma_T Temperature Transmissivity NO2 NO2+NO3 NO2+NO3 SIO4 SIO4 SIO4 SIO4 SIO4 SIO4 SIO4 SIO4		
Transmissivity NO2 NO2 NO2 NO2 NO2 NO3 SIO4 SIO4 SIO4 SIO4 SIO4 SAturation Saturation Aipha Areal Production Pmax Respiration		
Transmissivity NH4 NO2 NO2 NO2 PO4 SIO4 SIO4 SIO4 SAturation Saturation Aipha Areal Production Pmax Respiration M		
NH4 NO2 NO2 NO2 PO4 SIO4 SIO4 SIO4 Concentration Saturation Alpha Areal Production Pmax Respiration		
NH ₂ NO ₂ + NO ₃ NO ₂ + NO ₃ SIO ₄ SAturation Aipha Areal Production Pmax Respiration		
NO ₂ + NO ₃ NO ₂ + NO ₃ PO ₄ SIO ₄ SIO ₄ SIO ₄ SIO ₄ Concentration Saturation Alpha Areal Production Pmax Respiration		
NO2+ NO3 PO4 SIO4 SIO4 Phaeopigment Concentration Saturation Alpha Areal Production Pmax Respiration		
PO ₄ SIO ₄ SIO ₄ SHO ₄ Concentration Saturation Alpha Areal Production Pmax Respiration		
SIO ₄ Phaeopigment Concentration Saturation Alpha Areal Production Pmax Respiration		
Phaeopigment Concentration Saturation Alpha Areal Production Pmax Respiration		
Concentration Saturation Alpha Areal Production Pmax Respiration		
Concentration Saturation Alpha Areal Production Pmax Respiration		
Saturation Alpha Areal Production Production Respiration		
Alpha Areal Production Pmax Respiration		
Alpha Areal Production Pmax Respiration		
Areal Production Pmax Respiration		
Pmax Respiration		24
Respiration	0.6	39.2 10.6
	0.00	2.37 0.43
BIOSI IIM	0.4	4.8 2.4
DOC mg/L	1.0	
PART P µM	0.08	
L	7.0	60.1 25.8
Mu NOG	0.52	
Mm TDN	7.7	
	0.35	
_	0.0	
	0.20	1.29 0.66
Plankton (Surface samples only)		
Total Phytoplankton Mcell/L		3.8
Centric diatoms Mcell/L		0.19
Alexandrium tamarense Mcell/L		NP
Phaeocystis pouchetti Mcell/L		dV .
	æ	8.10E-05
Total Zooplankton #/m3		42608

TABLE 3-6 Semi-Annual Data Summary Table Event W9506 (5/15/95 - 5/17/95) Nearfield Survey

1.61 32.1 25.4 9.6 0.61 0.22 4.1 0.87 7.8 0.03 7.8 0.03 7.8 0.03 11.3 11.3 11.3 11.3 11.3 11.0 1.01 1.01				Nearfield	
Chicophyll a 1911 0.00 1.611 24.0 32.1	Region				
Chlorophyll a μg/L psu 0.00 1.61 Salmity psu 31.1 32.1 Salmity psu 24.0 26.4 Transmissivity m-1 24.0 26.4 NO2 + NO2 μM m-1 0.28 8.16 NO2 + NO3 μM 0.03 0.22 4.1 PO4 μM 0.03 0.23 0.25 4.1 PO4 μM 0.03 0.24 0.87 7.8 Phaeopigment μg/L μM 0.09 0.24 0.45 Phaeopigment μg/L μM 0.09 0.24 0.45 Phaeopigment μg/L μM 0.09 0.24 0.05 Areal Production μg/L μM 0.09 0.03 0.03 Areal Production μm/l μm/l 0.12 0.12 0.12 0.19 0.19 Areal Production μm/l μm/l 0.12 0.12 0.12 0.19 0.19 PART P μM 0.00 0.02 0.14 0.09 0.28 PART P μM 0.00 0.02 0.03 0.12 0.19 PART P μM 0.00 0.00 0.00 0.00 0.00 Pascillation Ur	Parameter	Dut	Min	Max	Avg
Chicophylia iugl. 0.00 1.61	Physical				
Salinity psu 31.1 32.1 Sigma T Temperature C 4.9 26.4 Temperature C 4.9 26.4 Transmissivity m-1 0.20 0.61 NO2 + NO3 μM 0.28 8.16 NO2 + NO3 μM 0.34 4.1 PO4 μM 0.34 0.87 SlO4 μM 0.34 0.87 SlO4 μM 0.34 0.87 Phaeopigment μg/L 0.09 0.45 Phaeopigment μg/L 0.09 0.45 Phaeopigment μg/L 0.09 0.45 Saturation mg/L 775.4 80.9 7 Aveal Production mg/L 775.4 80.9 7 Respiration μm/L 0.12 0.19 0.12 Pox μM 0.02 0.28 0.19 PAREI Poduction μM 0.01 0.12 0.19 PAREI Poduction <td></td> <td>ng/L</td> <td>0.00</td> <td>1.61</td> <td>0.34</td>		ng/L	0.00	1.61	0.34
Sigma_T in perature C 4.9 25.4 Transmissivity m-1 C 4.9 9.6 NO2 + NO3 μM 0.28 8.16 NO2 + NO3 μM 0.03 0.22 NO2 + NO3 μM 0.03 0.22 SiO ₄ μM 0.34 0.87 7.8 SiO ₄ μM 0.34 0.87 7.8 SiO ₄ μM 0.34 0.87 7.8 Phaeopigment μM 0.34 0.87 7.8 SiO ₄ μM 0.34 0.87 7.8 7.8 Areal Production mgCm ² /m ² /d 775.4 800.9 7 Areal Production mgCm ² /m ² /d 775.4 800.9 7 Areal Production mgCm ² /m ² /d 775.4 800.9 7 Areal Production mgCm ² /m ² /d 775.4 800.9 7 Pox mgCm ² /m ² /d 776.4 800.9 7 Pox mgCm ² /m ² /m 10.0 2.0 10.0 <t< td=""><td>Salinity</td><td>nsd</td><td>31.1</td><td>32.1</td><td>31.5</td></t<>	Salinity	nsd	31.1	32.1	31.5
Transmissivity "C 4.9 9.6	Sigma_T		24.0	25.4	24.6
Transmissivity m-1 0.20 0.61	Temperature	့ပ	4.9	9.6	7.3
NH4 μM 0.28 8.16 NO2+NO3 μM 0.03 0.22 SIO4 μM 0.34 0.87 SIO4 μM 0.34 0.87 SIO4 μM 0.34 0.45 Phaeopigment μg/L 0.09 0.45 Alpha see lext 0.00 0.03 Areal Production mgC/m²/d 775.4 800.9 7 Respiration mg/L 0.09 0.28 Pmax see text 0.00 0.03 7 Respiration μm/L 1.0 2.0 PMX see text 0.00 0.28 43.6 PMX see text 0.00 0.28 43.6 PMX see text 0.00 0.28 43.6 PMX see text 0.00 14.0 PMX see text 0.00 0.28 43.6 PMX see text 0.00 14.0 PMX see text 0.00 14.0 PMX see text 0.00 0.28 43.6 PMX see text 0.00 14.0 TMX see text 0.00 1	Transmissivity	m-1	0.20	0.61	0.28
NN ₂ μM 0.03 0.22 NO ₂ + NO ₃ μM 0.03 0.02 Side μM 0.03 0.22 Side μM 0.03 0.45 Saturation μg/L 0.09 0.45 Saturation mg/l 9.2 11.3 Concentration mg/l 9.2 11.3 Saturation mg/l 0.00 0.03 Areal Production mgC/m²/d 775.4 800.9 7 Respiration mg/l 0.12 0.19 Min BIOSI μM 0.01 0.28 POC μM 10.0 0.28 POC μM 10.0 0.35 FOC μM 10.0 0.31 TDN μM 6.3 43.6 TDN μM 0.062 1.01 Total Phytoplankton Mcell/L 1.34E-05 Poseudo-nitzschia sp Mcell/L 1.34E-05 Poceudo-nitzschia sp Mcell/L 1.34E-05					
NO2 + NO3 0.02 4.1 1.2 1.		MI	0.28	8.16	1.68
NO2+NO3 μM 0.34 0.87 PO4 μM 0.34 0.87 SalO4 μM 0.34 0.87 Phaeopigment μg/L 0.09 0.45 Concentration mg/l 9.2 11.3 Saturation mg/l 9.2 11.3 Areal Production mg/l 0.02 0.03 Areal Production mg/Lm²/d 775.4 800.9 7 Respiration μmo/l 0.12 0.19 PART μM 10.2 2.1 TDN μM 6.3 43.6 TDN μM 6.3 43.6 TDN μM 6.3 43.6 Total Prytoplankton Mcell/L 0.06 Paeudo-nitzschia sp Mcell/L 1.34E-05 Pseudo-nitzschia sp Mcell/L 1.34E-05 Pseudo-nitzschia sp Mcell/L 1.34E-05 Pseudo-nitzschia sp Mcell/L 1.34E-05 Pseudo-nitzschia sp Mcell/L 1.34E-05 Total Zooplankton μm/R 1.34E-05 Pseudo-nitzschia sp Mcell/L 1.34E-05 Total Zooplankton μm/R μm/R 1.34E-05 Total Zooplankton μm/R μ	NO ₂	Мμ	0.03	0.22	0.08
PO ₄ μM 0.34 0.87 SIO ₄ μM 3.6 7.8 Phaeopigment μM 3.6 7.8 Concentration mg/L 0.09 0.45 Areal Production mg/L 9.2 11.6 Areal Production mgC/m²/d 775.4 800.9 7 Areal Production mgC/m²/d 775.4 800.9 7 Areal Production mgC/m²/d 775.4 800.9 7 Areal Production mg/L 0.12 0.19 7 Respiration μm old/h 0.12 0.19 2.0 PART P μM 0.03 0.28 0.28 POC μM 0.03 0.28 4.36 TOS μM 0.36 0.91 1.01 Urface samples only) mg/L 0.06Z 1.01 Total Phytoplankton Mcell/L 0.008 0.008 Centric diatoms Mcell/L 0.000 0.000 Ph	NO ₂ + NO ₃	Мц	0.2	4.1	0.8
SIO ₄ μΜ 3.6 7.8 Phaeopigment μg/L 0.09 0.45 Concentration mg/l 9.2 11.3 Saturation % 97 116 Areal Production mg/L 0.00 0.03 7 Areal Production mg/L 0.12 0.03 7 Respiration μm (0.12) 7.2 800.9 7 PART P Pmax see text 0.02 0.12 0.19 PART P Pmax see text 0.02 0.12 0.19 PART P Pmax see text 0.01 0.02 0.28 PART P Pmax see text 0.02 0.28 0.28 PART P Pmax see text 0.09 0.28 0.28 PART P PM PM PM PMAR PMAR PMAR PMAR PMAR PMA	PO	Мμ	0.34	0.87	0.46
Phaeopigment μg/L 0.09 0.45 Concentration mg/l 9.2 11.3 Alpha see text 0.00 0.03 7 Areal Production mgC/m²/d 775.4 800.9 7 Respiration μmol/h 775.4 800.9 7 Respiration μmol/h 0.12 0.19 7 PART P μM 0.05 0.28 4.80 PART P μM 1.02 2.0 1.9 PART P μM 0.05 4.80 4.80 POC μM 0.36 4.80 4.80 TDP μM 6.3 4.80 4.80 TDS μM 0.36 4.80 4.80 Urea μM 0.36 4.80 4.80 Centric diatoms Mcell/L 0.06 4.80 4.80 Centric diatoms Mcell/L 0.06 4.80 4.80 Phaeocystis pouchetti Mcell/L 0.00 </td <td>SIO</td> <td>Mμ</td> <td>3.6</td> <td>7.8</td> <td>5.0</td>	SIO	Mμ	3.6	7.8	5.0
Concentration mg/l 9.2 11.3 Saturation % 9.7 11.6 Alpha see text 0.00 0.03 7 Areal Production mgC/m²/d 775.4 800.9 7 Respiration μmo/lh 0.12 0.19 7 mn BIOSI μM 0.1 2.0 0.19 PART P μM 0.05 2.0 0.2 0.0 PART P μM 1.05 4.80 0.91 POC μM 0.36 0.91 1.01 TDP μM 0.36 0.91 1.01 Urea μM 0.36 0.91 1.01 Urea μM 0.62 1.01 NP Phaeocystis pouchetti Moell/L 0.08 0.08 Centric diatoms Moell/L 0.008 0.008 Phaeocystis pouchetti Moell/L 0.008 0.008 Pseudo-nitzschia sp Moell/L 0.008 <	Phaeopigment	hg/L	60.0	0.45	0.19
Concentration mg/l 9.2 11.3 Saturation % 97 116 Alpha see text 0.00 0.03 7 Areal Production mgC/m²/d 775.4 800.9 7 Respiration mgC/m²/d 775.4 800.9 7 Respiration mmo/h 0.12 0.19 7 Respiration mmo/h 0.12 0.19 7 PART P μM 0.12 2.0 0.19 PART P μM 1.02 2.0 0.28 PART P μM 1.05 2.0 4.80 TDN μM 6.3 4.80 4.80 TTS mg/L 0.0 4.80 4.80 Urea μM 6.3 4.80 4.80 Total Phytoplankton mcell/L 0.06 14.0 0.91 Centric diatoms Mcell/L 0.06 0.08 0.91 Pseudo-nitzschia sp Mcell/L 0.00					
Saturation % 97 116 Alpha see text 0.00 0.03 7 Areal Production mgC/m²/d 775.4 800.9 7 Respiration μmo/lh 0.12 0.03 7 mn BIOSI μM 0.1 2.0 0.19 mn BIOSI μM 0.09 0.28 0.28 POC μM 1.06 4.80 0.28 0.28 POO μM 0.36 0.91 4.80 0.28 TDN μM 0.36 0.91 4.80 0.91 0.91 TSS mg/L 0.062 1.01 0.09 0.91 0.91 Total Phytoplankton Mcell/L 0.062 1.01 NP NP Centric diatoms Mcell/L 0.008 0.008 0.008 NP Phaeocystis pouchetti Mcell/L 0.008 0.008 NP Pseudo-nitzschia sp Mcell/L 0.008 0.008<		l/gm	9.5	11.3	10.7
Alpha see text 0.00 0.03 Areal Production Pmax see text 0.12 800.9 7 Respiration Pmax see text 0.12 0.19 7 mn Respiration PMC	Saturation	%	16	116	109
Alpha see text 0.00 0.03 Areal Production Pmax see text 0.12 800.9 7 Respiration Pmax see text 0.12 0.19 7 mn BIOSI µM µM 0.12 0.19 7 mn BIOSI µM µM 0.1 2.0 0.19 PART P µM µM 0.09 0.28 4.80 POC µM µM 6.3 4.80 4.80 PON µM 6.3 4.36 4.36 4.36 TDN µM 6.3 4.36 1.01 4.80 TDN µM 0.36 0.91 1.40 1.01 witace samples only) piM 0.62 1.01 1.01 Total Phytoplankton Moell/L 0.05 1.01 NP Phaeocystis pouchetti Moell/L NP NP Pseudo-nitzschia sp Mcell/L 0.008 NP Pseudo-nitzschia sp Mcell/L 1.34E-05 Total Zooplankton #/m3 777463					
Areal Production mgC/m²/d 775.4 800.9 7 Respiration μmol/h 0.12 0.19 7 Respiration μmol/h 0.12 0.19 7.10 DOC μM 0.09 0.28 7 PART P μM 0.09 0.28 4.80 POC μM 1.02 23.5 4.80 PON μM 6.3 4.80 14.0 TDP μM 0.36 0.91 14.0 TSS mg/L 0.0 14.0 1.01 ace samples only) mgell/L 0.02 1.01 NP Centric diatoms Mcell/L NP NP aecocystis pouchetti Mcell/L 0.008 NP Pseudo-nitzschia sp Mcell/L 1.34E-05 77463		see text	00'0	0.03	0.01
Pmax see text 0.2 10.2 Respiration μmol/h 0.12 0.19 BIOSI μM 0.1 2.1 DOC mg/L 1.0 2.0 PART P μM 0.09 0.28 POC μM 1.06 4.80 PON μM 6.3 43.6 TDP μM 0.36 0.91 TCS mg/L 0.0 14.0 Total Phytoplankton Mcell/L 0.062 1.01 Centric diatoms Mcell/L 0.008 andrium tamarense Mcell/L NP aeocystis pouchetti Mcell/L NP Pseudo-nitzschia sp Mcell/L NP Total Zooplankton #/m3 777463	Areal Production	mgC/m²/d	775.4	800.9	788.1
Respiration μmol/h 0.12 0.19 BIOSI μM 0.1 2.1 DOC mg/L 1.0 2.0 PART P μM 10.2 23.5 POC μM 1.06 4.80 PON μM 6.3 43.6 TDN μM 0.36 0.91 TDP μM 0.06 14.0 TSS mg/L 0.0 14.0 Centric diatoms Mcell/L 0.08 1.8 andrium tamarense Mcell/L NP aeocystis pouchetti Mcell/L NP Pseudo-nitzschia sp Mcell/L NP Total Zooplankton #/m3 777463	Pmax	see text	0.2	10.2	3.8
BIOSI μΜ 0.1 2.1 DOC mg/L 1.0 2.0 PART P μΜ 10.2 23.5 POC μΜ 1.06 4.80 PON μΜ 6.3 43.6 TDN μΜ 0.36 0.91 TSS mg/L 0.0 14.0 Total Prytoplankton Mcell/L 0.02 1.01 Centric diatoms Mcell/L 0.008 andrium tamarense Mcell/L NP aeocystis pouchetti Mcell/L NP Pseudo-nitzschia sp Mcell/L 1.34E-05 Total Zooplankton #/m3 77463	Respiration	h/lomn	0.12	0.19	0.16
BIOSI μΜ 0.1 2.1 DOC mg/L 1.0 2.0 PART P μΜ 10.2 23.5 POC μΜ 1.06 4.80 TDN μΜ 6.3 43.6 TDN μΜ 0.36 0.91 TSS mg/L 0.0 14.0 Interessamples only) mg/L 0.05 1.8 Total Phytoplankton Mcell/L 0.08 NP andrium tamarense Mcell/L NP aeocystis pouchetti Mcell/L NP Pseudo-nitzschia sp Mcell/L NP Total Zooplankton #/m3 777463					
C mg/L 1.0 2.0 P μM 0.09 0.28 C μM 1.0.2 23.5 N μM 6.3 43.6 N μM 0.36 0.91 S mg/L 0.0 14.0 In Mcell/L 0.062 1.01 In Mcell/L NP In Mcell/L NP In Mcell/L NP In Mcell/L NP In Mcell/L 1.34E-05 In #/m3 777463		Νī	0.1	2.1	0.7
Р μМ 0.09 0.28 C μМ 10.2 23.5 N μМ 6.3 4.80 N μМ 0.36 0.91 S mg/L 0.0 14.0 R μΜ 0.62 1.01 In Mcell/L 0.008 In Mcell/L NP In Mcell/L NP In Mcell/L NP In Mcell/L NP In #/m3 77463	DOC	mg/L	1.0	2.0	1.6
C μM 10.2 23.5 N μM 6.3 4.80 N μM 0.36 0.91 S mg/L 0.0 14.0 Ra μM 0.62 1.01 In Mcell/L 0.008 In Mcell/L NP In H/m3 77463	PART P	Μμ	60'0	0.28	0.17
N μM 1.06 4.80 N μM 6.3 43.6 P μM 0.36 0.91 S mg/L 0.0 14.0 R μM 0.62 1.01 N Mcell/L N N M Mcell/L N N M Mcell/L 1.34E-05 M m m m m m M m m m m m M m m m m m M m m m m m m M m m m m m m M m m m m m m M m m m m m m m M m m m m m m m M m m m m m m m m m	POC	Mµ	10.2	23.5	16.7
N μM 6.3 43.6 P μM 0.36 0.91 S mg/L 0.0 14.0 Ia μM 0.62 1.01 Mcell/L 0.008 Mcell/L NP Mcell/L NP NP Mcell/L Mcell/L NP NP Mcell/L	NOM	Μμ	1.06	4.80	2.27
P μM 0.36 0.91 0 S mg/L 0.0 14.0 0 Ra μM 0.62 1.01 0 In Mcell/L 1.8 0.008 In Mcell/L NP In Mcell/L 1.34E-05 In #/m3 77463	NOT	μM	6.3	43.6	18.8
S mg/L 0.0 14.0 ral µM 0.62 1.01 0 n Mcell/L 1.8 1.8 1.8 n Mcell/L 0.008 1.8 1.8 m Mcell/L NP NP p Mcell/L NP NP p Mcell/L 1.34E-05 n #/m3 77463	TDP	Μμ	0.36	0.91	0.57
In Mcell/L 1.8	TSS	mg/L	0.0	14.0	3.9
IN Moell/L IS Moell/L	Urea	Mu	0.62	1.01	0.81
IN Moell/L IS Moell/L	Plankton (Surface samples only)				
Mcell/L Mcell/L Mcell/L Mcell/L Mcell/L Mill	Total Phytoplankton	Mcell/L		1.8	
Mcell/L Mcell/L 1.3 #/m3	Centric diatoms	Mcell/L		0.008	
Mcell/L 1.3	Alexandrium tamarense	Mcell/L		<u>Q</u>	
Mcell/L 1.3 #/m3	Phaeocystis pouchetti	Mcell/L		N	
#/m3	Pseudo-nitzschia sp	Mcell/L		631	
	Total Zooplankton	#/m3		77463	

Semi-Annual Data Summary Table Event W9507 (6/20/95 - 6/25/95) Combined Nearfield/Farfield Survey

		Avg		0.5	31.4	23.5	13.2	0.47		1.59	0.07	0.6	0.38	5.0	0.29		8.7	ē							0.83	1.0	0.22	20.7	2.70	6.6	9	89	0.23		Ī				Ī	٦
	20	Max		1.2	31.9	25.0	17.2	0.76		5.35	0.20	1.9	0.78	11.5	0.60		9.4	110				Ì			96.0	1.0	0.25	21.9	3.50	6.6	0.46	24.0	0.29		3.7	0.001	ď	£	Đ.	53051
	Cape	10000		0.1	31.1	22.7	6.9	0.37		0.33	0.02	0.2	0.21	-8	0.10		7.9	81				}			0.72	1.0	0.18	18.1	9. 9.	9.1	0.36	0.0	0.15		\dashv	\dashv	H	\dashv	-	\dashv
		Min				· ·		0.42 0		1.56 0	0.15 0		J		0.29 C		9.3	26					\dashv		0.36 C								0.34		\dashv	4			\dashv	4
	2	Avg										8.0)					113					_												9.0	2	ΝP	ďΝ	2	26
	Boundary	Max		1.2	32.3	52	17.0	06.0		3.70	0.26	80	1.12	13.5	0.65		10.9	- 11							0.63	2	0.12	12.4	2.34	14.0	0.87	14.0	0.36		٥	0.0002	2	2	1.30E-04	28056
		Min		0.0	30.7	22.2	4.6	0.28		0.00	0.02	0.0	0.01	0.4	0.05		8.4	81							0.07	1.0	0.09	7.1	2.25	8.7	0.15	0.0	0.32							
		Avg		0.4	31.7	24.5	8.7	0.38		1.40	0.11	<u>e.</u>	0.51	3.9	0.33		9.5	100					90.0		0.58	2.0	0.19	16.9	2.50	11.5	0.48	2.4	0.15					П		
eld	Offshore	Max		1.1	32.2	25.5	17.1	0.77		4.65	0.30	6.7	1.03	14.6	0.51		11.4	118					0.13		1.14	2.0	0.30	18.2	2.84	16.3	0.95	9.0	0.18		2.2	0.0004	М	ď	ğ	49898
Farfield	HO			0.1	30.8	22.4	4.8	0.30		0.00	0.01	0:0	90.0	0.4	0.14		8.3	80					0.00		0.19	2.0	0.14	14.8	1.82	9.2	0.21	0.0	0.12		H			H	$ \cdot $	\dashv
		g Min		4.4			12.9	0.65		0.79	0.07	4.0	0.44	2.7	1.36		9.4	<u>\$</u>					_		3.02		09.0		7.28				0.26		-	-		Н	H	-
	al al	Avg		3.9		24.9		1.25 (2.78	0.19	1.9	69.0	6.1	2.52		10.2	123							4.35	2.0	0.78						0.36		22.6	0.78	문	ďΝ	70	81666
	Coasta	Max								_	P																		-						_		L		1.60E-02	81
		Min		0.2	31.0	22.2	7.0	0.38		0.00	0.01	0.0	0.16	0.9	0.45		8.0	87							1.35	2.0	0.29	26.3	4.08	9.0	0.47	0.0	0.19							
		Avg		3.1	31.0	22.8	15.5	1.11		1.66	0.09	4.0	0.56	2.3	1.92		9.3	112		0.18	3634.4	56.0	0.37		4.71	1.7	0.86	61.7	8.84	19.8	1.11	8.5	0.52		Γ				\prod	
	Harbor	Max		6.5	31.1	23.2	17.1	1.80	-	2.42	0.17	0.8	0.98	3.7	3.23		9.9	124		0.23	3634.4	70.4	0.40		6.26	2.0	1.22	88.4	13.92	25.2	1.64	30.0	1.23		36.9	1.84	₽.	물	2.35E-02	143424
	¥			6.0	30.6	22.2	13.7	0.77		0.46	0.03	0.1	0.34	=	0.90		8.8	106		0.11		35.9	0.32		2.42	1.0	0.48	44.5	3.88	17.7	0.82	0.0	0.28		_	├	\vdash	\vdash	2	Н
		MIN										10										_													L		L	L	L	
p		Avg		0.7	31.5	24.0	10.7	0.49		0.81		9.0	0.38	2.1	0.53		6.6			0.03	1205.6		0.12		1.52	L	0.32	25.6	3.58	10.4	0.48	3.9	0.19		L			L		
Nearfield		Max		3.2	32.0	25.3	17.7	1.26		4.60	0.23	3.6	0.97	8.1	1.36		11.2	136		0.06	1441.2	10.7	0.28		4.32	2.0	0.64	55.1	8.96	13.6	0.64	28.0	0.32		17.6	0.80	P.	₽ E	1.85E-02	130805
Z		Min		0.1	31.0	22.3	5.5	0.27	_	000	0.00	0.0	0.05	0.2	0.09		8.6	98	-	0.01	1056.0	0.7	0.01	_	0.25	0.	0.18	10.7	1.35	7.9	0.32	0.0	0.11		-	T	\dagger	t	T	П
				_	<u> </u>					_							_		-	- ext	╀╴	ext	ڃ		_		,								_ <u></u>	<u> </u>	<u>+</u>	<u> </u>		2
		S		Z	nsa		ြို့	E	=	ν.	N.		ĮΣ	NA PAR	. /ai	2]/ 	8	2	see text	maC/m ² /d	see text	n/lomn	-	M	700		Y	M		Na Na Na Na Na Na Na Na Na Na Na Na Na N	ma/l	¥	s only)	Mcell/L	Mcell/L	Mcell/L	Mcell/L	Mcell/L	#/m3
		Ī		hvll a	Salinity	Sigma T	rature	civity	Sua Co		2 2	NO. + NO.	î ç	SIO	Tuent		ration	Saturation		Aloha	iction	Pmax	Respiration		RICSI		PART P	000	S S	NCL	100	LSS		Plankton (Surface samples only)	nkton	atoms	rense	ichetti	hia sp	nkton
				Chlorophylla	S	Sign	Temperature	Transmissivity				Š	7		Phaeonioment		Concentration	Sat S		300000000000000000000000000000000000000	Areal Production		Resp	1			ď							IITace	hytop	Centric diatoms	n fama	tis por	-nitzsc	Total Zooplankton
		heter	15%					F	- 18	21112					ā		٢	'	Droductivity		Are			Mater Column	5									ton (S	Total Phytoplankton		Alexandrium famarense	Phaeocystis pouchetti	Pseudo-nitzschia sp	Total
	Region	Parameter	Physical	2					NI. frionte	אמווינ						CC)))		Drug					Mato	2									Plank	, , , , , , , , , , , , , , , , , , ,		Δlox	<u> </u>		

TABLE 3-8
Semi-Annual Data Summary Table
Event W9508 (7/05/95 - 7/07/95)
Nearfield Survey

		Ž	Nearfield	
Region				
Parameter	Unit	Min	Max	Avg
Physical				
Chlorophyll a	µg/L	00:00	2.41	0.40
Salinity	nsd	31.2	32.0	31.7
Sigma_T		22.5	25.2	24.3
Temperature	ပ့	9.6	17.6	9.6
Transmissivity	m-1	0.24	1.01	0.44
Nutrients				
HN	Μπ	0.16	3.51	0.78
NO2	Mu	0.04	0.29	0.10
NO ₂ + NO ₃	Mu	0.2	4.1	0.8
PO ₄	Μμ	0.21	1.03	0.49
\$IO	Μμ	1.2	8.5	3.5
Phaeopigment	µg/L	20.0	0.85	0.31
00				
Concentration	l/gm	8.4	10.3	9.2
Saturation	%	92	124	66
Productivity				
Alpha	see text	00'0	0.05	0.03
Areal Production	mgC/m²/d	1191.2	1284.1	1237.7
Pmax	see text	0.4	14.8	6.3
Respiration	µmol/h	0.00	0.30	0.10
Water Column				
ISOIB	Μμ	1.4	13.6	6.7
DOC	mg/L	2.0	2.0	2.0
PARTP	Μη	0.21	4.09	1.77
POC	μМ	9.3	57.4	29.6
PON	μM	1.08	10.25	4.36
NOT	μМ	8.5	15.9	11.9
TDP	Μμ	0.43	0.95	0.70
SST	mg/L	0.0	13.0	1.1
Urea	μM	0.15	1.22	0.68
Plankton (Surface samples only)				
Total Phytoplankton	Mcell/L		14.0	
Centric diatoms	Mcell/L		1.9	
Alexandrium tamarense	Mcell/L		ď	
Phaeocystis pouchetti	Mcell/L		₽	
Pseudo-nitzschia sp	Mcell/L		0.001	
Total Zooplankton	#/m3		65381	

TABLE 3-9
Semi-Annual Data Summary Table
Event W9509 (7/24/95 - 7/26/95)
Nearfield Survey

		N	Nearfield	
Region				
Parameter	Unit	Min	Max	Avg
Physical				
Chlorophyll a	μg/L	00.00	3.71	0.75
Salinity	nsd	31.2	32.0	31.6
Sigma_T		22.0	25.2	23.8
Temperature	Ç,	5.9	19.9	12.3
Transmissivity	m-1	0.26	0.99	0.40
Nutrients				
*HN	Mu	0.12	6.23	0.85
NO	Мμ	0.04	0.36	0.14
NO2+NO3	Μπ	0.0	6.8	6.0
PO	Ми	0.19	1.07	0.46
SIO4	Mu	1.1	8.8	3.8
Phaeopigment	mg/L	0.10	1.91	0.58
OO				
Concentration	l/gm	8.1	10.2	9.2
Saturation	%	81	126	105
Productivity				
Alpha	see text	0.01	0.11	0.05
Areal Production	mgC/m²/d	505.8	527.9	516.9
Pmax	see text	9.0	9.5	6.4
Respiration	h/lomn	0.02	0.17	0.10
Water Column				
BIOSI	Mu	0.5	9.8	2.4
DOC	mg/L	1.0	2.0	1.4
PART P	Μμ	0.22	0.84	0.38
POC	Mμ	6.9	49.3	23.6
PON	μM	1.32	7.50	3.50
NGT	μM	3.9	18.0	7.4
T0P	μM	0.30	0.72	0.46
TSS	mg/L	0.0	16.0	2.2
Urea	Μų	1.05	1.22	1.12
Plankton (Surface samples only)				
Total Phytoplankton	Mcell/L		11.2	
Centric diatoms	Mcell/L		0.41	
Alexandrium tamarense	Mcell/L		ď	
Phaeocystis pouchetti	Mcell/L		₽ P	
Pseudo-nitzschia sp	Mcell/L		0.001	
Total Zooplankton	#/m3		173784	

4.0 RESULTS OF WATER COLUMN MEASUREMENTS

Of the four farfield surveys conducted during the first part of the 1995 monitoring season, three were part of the pre-stratification period, and one (W9507) was conducted during early stratification. Data collected during the farfield surveys (W9501, W9502, W9504, and W9507) were evaluated for trends in regional water masses throughout Boston Harbor, Massachusetts Bay, and Cape Cod Bay. The variation of regional surface water properties is presented using contour plots of surface water parameters, derived from the A (surface) sample. A complete set of surface contour maps of water properties during the far field surveys is available in Appendix B. Classifying data by regions allows comparison of the horizontal distribution of water mass properties over the farfield area.

The vertical distribution of water column parameters is presented in the following sections along three transects in the survey area (Figure 1-3). Examining data trends along the three transects, Boston-Nearfield, Cohasset, and Marshfield, along with the surface contour plots, provides a three-dimensional perspective of water column conditions during each survey. A complete set of transect plots is contained in Appendix C.

Nine nearfield surveys were conducted during the semi-annual period (W9501-W9509). Nearfield surveys were conducted more frequently than farfield surveys, allowing better temporal resolution of the changes in water column parameters and onset of stratification. Vertical variability in nearfield data is examined and presented by comparing surface and bottom water concentrations (A and E depths), and by plotting individual parameters with depth in the water column.

Vertical stratification of the water column varies by parameter and through time with incursions of different water masses. For the purposes of this report, vertical stratification will be defined by the presence of a pycnocline with a density (σ_t) difference between the upper and lower water column of less than -1.0. Using this definition, a stable pycnocline developed between surveys W9506 (mid-May) and W9507 (mid-late June) in the nearfield (Figure 4-1). The degree of vertical stratification during the spring surveys in the nearfield varied by survey and by station (Section 4.1). There were no farfield surveys between W9504 (early April) and W9507, but by the W9507 survey, all stations in the farfield exhibited a well-developed pycnocline.

4.1 Physical Characteristics

4.1.1 Horizontal Distribution

Although the water column was vertically well-mixed during the winter-spring surveys of 1995, distinct horizontal gradients during this period allow differentiation of water masses relative to the geographic regions of the survey area. During the first two winter farfield surveys (W9501 and W9502), there was a gradient of surface water temperature from less than 2°C in the harbor and near the coast, up to 4°C offshore (Figure 4-2). A modest salinity gradient also was evident, ranging from less than 32 PSU in the harbor, to 32 PSU along the coast, to greater than 32 PSU offshore (Figure 4-3). A similar inshore-offshore gradient was present for temperature, salinity, and density during all of the winter surveys (Appendix B).

During the pre-stratification period, surface water temperatures and salinities generally were representative of the entire water column at each station, thus the regional water masses were identifiable from distinct TS (temperature-salinity) characteristics for each survey. During W9501 and W9502, for example, the offshore and boundary regions (only boundary station data are plotted) were distinct from coastal, Cape Cod Bay, and harbor water masses (Figure 4-4a). The boundary and offshore regions had the highest regional temperatures (approximately 3-5°C) and salinities (32-33 PSU).

For the other water masses, water temperatures were in a similar range during the first two surveys (approximately 1-3°C), but the harbor stations had the lowest salinities. Station F23, at the entrance to Boston Harbor, had TS characteristics more similar to the coastal region during W9501. The coastal and Cape Cod Bay regions were in the same salinity range, but Cape Cod Bay was slightly cooler during the winter surveys. Stations at the northern end of the coastal transect (F18 and F24) had water mass characteristics that were transitional to the boundary/offshore regions.

By W9504 in early April, horizontal differences in surface water temperature were less pronounced (Figure 4-4b), with a narrower temperature range of approximately 3.5 to 5°C. Cape Cod Bay was noticeably warmer than during the prior two surveys, exhibiting a warming trend comparable to the harbor. Coastal water had also warmed relative to the more offshore stations, and surface water temperatures indicated a local body of warmer water centered at nearfield station N20 (Figure 4-5). The salinity gradient was consistent with the prior surveys, with fresher to more saline waters from the harbor to offshore.

In contrast to the pre-stratification phase, during the final farfield survey (W9507) horizontal gradients had essentially ceased, and distinctions among water masses were controlled by depth because of vertical stratification. Surface waters had warmed considerably (Figure 4-6), and the salinity distribution was very narrow in surface waters (ranged from 30.6 to 31.4 PSU).

4.1.2 Vertical Distribution

Farfield. Transects from west to east (Figure 1-3) in Massachusetts Bay show the gradients of physical characteristics within the water column from Boston Harbor and coastal stations seaward. For example, density (σ_t) values during the first winter survey (W9501) ranged from 25.5 inshore to greater than 26.0 offshore (Figure 4-7). The increasing σ_t gradient between the harbor and offshore stations was controlled primarily by increasing salinity. Transects also show local variability of physical parameters, especially during the non-stratified period. A complete set of transect plots for water properties is provided in Appendix C.

The relative degree of vertical stratification can be shown schematically in a time-series presentation of the density difference value ($\Delta\sigma_t$), calculated by subtracting the bottom water σ_t value from the surface water. Regionally, all the water masses in the survey area were vertically stratified ($\Delta\sigma_t$ <-1.0) by June (W9507) except in the harbor, which remained relatively well-mixed throughout the semi-annual period (Figure 4-8).

Nearfield. More frequent sampling of nearfield stations provides a detailed dataset showing the onset of vertical stratification, and local variability, within the nearfield water column. The slight density gradient $(\Delta\sigma_t)$ between the surface and bottom water of the inner nearfield (<-0.5; Figure 4-9a) during the winterspring pre-stratification surveys (W9501-W9506) was primarily due to consistent salinity differences, as discussed below. The onset of vertical stratification between May (W9506) and June (W9507), with a $\Delta\sigma_t$ of <-1.0, was primarily due to the warming of surface waters.

Salinity in the nearfield showed an overall decreasing trend in both surface and bottom water during the pre-stratification period (Figure 4-10). Two periods of divergence from this trend occurred in the nearfield: during the March (W9503) survey, when the surface water salinity dropped, especially in the outer nearfield, and in late April (W9505), which showed an increase in salinity in both surface and bottom water of the nearfield.

During the pre-stratification period, a narrow but consistent salinity gradient of approximately 0.5 PSU was present between the surface and bottom waters of the inner nearfield. In the outer nearfield, there was no salinity gradient during the first two surveys, followed by the surface water salinity decrease of almost one PSU (from 32.5 to 31.5 PSU) in March (Figure 4-10). The gradient then stabilized to 0.5 as measured in the inner nearfield by the next survey in April (W9504).

Salinity during the early stratification summer surveys was very stable in bottom water, and showed a slight increase in surface water from 31.0 to 31.5 PSU, with a corresponding decrease of the salinity gradient, in both the inner and outer nearfield (Figure 4-10). The density gradient during the vertically-

stratified summer period was primarily controlled by the relative change in water temperature between the surface and bottom waters.

The water column was well-mixed with respect to temperature during the first four nearfield surveys (Figure 4-11). The water column in the nearfield was progressively stratified as surface waters became warmer. Following the early April survey (W9504), surface water warmed up to 2°C within the upper 10-20 meters of the nearfield prior to the late April survey (W9505), without a concomitant rise in bottom water temperatures. During the following survey in mid-May, bottom water temperatures also increased from 2-4°C to 5-7°C, where they remained for the rest of the semi-annual period.

Results from the first early stratification survey in June (W9507) showed a strong density gradient ($\Delta\sigma_t$) of at least -2.0 in both the inner and outer nearfield (Figure 4-9). This gradient was primarily due to surface water warming, although a salinity gradient of almost 1 PSU also was present in the outer nearfield (Figure 4-10). During the following nearfield survey in July (W9508), surface waters were slightly cooler (Figure 4-11) and, although also less saline (Figure 4-10), resulted in a net $\Delta\sigma_t$ increase (smaller negative value) in both the inner and outer nearfield regions. This surface cooling may have been related to the upwelling event documented by satellite data in Western Massachusetts Bay at this time (Table 4-1). There was no relative change in bottom water characteristics during the early July (W9508) survey, and both surface and bottom water became warmer in late July (W9509). As will be discussed in Section 6.0, the physical water properties during the July surveys probably influenced biological activities in the nearfield water column.

4.1.3 Transmissometer Results

Water column beam attenuation (transmissometer) and fluorescence data were collected simultaneously with each CTD cast. The beam attenuation coefficient presented here was calculated from the ratio of light transmission/light incidence measured over one meter (/m). Fluorescence data were calibrated to measured chlorophyll a in the bottle samples, to allow continuous measurement of chlorophyll a in the water column. All of the discussion of chlorophyll a in this report refers to calibrated sensor data.

The two main sources of particulate matter in the water column are biogenic material (plankton), and suspended material from coastal runoff, the latter concentrated in Boston Harbor and along the coast. In order to evaluate these sources, beam attenuation values were compared to chlorophyll a in the water column, in order to qualitatively evaluate the influence of chlorophyll on beam attenuation measurements.

In the winter-spring months, there was essentially no relationship between beam attenuation and chlorophyll, indicating that chlorophyll was not a major fraction of the total particulate matter (Figure 4-12). The highest beam attenuation values (>0.5/m) were concentrated in Boston Harbor and along the coast (Figure 4-13), consistent with the highest particulate matter being concentrated from coastal runoff.

During the summer (W9507-W9509), chlorophyll appeared to influence beam attenuation in the nearfield, indicating that the overall increase of particulate matter in the nearfield water column was related to the increase of chlorophyll during summer production (Figure 4-12).

4.2 Nutrients

Scatter plots of nutrient data from the semi-annual period are available in Appendix D. The plots include nutrient: nutrient data, nutrient: salinity relationships, and the distribution of nutrients with depth.

4.2.1 Horizontal Distribution

During the pre-stratification period, the spatial distribution of nutrient concentrations indicated that Boston Harbor consistently had the highest concentration of all nutrients measured, and Cape Cod Bay had the lowest. As with other water column parameters, the well-mixed winter-spring water showed little variation in nutrient concentrations with depth, so that surface water (depth "A") contour maps show the horizontal nutrient distribution. A complete set of farfield contour maps of all nutrient concentrations is available in Appendix B.

Nutrient concentrations throughout the regional surface waters during the first farfield survey (mid-February) generally were the highest measured in the semi-annual period, including NO_3 (8-11.5 μ M), SiO_4 (9-17 μ M), PO_4 (0.8-1.4 μ M), and NH_4 (0.3-9.9 μ M). Comparing the distribution of surface water nutrients between the first two farfield surveys (Appendix B) indicates that by the second survey in early March (W9502), nutrient concentrations had decreased throughout the region, suggesting depletion by a relatively widespread late winter bloom. Maximum nutrient depletion during this period was notable in the nearfield (discussed in more detail below), and Cape Cod Bay. Surface water nutrient concentrations in March were reduced to: <1 to 10.7 μ M (NO_3), 1-13 μ M (SiO_4), <1 μ M (PO_4), and 0.4-7.5 μ M (NH_4).

Results from the final pre-stratification farfield survey in April (W9504) indicated that nutrient concentrations had begun to recover after the late winter bloom, but concentrations remained less than those measured during the first winter survey. During the final, early stratification farfield survey (9507), surface waters were consistently nutrient-depleted (<1 μ M NO₃, 0.2-2.9 μ M SiO₄, and 0-0.8 μ M PO₄). In contrast to pre-stratification conditions, nutrient concentrations were highest in Cape Cod Bay during this survey. The only regional stations with nitrate concentrations greater than 0.1 μ M in surface waters during the June survey were in Boston Harbor and near the coast, and at the Cape Cod Bay stations.

4.2.2 Vertical Distribution

Farfield. Regional transect plots of nutrient concentrations demonstrate nutrient variability within the water column during the winter-spring surveys (Appendix C). The Boston-Nearfield transect (Figure 1-3),

and to a lesser degree the Cohasset transect, shows that the area between the harbor and boundary regions (nearfield and offshore stations) commonly was quite dynamic. Silicate, for example, during W9502 (early March), shows maximum depletion in the nearfield water column, and also centered at station F15 of the Cohasset transect (Figure 4-14), indicating the extent of the late winter bloom in the nearfield region and implicating the likely domination by diatoms (Section 5.3).

This pattern of localized depletion within the nearfield was repeated for other nutrients analyzed during the first two regional surveys. For example, the Boston-Nearfield transect data for nitrate indicates that, although overall nitrate concentrations decreased between the first and second winter surveys in 1995, the relative areas of depletion were similar, and concentrated in the nearfield (Figures 4-15, 4-16). The same degree of nutrient depletion was not seen in the nitrate concentrations of the Cohasset and Marshfield transects.

The area of maximum nutrient depletion moved offshore during the third combined survey in April (W9504). This shift of nutrient scavenging is demonstrated most clearly in the surface water at the offshore station F19 (Boston-Nearfield transect), and in the mid-deep waters of offshore station F17 and boundary station F28 (Cohassett transect, Figure 4-17). By the June farfield survey (W9507), surface waters were generally nutrient-depleted, while concentrations increased with depth with the development of the summer pycnocline.

Nearfield. Because of the increased frequency of sampling, the nearfield data provided higher temporal resolution of nutrient concentrations at all nearfield stations throughout the monitoring period (Figure 4-18). Data from the first survey in February resulted in the highest measured values of all nutrients in the nearfield water column. The vertical distribution of nutrients shows the depletion effects of the winter bloom during early March (W9502); silicate levels were lower throughout the water column than during any other pre-stratification nearfield survey (2-4 μ M). Following the depletion of early March, nutrient concentrations increased, and remained uniformally higher through early April (W9504).

The late April nearfield survey (W9505) was conducted during the spring bloom, resulting in decreased surface (<20 m) concentrations of nutrients in the nearfield, although concentrations below 20 m remained unchanged (Figure 4-18). The late April survey was also a time of transition for relative ratios of nutrients in the water column. The ratio of nitrate and nitrite (ammonium often had different trends relative to the other nitrogen nutrients, so DIN was not compared) to phosphate (NO₃+NO₂:PO₄) was plotted for the semi-annual survey period (Figure 4-19 and summarized by survey in Appendix D). The NO₃+NO₂:PO₄ ratio shifted from approximately 8:1 in February - April (through W9504), to 3:1 beginning in late April early May, and remained at the same level through late July (end of semi-annual period). This shift suggests that the nearfield water was depleted in nitrogen relative to phosphorus during the late spring and early summer.

By the last pre-stratification survey in mid-May (W9506), the cycle of nutrient depletion throughout the water column began, and continued through the rest of the three nearfield surveys conducted during this semi-annual period. Silicate concentrations, however, remained at mid-levels (4-8 μ M) until June. During all three nearfield summer surveys, surface waters remained nutrient-depleted, including silicate. Concentrations of nutrients began to increase with depth because of nutrient regeneration below the pycnocline.

4.3 Chlorophyll a

4.3.1 Horizontal Distribution

During the three pre-stratification farfield surveys, measured chlorophyll a concentrations (sensor data) remained below 3 μ g/L at all farfield stations except in eastern Cape Cod Bay. Maximum values measured in Cape Cod Bay during the winter-spring surveys ranged from 4.2 to 5.4 μ g/L. Outside of Cape Cod Bay, the highest chlorophyll a concentrations during the first survey in February (approximately 1 μ g/L) were centered in the nearfield area (Figure 4-20). By survey W9502 (early March), chlorophyll a values of 1 μ g/L or greater were more common in the surface waters of the boundary region (Figure 4-21); this geographic shift of maximum chlorophyll concentrations was also noted in the vertical distribution discussed below. Bloom conditions in Cape Cod Bay continued, and expanded to the western side (chlorophyll concentrations of >5 μ g/L). By the third regional farfield survey (W9504) in mid-April, regional surface water concentrations of chlorophyll a had decreased throughout the survey area, to maximum values in Cape Cod Bay of 1.6 μ g/L, and less than 1.0 μ g/L everywhere else.

Regional chlorophyll a concentrations in the surface waters increased markedly by from the last prestratification farfield survey in April (W9504) to the early stratified period in June (W9507) in Boston Harbor and the coastal region (Figure 4-22). Offshore and boundary region chlorophyll concentrations remained low, while Cape Cod Bay concentrations decreased notably to <1 μ g/L.

4.3.2 Vertical Distribution

Farfield. Mid-depth maximum chlorophyll a concentrations along the survey area transects (Figure 1-3) were located at inner nearfield stations and offshore (F19) of the Boston-Nearfield transect (Figure 4-23). The Cohassett and Marshfield transects show the eastern shift of the chlorophyll maximum from the nearfield in mid-February (W9501), to the boundary region, especially at the easternmost stations F28 and F12, in March (W9502; Figure 4-24).

By the third regional farfield survey in April (W9504), chlorophyll a concentrations throughout the water column had decreased to levels below 1.0 μ g/L, except in Cape Cod Bay and in the deep boundary region

waters. The maximum chlorophyll a concentrations were deeper in the water column by the April survey, especially apparent in the Cohasset and Marshfield transects (Figure 4-25).

The depth of the chlorophyll a maximum was tracked for both the nearfield and farfield. The five maximum values measured in each region were averaged, and plotted along with the average depth of each value (Figure 4-26). The depth of the chlorophyll a maximum remained within the upper 10-20 meters for all regions during the first farfield survey in February (W9501). Maximum chlorophyll values within the harbor, coastal, and Cape Cod Bay regions (Figure 4-26a) were in the upper ten meters during the second farfield survey (March), and remained there in the harbor and coast throughout the semi-annual period (Figure 4-26b).

Within the deeper waters of the boundary and offshore regions, the depth of the chlorophyll a maximum decreased to approximately 20-40 m during the March (W9502) survey, to approximately 25-30 m during the April (W9504) survey (Figure 4-26b). At the same time, as chlorophyll concentrations decreased in Cape Cod Bay, the depth of the chlorophyll maximum in Cape Cod Bay decreased from <10 m to approximately 10-20 m during the April (W9504) and June (W9507) surveys. During the beginning of summer (W9507), the chlorophyll maximum was again at approximately 20 m in the offshore and boundary regions. Maximum concentrations of up to 3 μ g/L were measured in the surface water in the harbor and nearfield, indicating onset of a localized bloom (Figure 4-27).

Nearfield. Surface and bottom water nearfield values throughout the pre-stratification period of 1995 were consistent, and all $<2 \mu g/L$ except during W9505 in late April (Figure 4-28). Chlorophyll a reached minimum values in both surface and bottom water during W9503 in mid-March.

The peak in chlorophyll a during W9505 (late April) in the nearfield was concentrated in the surface water, and reached a maximum of almost 9 μ g/L at station N20. Overall, the depth of the chlorophyll maximum increased from >10 m in the winter-spring to <10 m during the summer surveys (Figure 4-26c). The distribution of depth-averaged chlorophyll a in the nearfield water column shows the localized concentration around N21 (Figure 4-29).

Following the bloom period in April, chlorophyll a concentrations returned to pre-bloom conditions until the onset of the early summer bloom in June. Within the nearfield, chlorophyll concentrations were highest in the surface waters of the inner nearfield (Figure 4-28), with average surface concentrations ranging from approximately 2 μ g/L in June and early July, reaching concentrations of greater than 3 μ g/L during the last nearfield survey in late July (W9509).

4.4 Dissolved Oxygen

4.4.1 Horizontal Distribution

In contrast to the horizontal gradients of other physical parameters in the farfield, ranges of DO concentrations were consistent among regional water masses during the pre-stratification and early stratification periods. Regional average concentrations in surface ("A" samples) and bottom ("E" samples) water ranged from approximately 9.5-10.5 mg/L during the first three farfield surveys in all five regions sampled (Figure 4-30, 3-31), and 8.5-9.5 during the June early stratification survey (W9507). There was a slightly larger variation in oxygen saturation values, with the lowest range of values in the boundary region (8.6-9.0%), followed by the harbor and coastal data (approximately 8.8-9.3%), and the highest values measured in the offshore and Cape Cod Bay regions (approximately 9.0-9.8%).

4.4.2 Vertical Distribution

Farfield. During the pre-stratification period, there was negligible difference between surface and bottom water average DO concentrations except in the boundary and offshore regions (Figure 4-30), and in the harbor (Figure 4-31) during the first survey (W9501). The consistent difference in surface and bottom water DO concentration in the offshore and boundary regions (0.2-0.5 mg/L) was due to a temperature differential at the deep water stations, inferred from the uniformity of DO saturation during the first two farfield surveys.

There was an overall decrease of bottom water DO concentration between the early March (W9502) and mid-April (W9504) pre-stratification farfield surveys. The decrease in DO concentration was concomitant with an increased difference between bottom and surface water DO saturation. DO remained undersaturated regionally in surface and bottom water throughout the pre-stratification period.

The trend of decreasing DO concentration continued through the early stratification farfield survey (W9507). The range of DO concentrations in regional bottom waters decreased from approximately 9.5-10.0 mg/L during the early April (W9504) survey, to 8.5-9.0 mg/L in June (Figure 4-30, 3-31). Surface water DO concentrations also dropped more than 1 mg/L in the boundary, offshore, and Cape Cod Bay regions, and approximately 0.5 mg/L in the harbor and coastal regions. There was negligible difference between bottom and surface water DO concentration during the June survey in all regions except the harbor and coast.

The greatest relative decrease in average bottom water DO concentration between April (W9504) and June (W9507) was in the harbor and Cape Cod Bay (1 mg/L). Bottom water DO values in Cape Cod Bay resulted in the minimum average DO concentration measured during this survey (8.5 mg/L). Minimum individual DO concentrations were analyzed because of the concern of the overall DO balance in

Massachusetts Bay. The minimum measured bottom water DO concentration was 7.95 mg/L at F02 in Cape Cod Bay, well above the state standard value of 6 mg/L.

In contrast to the DO concentration, the saturation of DO increased in regional surface waters, and was oversaturated in June with respect to DO in all regions measured (Figure 4-30, 3-31). Bottom water saturation of DO also increased between the April (W9504) and June (W9507) surveys in the harbor (>100% saturation) and coastal water, but showed little net change in the offshore, boundary, and Cape Cod Bay regions.

Maximum values of DO saturation were measured in mid-water regionally during the early stratification survey, except in Boston Harbor where the entire well-mixed upper water column was supersaturated with respect to oxygen (Figure 4-32). The mid-water DO maximum corresponded to the measured chlorophyll pattern (Figure 4-27). The mid-water maximum suggests that production was the controlling factor in the distribution of DO.

Nearfield. More frequent measurements in the nearfield permitted evaluation of smaller-scale variability between the surface and bottom water DO values (Figure 4-33). In the nearfield, surface and bottom water DO concentrations were similar during the first two surveys. DO was oversaturated in both nearfield surface and bottom water in later February (W9502), likely related to the late winter bloom suggested by nutrient data. Surface and bottom water DO concentrations and saturation diverged by March (W9503).

During the late April survey (W9505), both the surface concentration and percent saturation increased; the surface concentration during this survey was the highest measured during the semi-annual period. The nearfield surface water became oversaturated with respect to DO during this survey, and remained oversaturated for the rest of the semi-annual period.

The increase of DO was coincident with a decrease in surface water nutrient concentrations (Section 4.2), and the increase in chlorophyll a production (Section 4.3), indicating the DO was controlled by the spring bloom event. The biological data (productivity/respiration) were consistent with these data (Section 5.0).

Data from the final pre-stratification survey in May (W9506) indicated a merge of bottom and surface water DO (Figure 4-33). The percent saturation of bottom water increased almost 10% from the prior survey, and was fully saturated (>100%) for the last time during the semi-annual period. As discussed in Section 5.0, the late spring survey was conducted during the waning of the spring bloom, when respiration of settling phytoplankton, as well as grazing by zooplankton, influenced the physical character of the nearfield bottom water. Cumulative physical evidence, including continuous mooring data from the USGS buoy located in the center of the nearfield, suggested that merging of bottom and surface water parameters was caused by a small mixing event.

Bottom and surface water DO concentrations decreased between the last pre-stratification nearfield survey in May (W9506) and the first early stratification survey in June. Dissolved oxygen in the nearfield measured over the June-July 1995 period showed steadily decreasing surface water concentrations throughout the summer (Figure 4-33). Dissolved oxygen saturation in the nearfield surface water was at a maximum (>120%) during the first early stratification survey in June, and then decreased slightly during the final two July surveys.

Bottom water DO concentration continued the decreasing pattern during the first July survey (W9508), but then increased prior to the second July survey (W9509). Nearfield productivity in July suggested by physical and biological data was the controlling factor of the DO cycling in bottom water (Section 5.0).

4.5 Summary of Water Column Results

Physical Characteristics

- Regional horizontal gradients during the winter-spring surveys allowed differentiation of boundary/offshore, coastal, harbor, and Cape Cod Bay water masses;
- The boundary/offshore regions had the highest temperatures and salinities during the winter, and the harbor had distinctively lower salinities;
- All regional water masses except in Boston Harbor were vertically stratified ($\Delta \sigma_t < -1.0$) by June (W9507);
- Vertical density gradients (Δσ_t) between nearfield surface and bottom water were a function of salinity during the winter-spring surveys, and temperature during the summer stratified period;
- Salinity in the nearfield showed a gradual decreasing trend in both surface and bottom water during the pre-stratification period, except for a sharp decrease in surface water salinity (maximum 1 PSU) during March (W9503), and an overall increase in salinity throughout the water column in April (W9505).
- Temperature of the nearfield water column was relatively uniform prior to late April (W9505), when surface warming began, reaching bottom water by May (W9506);
- During the first summer survey (W9507) in June, a marked changed in $\Delta \sigma_t$ of at least -2.0 in both the inner and outer nearfield was primarily due to surface water warming;

- Cooling of nearfield surface water in early July (W9508) resulted in a net Δσ_t increase of almost 1, potentially related to an early July upwelling event documented by satellite data, followed by surface and bottom water warming in late July;
- Beam attenuation data indicated a dominance of coastal runoff particulate matter through late April, followed by an influence of chlorophyll on beam attenuation data in June.

Nutrients

- Boston Harbor had consistently the highest, and Cape Cod Bay the lowest, measured nutrient concentrations throughout the pre-stratified period;
- In contrast to the winter-spring surveys, nutrient concentrations were highest in Cape Cod Bay during the early stratification survey in June;
- The first winter survey in February documented the highest concentrations of nutrients regionally for the entire semi-annual period;
- Regional depletion of nutrients, especially in the nearfield and Cape Cod Bay, occurred during the second survey in March (W9502), silicate recorded minimum semi-annual values, evidence of a late winter regional diatom bloom;
- Nutrient scavenging during the winter (first two farfield surveys) was locally concentrated in the nearfield;
- The area of maximum nutrient depletion moved offshore during the third pre-stratification survey in April;
- Nearfield depletion of nutrients in the surface waters occurred in late April (W9505), followed by a drop in bottom water nutrient concentrations in May (W9506);
- Late April was also the time of transition to increased nitrogen depletion relative to phosphate;
- Surface water was generally nutrient-depleted throughout the early stratification period.

Chlorophyll

• Chlorophyll was highest in Cape Cod Bay throughout the pre-stratification period, and lowest in Cape Cod Bay during the early stratification farfield survey in June;

- Within Boston Harbor and Massachusetts Bay, the chlorophyll maximum was in the nearfield during the first survey in February, and moved offshore during the second winter survey in March;
- The regional depth of the chlorophyll maximum remained in the upper 20 m, except within the deeper waters of the offshore/boundary regions, where the chlorophyll maximum was located at depths of 20-40 m in March-April;
- The maximum chlorophyll concentration during the pre-stratified period was measured in the nearfield during April (W9505); and
- Regional chlorophyll a concentrations were highest (up to 3 µg/L) in the surface waters of Boston Harbor and the inner nearfield during the early stratified (June) period, suggesting a localized bloom, and lowest (< 1 µg/L) in Cape Cod Bay.

Dissolved Oxygen

- The minimum measured bottom water DO concentration during the semi-annual period was 7.95 mg/L at F02 in Cape Cod Bay;
- Regional ranges of DO concentrations were consistent during the pre-stratification and early stratification period;
- The trend of decreasing regional surface and bottom water DO concentrations continued through the June farfield survey (W9507), when surface water values decreased by > 1 mg/L in the boundary, offshore, and Cape Cod Bay regions, and approximately 0.5 mg/L in the harbor and coastal regions, and bottom water decreased by a maximum of 1 mg/L in the harbor and Cape Cod Bay;
- Regional surface water was oversaturated with DO during the June farfield survey;
- Nearfield water was oversaturated with DO during W9502 in late February, coincident with the widespread late winter bloom documented by nutrient data;
- The surface DO concentration measured during the April (W9505) nearfield survey was the highest measured during the semi-annual period (>11 mg/L), and remained oversaturated for the rest of the semi-annual period;

- An increase of bottom water DO in May (W9506), along with a saturation increase of almost 10% between the April (W9505) and May nearfield surveys, resulted in bottom water oversaturation for the only time except during the late winter bloom;
- Saturation of DO in the nearfield surface water was at a maximum (>120%) during the first early stratification survey in June, and then decreased slightly during the final two July surveys;
- Decreasing nearfield bottom water DO concentrations continued through the early stratification period to early July (W9508), then increased prior to the second July survey (W9509).

ventilator in the hood for overnight to allow the filters to dry and excess ¹⁴C carbon dioxide dissipate. The vials containing the filters were analyzed by scintillation spectroscopy as described above.

Calculation of Primary production. Volume specific primary production was calculated using equations similar to that of Strickland and Parsons (1972) as follows:

$$P(i) = \frac{1.05(DPM(i)-DPM(blk))}{V_s A_{sp} T}$$

$$P(d) = \frac{1.05(DPM(d)-DPM(blk))}{V_s A_{sp} T}$$

$$A_{sp} = \frac{DPM(sa)-DPM(back)}{V_{sa}DIC}$$

where:

P(i) = primary production rate at light intensity i, (μ gC $1^{-1}h^{-1}$ or mgC $m^{-3}h^{-1}$)

 $P(d) = dark production, (\mu gC l^{-1}h^{-1} or mgC m^{-3}h^{-1})$

 A_{sp} = specific activity (DPM/ μ gC)

DPM(i) = dpm in sample incubated at light intensity i

DPM(blk) = dpm in zero time blank (sample filtered immediately after addition of tracer)

DPM(d) = dpm in dark incubated sample

DPM(back) = background dpm in vial containing only scintillation cocktail

 V_s = volume of incubated sample (l)

T = incubation time (h)

 V_{sa} = volume counted of specific activity sample (ml)

DIC = concentration of dissolved inorganic carbon (µg/ml)

P-I curves. For each of the 5 depths for each photosynthesis station a P-I curve was obtained from the data P(I) = P(i)-P(d) vs. the irradiance $(I, \mu E \text{ m}^{-2}\text{s}^{-1})$ that the incubating sample is exposed. The P-I curves were fit via one of two possible models, depending upon whether or not significant photoinhibition occurs. In cases where photoinhibition is evident the model of Platt et al. (1980) was fit (SAAM II, 1994) to obtain the theoretical maximum production, and terms for light-dependent rise in production and degree of photoinhibition:

$$P(I) = P_{sb}"(1 - e^{-a})e^{-b}$$

$$P \max " = P_{sb}"[a"/(a" + \beta")][\beta"/(a" + \beta")]^{\beta"/} \text{(Lohrenz et al., 1994)}$$

where:

P(I) = primary production at irradiance I, corrected for dark fixation (P(i)-P(d)) P_{sb} = theoretical maximum production without photoinhibition $a = \alpha$ I/Psb, and α is the initial slope the light-dependent rise in production

TABLE 4-1
Summary of First Semi-Annual 1995 Satellite
Imagery for Massachusetts and Cape Cod Bays

Month	Date	MWRA Survey Number	Upwelling	G.O.M. Intrusion	Image Number	Location
January	1/30/95			х	E9503017.MD7	Wilkinson Basin to Nearfield
February	2/17/95	1		x	E9504817.MD7	Wilkinson Basin to Nearfield
March	3/29/95				E9508812.MD7	
April	4/3/95 4/25/95	· 4			E9509312.MD7 E9511517.MD7	
May	5/4/95 5/14/95 5/23/95 5/28/95	6		x x	E9512412.MD7 E9513412.MD7 E9514312.MD7 E9514812.MD7	Northern Mass Bay Mass Bay except western coast
June	6/1/95 6/6/95 6/16/95 6/20/95 6/27/95	7	x x		E9515212.MD7 E9515712.MD7 E9516717.MD7 E9517112.MD7 E9517817.MD7	Western Mass and Cape Cod Bays Western Mass Bay, north of Cape Ann Southern Cape Cod Bay
July	7/5/95 7/6/95 7/22/95 7/31/95	8	x x x		E9518611.MD7 E9518717.MD7 E9520312.MD7 E9521212.MD7	Western Mass Bay, north of Cape Ann Southern Cape Cod Bay

FIGURE 4-2
Regional Surface Water (A Bottle Samples)
Contour Plot of Temperature (°C) During Survey W9501 in February

FIGURE 4-3
Regional Surface Water (A Bottle Samples)
Contour Plot of Salinity (PSU) During Survey W9501 in February

FIGURE 4-4
Temperature/Salinity Data for Four Farfield Regions During Survey (a) W9501 in February and (b) W9504 in April

FIGURE 4-5
Regional Surface Water (A Bottle Samples) Contour Plot of Temperature (°C) During Survey W9504 in April

FIGURE 4-6
Regional Surface Water (A Bottle Samples)
Contour Plot of Temperature (°C) During Survey W9507 in June

Cohassett Transect

Marshfield Transect

Sigma-t: W9501 Contour Interval = 0.1

FIGURE 4-7
Transects Showing Density (σ_t) Contours During Survey W9501 in February
See Figure 1-3 for Location of Transects

FIGURE 4-8 Time-series of Average Surface (A) and Bottom (E) Water Density (σ_t) and $\Delta\sigma_t$ (A-E) in Farfield Regions

FIGURE 4-9 Time-Series of Average Surface and Bottom Water Density (σ_t) and $\Delta\sigma_t$ (Surface - Bottom) in the Inner and Outer Nearfield

FIGURE 4-10
Time-Series of Average Surface (A) and Bottom (E) Water Salinity and ΔSalinity (A-E) in the Inner and Outer Nearfield

(a) Pre-Stratification Nearfield Temperature Distribution

(b) Early Stratification Nearfield Temperature Distribution

FIGURE 4-11
Scatter Plot of Measured Water Temperature with Depth in the Water
Column for (a) Pre-Stratification and (b) Early Stratification Surveys

1995 Semi-Annual Beam Attenuation

FIGURE 4-12
Scatter Plot of the Calculated Beam Attenuation Coefficient and Chlorophyll a for the Winter-Spring and Summer Surveys

FIGURE 4-13
Regional Surface Water (A Bottle Samples) Contour Plot of Beam Attenuation (/m)
During Survey W9502 in March

Cohassett Transect

Marshfield Transect

Silicate (uM): W9502 Contour Interval = 1.0

FIGURE 4-14
Transects Showing Dissolved Silicate Concentration (µM) Contours During Survey W9502 in March See Figure 1-3 for Location of Transects

Cohassett Transect

Marshfield Transect

Nitrate (uM): W9501 Contour Interval = 0.2

FIGURE 4-15
Transects Showing Dissolved Nitrate Concentration (µM) Contours During Survey W9501 in February
See Figure 1-3 for Location of Transects

Cohassett Transect

Marshfield Transect

Nitrate (uM): W9502 Contour Interval = 0.5

FIGURE 4-16
Transects Showing Dissolved Nitrate Concentration (µM) Contours During
Survey W9502 in March
See Figure 1-3 for Location of Transects

Cohassett Transect

Marshfield Transect

FIGURE 4-17

Transects Showing Dissolved Nitrate Concentration (µM) Contours
During Survey W9504 in April
See Figure 1-3 for Location of Transects

(a) Nearfield Pre-Stratification Nitrate/Nitrite Distribution

(b) Nearfield Pre-Stratification Silicate Distribution

FIGURE 4-18 Scatter Plot of (a) Nitrate+Nitrite Concentrations (μ M) and (b) Silicate Concentrations (μ M) with Depth in the Water Column for the Pre-Stratification Surveys

FIGURE 4-19

Scatter Plot of Nitrate+Nitrite and Phosphate Concentrations (µM) Over the Semi-Annual Period, Showing the Shift of the NO₃+NO₂:PO₄ Ratio Between the Winter-Spring and Summer Surveys.

FIGURE 4-20 Regional Surface Water (a Bottle Samples) Contour Plot of Chlorophyll a (µg/L) During Survey W9501 in February

FIGURE 4-21 Regional Surface Water (a Bottle Samples) Contour Plot of Chlorophyll a ($\mu g/L$) During Survey W9502 in March

FIGURE 4-22 Regional Surface Water (a Bottle Samples) Contour Plot of Chlorophyll a (μ g/L) During Survey W9507 in June.

Cohassett Transect

Marshfield Transect

FIGURE 4-23

Transects Showing Chlorophyll a Concentration (µg/L) Contours During Survey W9501 in February See Figure 1-3 for Location of Transects

Boston-Nearfield Transect

Cohassett Transect

Marshfield Transect

FIGURE 4-24
Transects Showing Chlorophyll a Concentration ($\mu g/L$) Contours During Survey W9502 in March See Figure 1-3 for Location of Transects

Boston-Nearfield Transect

Cohassett Transect

Marshfield Transect

FIGURE 4-25
Transects Showing Chlorophyll a Concentration (µg/L) Contours
During Survey W9504 in April. See Figure 1-3 for Location of Transects

(a) Farfield Chlorophyll Maximum

(b) Depth of Farfield Chlorophyll Maximum

(c) Nearfield Chlorophyll Maximum

FIGURE 4-26

Time-Series of (a) the Average of Five Maximum Chlorophyll a Values Among all Stations in Each Farfield Region, (b) the Average Water Depth Where the Maximum Value Occurred, and (c) the Same Data for all Stations Within the Nearfield Region

Boston-Nearfield Transect

Cohassett Transect

Marshfield Transect

FIGURE 4-27

Contour Interval = 0.5

Transects showing Chlorophyll a Concentration (µg/L) Contours During Survey W9507 in June See Figure 1-3 for Location of Transects

(b) Outer Nearfield: N04, N07, N16, N20

FIGURE 4-28

Time-Series of Average Surface (A) and Bottom (E) Water Chlorophyll a Values in the (a) Inner and (b) Outer Nearfield

FIGURE 4-29
Distribution of Average Water Column Chlorophyll a in the Nearfield During the April Spring Bloom (W9505)

Figure 4-30
Time-Series of Average Surface (A) and Bottom (E) Water DO Concentration for (a) Boundary, (b) Offshore, and (c) Cape Cod Regions

FIGURE 4-31
Time-Series of Average Surface (A) and Bottom Water (E) DO Concentration and Saturation for (a) Coastal, and (b) Harbor Regions

Boston-Nearfield Transect

Cohassett Transect

Marshfield Transect

Dissolved Oxygen Saturation (%): W9507 Contour Interval = 8%

FIGURE 4-32
Transects Showing Dissolved Oxygen Saturation (%) Contours During Survey W9507 in June
See Figure 1-3 for Location of Transects

FIGURE 4-33
Time-Series of Average Surface and Bottom Water Dissolved Oxygen (a) Concentration (mg/L), and (b) Saturation (%) for Nearfield Region

5.0 PRODUCTIVITY, RESPIRATION, AND PLANKTON RESULTS

5.1 Productivity

Production measurements were taken at three nearfield stations (N04, N07, N16) and one farfield station (F23), at the entrance to Boston Harbor. All stations were sampled during the four farfield surveys conducted during this semi-annual reporting period; additionally, N04 and N16 were sampled during all nine nearfield surveys during the period. Samples were collected at five depths throughout the euphotic zone. Production was determined by measuring ¹⁴C at varying light intensities as summarized below; detailed methods are available in Appendix A.

In addition to samples collected from the water column, productivity calculations also utilized light attenuation data from a CTD-mounted 4π sensor, and incident light time-series data from an on-deck 2π irradiance sensor. After collection of the productivity samples, they were incubated in a temperature-controlled incubator. The resulting photosynthesis versus light intensity (P-I) curves (Figure 5-1 and comprehensively in Appendix E), were used, in combination with light attenuation and incident light information, to determine hourly production at intervals throughout the day for each sampling depth.

For this semi-annual report, areal production (mgCm⁻²d⁻¹) is presented, determined by integrating the measured productivity over the depth interval. In addition, calibrated chlorophyll a sensor data were used to normalize productivity for calculation of chlorophyll-specific production (a measurement of the efficiency of production).

5.1.1 Areal Production

Areal production ranged from approximately 325 to 900 mgCm⁻²d⁻¹ during the first two winter surveys (W9501, W9502), then decreased to semi-annual minimum values in early March (W9503, 130 mgCm⁻²d⁻¹). The subsequent farfield/nearfield survey in late March (W9504) showed only slightly elevated production values relative to the early March minima at all four stations sampled.

The two most noteworthy episodes of production occurred in the nearfield during the spring bloom in late April (W9505), and in June (W9507). Following the spring bloom in April (W9505), where peak bloom production reached 3,847 mgCm⁻²d⁻¹ at Station N16, production decreased in May to activity levels similar to those measured in the first two surveys (Figure 5-2a). Productivity then increased to maximum summer levels of greater than 1,000 mgCm⁻²d⁻¹ beginning in mid-June during W9507, with the maximum productivity measured at F23 (3,634 mgCm⁻²d⁻¹). Areal production measured at the two nearfield stations

(N04, N16) during the first survey in July remained at activity levels of >1,000 mgCm⁻²d⁻¹, but fell to approximately 500 mgCm⁻²d⁻¹ during the last summer survey of the semi-annual period.

Average water column chlorophyll values were compiled to compare with the depth-integrated areal production measurements. Chlorophyll a concentrations, compiled from the calibrated upcast sensor readings (five sensor readings per station) were averaged, resulting in chlorophyll a values averaged over the depth of the water column. For the most accurate assessment of chlorophyll-normalized production, average chlorophyll values in the photic zone should be used. Because the five upcast sensor readings were selected, rather than integrating over all of the downcast sensor readings, the average chlorophyll a values presented below were of acceptable accuracy for the purposes of this data summary.

Temporal trends of areal production and average chlorophyll a concentrations were remarkably similar at the stations where productivity was measured (Figure 5-2b), especially during the winter and spring. As discussed previously, the maximum measured chlorophyll a concentration in the nearfield during the prestratification period occurred during W9505 in April.

During the increase of areal production in the summer (W9507-W9509), average chlorophyll a concentrations actually decreased relative to concentrations measured during the winter. This summer inverse relationship between chlorophyll a in the water column and production continued through the final survey of this semi-annual reporting period. The implications of the relationship between chlorophyll and productivity measurements were further analyzed using chlorophyll-specific calculations of production in the following section.

5.1.2 Chlorophyll-Specific Production

In order to compare production with chlorophyll concentrations, chlorophyll-specific production (daily production normalized to average chlorophyll concentrations over the water column) values were calculated. The spatial and temporal distributions of production and chlorophyll-specific production on a volumetric basis were summarized by showing contoured production through the first nine surveys of 1995, along with the depths of the samples collected and processed (Figures 5-3 and 5-4).

Daily production was concentrated in the upper water column during all of the surveys (Figure 5-3). Contours of daily production show the blooms documented at N16 in April and at F23 in June, and the overall trend towards increased production in the summer.

Chlorophyll-specific production is an estimate of the efficiency of photosynthesis. The distribution of chlorophyll-specific production (Figure 5-4) indicates several periods when, although measured daily production was relatively low, the efficiency of production was high relative to the amount of biomass present (as measured by total chlorophyll a). For example, a peak in chlorophyll-specific production

during the March survey (W9503), most clearly noted at station N16, corresponded with an increase in zooplankton (Section 5.3), suggesting efficient removal of newly produced chlorophyll. Additional evidence of rapid photosynthesis, despite the lack of chlorophyll in the water column, occurred during the July surveys (W9508-W9509). This peak in chlorophyll-specific production was concomitant with the physical changes in the water column during the two July surveys, as discussed below (Section 5.2).

5.2 Respiration

Respiration was measured at the same three nearfield stations (N04, N07, N16) and one farfield station (F23) as productivity, as well as at farfield station F19, in the offshore region (Figure 1-1). All stations were sampled during the four farfield surveys; additionally, N04 and N16 were sampled during all nine nearfield surveys during the first semi-annual period of 1995. Measurements were made on samples collected at three depths (surface, mid-water, and bottom). Samples were incubated without light and at in situ temperatures. Detailed method information for respiration analyses is available in Appendix A.

Both respiration (in units of $\mu MO_2/hr$) and carbon-specific respiration ($\mu MO_2/\mu MC/hr$) rates at the three sampled depths are presented here. Carbon-specific respiration was calculated by normalizing respiration rates to the total measured particulate organic carbon (POC) in the water column. Carbon-specific respiration provides an indicator of how efficiently the POC substrate material is oxidized during respiration.

5.2.1 Water Column Respiration

Respiration rates during the winter and early spring surveys (W9501-W9504) in 1995 were less than 0.1 μ MO₂/hr for all of the stations measured except F23 (Figure 5-5, 5-6). Additionally, there was negligible difference between surface and bottom water rates at these stations. The similarity of respiration rates in a well-mixed water column is expected because respiration is a temperature-dependant reaction, and also the lack of a pycnocline allows unrestricted flux of particulate organic carbon (POC) to the bottom water.

The data from station F23 resulted in higher surface water respiration rates relative to the other sampled stations (Figure 5-5). The increased respiration at F23 was a function of the higher concentration of POC at this harbor-influenced station (Figure 5-7). The maximum respiration rate measured during winter-early spring (W9501-W9504) was 0.23 µMO₂/hr in the surface water at F23 during February (W9501), as was the semi-annual maximum POC measurement (73.3 µM) among the respiration stations. The elevated POC levels at F23 were not mirrored in chlorophyll a concentrations; there was, however, a peak in chlorophyll-specific production at F23 in February (Figure 5-4).

During the April farfield survey (W9504), the trend of higher surface respiration rates relative to bottom water was reversed at N04, N16, and F23. Maximum respiration was measured in the bottom water at

F23, while the surface water rate was reduced to $<0.1 \,\mu\text{MO}_2/\text{hr}$, coincident with an increased flux of POC to the bottom water F23 (Figure 5-7). As suggested by the chlorophyll-specific production event during W9503, this POC flux was due to sinking of grazed plankton produced prior to April survey.

The maximum rate of surface water respiration for the semi-annual period was measured during the late April spring bloom at station N16 (2.4 μ MO₂/hr), almost an order of magnitude larger than any other measured value. The other station measured during the late April survey (N04) also showed a modest increase in respiration (0.15 μ MO₂/hr). Bottom water respiration during this survey was negligible. POC also was elevated in the surface water of N16 (Figure 5-8).

During the following survey in mid-May (W9506), surface respiration rates remained elevated (approximately $0.15 \,\mu\text{MO}_2/\text{hr}$), but there was also an increase in bottom water respiration at both nearfield stations measured. This pattern of elevated surface water activity related to the April spring bloom, followed by bottom water changes in May, is seen in many physical and biological parameters. The increase of bottom water respiration in May most likely resulted from decomposition of settling plankton following the April spring bloom. With no concomitant increase in chlorophyll a (Figure 4-28) nor POC (Figure 5-8) in nearfield bottom water, the data suggest that the May survey was conducted at the twilight of the spring bloom event documented in April. Further analysis of the organic matter contribution to respiration measurements is discussed below (Section 5.2.2).

Vertical differences of water column respiration developed fully by the June survey (W9507) at all five respiration stations (Figures 5-5, 5-6). Surface water respiration rates were at least $0.1 \,\mu\text{MO}_2$ /hr greater than bottom water rates except at F23, where bottom water rates were higher. Except for the maximum respiration rate measured at N16 in April, station F23 exhibited the highest rates at all water depths (> $0.3 \,\mu\text{MO}_2$ /hr) during the June survey. Otherwise, bottom water respiration rates during the summer months were very low to below detection (e.g., F19).

At the two nearfield stations sampled during the final two surveys in July (N04 and N16), overall surface respiration rates remained elevated relative to winter rates (0.12 - 0.30 μ MO₂/hr), and bottom water rates remained close to zero (Figure 5-6). Rates between the two stations were similar for the June (~0.25 μ MO₂/hr) and late July (~0.15 μ MO₂/hr) surveys. Data from the early July survey (W9508), however, indicated a difference between the two stations, with the highest summer rate between the two stations measured at N04 (0.3 μ MO₂/hr), and the lowest at N16 (0.12 μ MO₂/hr). The significance of biological data at the two nearfield stations in July was further delineated by analyzing carbon-specific respiration.

5.2.2 Carbon-Specific Respiration

Differences between respiration and carbon-specific respiration at each station can be attributed to the differences in the character of the source POC contributing to respiration. Sources of organic carbon

which are more easily oxidized (i.e., recently produced plankton) will result in higher carbon-specific respiration. By comparing respiration rates relative to the source material, the availability (pathways) of fresh plankton can be inferred.

Comparison of respiration (Figures 5-5, 5-6) and carbon-specific respiration (Figures 5-9, 5-10) rates resulted in two primary periods showing a divergence of carbon-specific respiration. First, during early April (W9504), the bottom water carbon-specific respiration rate at N04, and the surface and bottom water rates at N07, were among the highest rates (~0.12 µMO₂/µMC/hr) measured in the semi-annual period. Considering that bottom water respiration was higher than surface water at several stations during this survey (Section 5.2.1), the cumulative data suggest a recent source of fresh planktonic material available for respiration. Evidence for a recent productivity event prior to this survey was the high values of chlorophyll-specific production measured in late March (W9503, Section 5.1) and relatively high zooplankton abundance during the period. The predictive chlorophyll-specific values, in tandem with the retrospective carbon-specific respiration values, suggest a productive period between these two surveys (W9503, W9504) with relatively rapid removal of chlorophyll from the water column and delivery to the bottom.

The second period highlighted by the carbon-specific respiration data was during the July nearfield surveys (W9508, W9509). Although the trends of surface water respiration (Figure 5-6) and POC (Figure 5-8) in early July (W9508) were different at nearfield stations N04 and N16, the resultant carbon-specific respiration data indicated a similar decrease in the surface water (Figure 5-10). A relative decrease of carbon-specific respiration in surface water means that the respiration rate is low relative to the available POC. These data suggest that the POC in the surface water during this survey was not easily oxidized, indicating senescent material. Satellite data from early July (Table 4-1), as well as moored temperature data from the USGS buoy located within the nearfield, indicated an upwelling event in Western Massachusetts Bay at the beginning of survey W9508. Upwelling is a potential mechanism for reversing the flux of senescent plankton from below the pycnocline to surface waters.

Following the early July survey, carbon-specific respiration increased in both surface and bottom water in late July (W9509). This increase in carbon-specific respiration, indicating an influx of higher quality POC available for respiration, in combination with productivity data showing a "gearing up" of productivity in July, provides supporting evidence for a July productivity event between surveys W9508 and W9509. The physical evidence for upwelling in July would provide a catalyst for a period of production which was waning by the end of July.

5.3 Plankton Results

The 1995 HOM Program included analysis of the plankton community in Boston Harbor, Massachusetts Bay, and Cape Cod Bay during 11 nearfield and six combined farfield surveys conducted from February

to December. Two stations were occupied in the nearfield surveys, while an additional ten locations were sampled during the combined events (Figure 5-11). In this report, the first half of the 1995 plankton record is presented (surveys W9501 to W9509), including four of the six annual combined sampling events (W9501, W9502, W9504, and W9507). Comprehensive tabulations of results are available in periodic Plankton Data Reports.

Whole-water and screened phytoplankton samples were collected at the surface and at mid-depth, with the latter often selected to coincide with the presence of a sub-surface chlorophyll a maximum. Zooplankton samples were collected at each station by oblique tow. Details regarding sampling and analysis can be found in the Combined Work Plan/QAPP for water column monitoring (Bowen et al., 1997). Quantitative taxonomic analyses were performed during 1995, continuing the monitoring record begun in 1992. Starting in 1995, carbon equivalence estimates were made for the plankton communities using species-specific carbon data from the literature.

In this section, the plankton data are presented through an assessment of their seasonal and regional characteristics. Total abundance, relative abundance of major groups, and estimated carbon equivalence are presented for each plankton community. Nuisance algae issues are also addressed. Appendix F-1 tabulates dominant phytoplankton species (>5% of total abundance) for whole water surface samples, along with the associated cell densities and percent abundance. Appendix F-2 provides similar information for the mid-depth samples. Appendix G-1 and G-2 includes information for screened phytoplankton results, while Appendix H presents zooplankton results.

5.3.1 Phytoplankton

5.3.1.1 Seasonal Trends in Total Phytoplankton Abundance

Prior to the onset of stratification, total abundance results from the whole water surface samples taken in the nearfield showed peaks during February and again in April (Figure 5-12). Patterns were quite similar in the mid-depth samples (Figure 5-12). Following the first survey when all regions were similar in total abundance, Cape Cod Bay densities were highest in the combined events during the pre-stratified period. Nearfield densities were typically intermediate with Cape Cod and coastal stations.

Overall abundances increased in all regions after the onset of stratification (mid-May), with the one combined nearfield/farfield sampling event in June reporting highest densities in the harbor (Fig 2a). During this survey, lowest densities were at the boundary station (F27), followed by the offshore station (F06) and Cape Cod Bay stations. Nearfield densities remained similarly high during the following two nearfield-only surveys.

5.3.1.2 Nearfield Phytoplankton Community Structure

Phytoplankton abundance and community composition at the two nearfield stations are depicted in Figure 5-13. Overall abundances at the two stations were generally similar prior to stratification, whereas abundance was much higher at N10 after the onset of stratification. With the exception of the late July survey results for N16, densities at the surface were typically higher than at mid-depth.

In both surface and mid-depth samples at each nearfield station, microflagellates were the numerically dominant plankton group in most samples (up to 96 percent of total density (Appendix F-1 and F-2). Cryptophyte species were also dominant during the pre-stratification surveys when overall abundance was low, especially during March (Appendix F-1). They were also prevalent in surface samples at N10 after stratification had begun (Figure 5-13).

Centric diatoms in early season samples (e.g., W9502) largely consisted of *Thalassiosira* spp, while *Chaetoceros* spp. were the dominant centric diatom during the April bloom (Figure 5-14). A small (<20μm) *Gymnodinium* species dominated the dinoflagellate group. During the early stratification period, *Rhizosolenia fragilissima* and a small (<10μm) centric diatom were prevalent, with both taxa reaching densities of 3 million cells per liter. Centric diatoms were noticeably less prevalent at mid-depth at N16 (Figure 5-13), which exhibited a larger proportion of flagellates, cryptophytes, and dinoflagellates. The comparably large (up to 250μm) dinoflagellate *Ceratium longipes* was the dominant dinoflagellate species, reaching densities of over 800 cells/L in June (Appendix G-2).

In terms of estimated carbon equivalence, phytoplankton carbon was relatively low during the pre-stratified period as compared with the peak concentrations which occurred after the onset of stratification (Figures 5-15 and 5-16). Early season carbon dominants included microflagellates, the small *Gymnodinium*, and a consortium of centric diatoms (Figure 5-17). *Chaetoceros* and *Thalassiosira decipiens* were the dominant carbon producers during the spring bloom. Peak carbon concentrations were seen during July at station N10, while at station N16 the peak occurred during June. The dominant carbon contributors were microflagellates, *Rhizosolenia fragilissima*, and *Ceratium longipes*.

5.3.1.3 Regional Phytoplankton Assemblages

Regionally, noticeable differences in community composition were evident in the harbor surface samples and in Cape Cod Bay during W9501. The W9501 harbor surface assemblage (stations F23, F30, and F31) yielded a relatively high number of the bluegreen algae *Oscillatoria* (Figure 5-18, Appendix F-1). Cape Cod stations F01 and F02 had a much higher proportion of centric diatoms than was seen in other regions, dominated by *Thalassiosira gravida* (Figure 5-18 and 18).

By W9502, eastern Cape Cod Bay appeared to experience a bloom of the small *Gymnodinium* species that was seen in the nearfield (Figure 5-19), with a peak density at mid-depth of nearly half a million cells per liter (Figure 5-19, Appendix G-1). Centric diatoms continued to have a large presence in Cape Cod Bay during W9502 relative to the other regions, comprised of *Thalassiosira* and *Rhizosolenia delicatula*. The comparably large presence of centric diatoms continued in western Cape Cod Bay through W9504 (Figure 5-20), however, the earlier dominant taxa were supplanted by *Chaetoceros* spp. which reached a density of over 1 million cells per liter (Appendix G-1).

By late June (W9507, Figure 5-21), small flagellates dominated most regions. The harbor and coastal areas (i.e., stations F24, F25, and N10) also has large densities of a small (<10 μm) centric diatom. There also appeared to be a localized bloom (4x10⁵ cells/L) of the dinoflagellate *Katodinium rotundatum* in the mid-depth sample from station F13, off Cohasset (Appendix F-2).

5.3.2 Zooplankton

5.3.2.1 Seasonal Trends in Total Zooplankton Abundance

Zooplankton densities in the nearfield generally increased throughout the reporting period, following the trend observed in phytoplankton abundance (Figure 5-22). Total zooplankton abundance grew from around 8,000/m³ in early February to maxima of over 100,000/m³ at station N10 (July) and around 70,000/m³ at station N16 (June and July). A late winter peak (March) was seen at station N16 which coincided with a drastic reduction in phytoplankton cell densities. Although the depressed phytoplankton densities were also seen at station N10, the zooplankton abundance did not show the same increase there.

Zooplankton abundances were low at both stations in early July but rebounded by the late July survey. This may have been a response to a phytoplankton bloom which apparently occurred between the two July surveys (Section 5.2.2).

5.3.2.2 Nearfield Zooplankton Community Structure

Zooplankton abundance during the early surveys was evenly distributed among polychaete larvae, copepod adults, and copepod nauplii (Figure 5-23). The more inshore station N10 had a larger contribution from barnacle nauplii than was seen at the more seaward station N16. As the season progressed, copepods and copepod nauplii dominated the zooplankton assemblage at both stations. These two groups produced the late winter peak in abundance reported at station N16 in the March 20th survey (W9503).

The numerically dominant species among the copepods during the reporting period was Oithona similis, with initial densities in February of around 1,200/m³ and peak densities in July of almost 20,000 m³ (Appendix H). Other dominant copepods included Pseudocalanus newmani, Calanus finmarchicus, and

Temora longicuris. In terms of estimated biomass, Calanus finmarchicus was by far the dominant species, with adults comprising an estimated $2x10^5 \,\mu gC/m^3$. The next most important contributor of zooplankton biomass was Pseudocalanus newmani, with an estimated carbon contribution of around $5x10^4 \,\mu gC/m^3$.

5.3.2.3 Regional Zooplankton Assemblages

Regional data for the first combined nearfield/farfield survey (W9501) showed highest zooplankton densities (around 15,000/m³) outside of the harbor at station F24 (Figure 5-24), again numerically dominated by copepod adults and nauplii. Other stations were generally less than 10,000/m³. The numerical dominance by copepods (primarily *Oithona similis* and *Pseudocalanus newmani*, Appendix H) was most pronounced at the boundary station (F27) and the two Cape Cod Bay stations (F01 and F02).

By the early March survey W9502, highest densities were found along the coast (stations F13, western Cape Cod Bay at F01, nearfield station N10, and station F06; Figure 5-25). Maximum densities reached 18,000/m³. Both polychaete larvae and barnacle nauplii had a greater contribution to the total assemblage than that seen in early February.

During the April combined survey (W9504), increased numerical dominance by copepods (again Oithona similis and Pseudocalanus newmani) was evident (Figure 5-26), especially outside of Boston Harbor (stations F24, N10). Densities of Calanus finmarchicus peaked in eastern Cape Cod Bay during this period, with densities exceeding 2,000/m³. Densities of the dominant copepods continued to increase into June, as did densities of inshore dominants Acartia hudsonica and Eurytemora herdmani (Figure 5-27). Maximum densities were seen in the nearfield and at the mouth of the harbor.

5.4 Summary of Water Column Biological Events

- Areal production ranged from approximately 100-900 mgCm⁻²d⁻¹ in the winter, to summer levels of >1000 mgCm⁻²d⁻¹, then decreasing to 500 mgCm⁻²d⁻¹ during the last summer survey of the semi-annual period;
- The two most significant episodes of production occurred in the nearfield during the spring bloom in late April (N16, 3847 mgCm⁻²d⁻¹) and at F23 during a nearfield "bloomlet" in June (3634 mgCm⁻²d⁻¹);
- Temporal and spatial patterns of areal production and average chlorophyll a concentrations were similar, especially during the pre-stratification period;

- A peak of chlorophyll-specific production in March, corresponding with an increase of zooplankton abundances, indicated rapid photosynthesis and rapid removal (grazing) of chlorophyll in the water column;
- Respiration rates during the winter and early spring surveys (W9501 W9504) generally were
 <0.1 μMO₂/hr, except at station F23, where the maximum respiration rate of this period was measured, as was the maximum semi-annual value of POC;
- During the April survey (W9504), bottom water respiration exceeded surface water rates at several stations;
- Elevated carbon-specific respiration measured in April in the nearfield indicated a flux of fresh organic material, providing additional evidence for a productive period in March;
- The semi-annual maximum rate of surface water respiration was measured in late April at station N16 (2.4 μMO₂/hr), followed by an increase in bottom water respiration at both nearfield stations measured in May;
- July was a productive period, potentially related to upwelling, as inferred from carbon-specific respiration data collected during the early and late July surveys.
- Phytoplankton abundances in Cape Cod Bay were highest during the pre-stratified period;
- During the late winter bloom (W9502), eastern Cape Cod Bay experienced a bloom of the small *Gymnodinium* species, while centric diatoms continued to have a large presence in Cape Cod Bay relative to the other regions;
- Chaetoceros spp. were the dominant centric diatom, and a small (<20µm) Gymnodinium species dominated the dinoflagellate group during the spring bloom, while Chaetoceros and Thalassiosira decipiens were the dominant carbon producers;
- Overall phytoplankton abundances increased in all regions after mid-May, with the highest densities reported in the harbor during the June farfield survey;
- Microflagellates were the numerically dominant plankton group in both surface and mid-depth samples at each nearfield station.
- During the bloom in June, the dominant carbon contributors were microflagellates, *Rhizosolenia* fragilissima, and Ceratium longipes;

- Zooplankton densities in the nearfield generally increased throughout the reporting period, following the trend observed in phytoplankton abundance;
- Zooplankton abundances during the early surveys were evenly distributed among polychaete larvae, copepod adults, and copepod nauplii;
- A late winter (W9503) peak of zooplankton occurred at station N16, coinciding with a drastic reduction in phytoplankton cell densities;
- Zooplankton abundances were low at both stations in early July (W9508), but rebounded by the late July survey;
- Calanus finmarchicus was by far the zooplankton dominant species in terms of biomass.

FIGURE 5-1
An Example of a Photosynthesis-Irradiance (P-I) Curve

(a) Areal Production

(b) Chlorophyll

FIGURE 5-2 Time-Series of (a) Areal Production (mgC/m²/d) and (b) Chlorophyll a Concentration (μ g/L) for Productivity Stations

Daily Production (mgC/m3/d)

FIGURE 5-3
Time-Series of Contoured Daily Production (mgC/m³/d) Over Water Depth,
Showing Location of Discrete Production Measurements at Productivity Stations

Chlorophyll-Specific Production (mgC/mgChl/d)

Time-Series of Contoured Chlorophyll-Specific Production (mgC/mgChl/d) Over Water Depth, Showing Location of Discrete Production Measurements at Productivity Stations

(a) Water Column Respiration, Station F19 and F23

(b) Water Column Respiration, Station N07

FIGURE 5-5

Time-Series of Water Column Respiration (µM/hr) Measured During Four Farfield Surveys in Surface
Symbol (Open Symbols) and Bottom (Closed Symbols) Water for Respiration Stations (a) F19 and F23 and (b) N07

(a) Water Column Respiration, Station N04

(b) Water Column Respiration, Station N16

FIGURE 5-6
Time-Series of Water Column Respiration (µM/hr) Measured During Nine Nearfield Surveys in Surface (Open Symbols) and Bottom (Closed Symbols) Water for Respiration Stations (a) N04 and (b) N16

(a) POC, Station F19 and F23

(b) POC, Station N07

FIGURE 5-7

Time-Series of Water Column Particulate Organic Carbon (POC, μ M) Measured During Four Farfield Surveys in Surface (Open Symbols) and Bottom (Closed Symbols) Water for Respiration Stations (a) F19 and F23 and (b) N07

(a) POC, Station N04

(b) POC, Station N16

FIGURE 5-8

Time-Series of Water Column Particulate Organic Carbon (POC, μ M) Measured During Nine Nearfield Surveys in Surface (open symbols) and Bottom (Closed Symbols) Water for Respiration Stations (a) N04 and (b) N16

(a) Carbon-Specific Respiration, Station F19 and F23

(b) Carbon-Specific Respiration, Station N07

FIGURE 5-9

Time-Series of Carbon-Specific Water Column Respiration (µM/hr) Measured During Four Farfield Surveys in Surface (Open Symbols) and Bottom (Closed Symbols) Water for Respiration Stations (a) F19 and F23 and (b) N07

(a) Carbon-Specific Respiration, Station N04

(b) Carbon-Specific Respiration, Station N16

FIGURE 5-10

Time-Series of Carbon-Specific Water Column Respiration (µM/hr) Measured During Nine Nearfield Surveys in Surface (Open Symbols) and Bottom (Closed Symbols) Water for Respiration Stations (a) N04 and (b) N16

FIGURE 5-11
HOM Plankton Stations Locations (Shown in Enlarged Text)

Regional Total Phytoplankton Abundance During Pre-Stratification and Early Stratification Periods.

Top: Surface Water Data. Bottom: Chlorophyll a Maximum Data.

FIGURE 5-14

Dominant Phytoplankton Species by Abundance in the Nearfield

FIGURE 5-17

Dominant Phytoplankton Species by Carbon in the Nearfield

FIGURE 5-18

Total Phytoplankton Abundance by Taxonomic Groups Collected During W9501, February 6-14, 1995.

Top: Surface Water. Bottom: Chlorophyll a Maximum Data.

FIGURE 5-19

FIGURE 5-20
Total Phytoplankton Abundance by Taxonomic Groups Collected During W9504, April 3-10, 1995
Top: Surface Water. Bottom: Chlorophyll a Maximum Data.

Total Phytoplankton Abundance by Taxonomic Groups Collected During W9507, June 20-25, 1995
Top: Surface Water. Bottom: Chlorophyll a Maximum Data.

FIGURE 5-22
- Phytoplankton and Zooplankton Semi-Annual Cycles During Pre-Stratification and Early Stratification Periods
Top: Nearfield station N10. Bottom: Nearfield Station N16.

5-35

5-36

5-37

5-38

6.0 A SUMMARY OF MAJOR WATER COLUMN EVENTS

The purpose of this section is to provide a brief synthesis of some of the regional events supported by both the physical and biological trends in the data. Although a rigorous analysis of the periodically conflicting datasets from the first semi-annual period is out of the scope of this data synthesis, several events both regionally and within the nearfield were evidenced by a variety of data.

Overall, during the pre-stratification phase in the winter-spring of 1995, Cape Cod Bay was the most productive region, with the highest chlorophyll concentrations, highest phytoplankton abundances, and consistently the lowest nutrient concentrations. During the early stratification survey in June, Cape Cod Bay was the least productive, with the lowest chlorophyll and phytoplankton abundance. Boston Harbor was the most productive region during this last farfield survey, with the highest chlorophyll, and the phytoplankton assemblage numerically dominated by small flagellates.

The first winter survey in February resulted in the highest nutrient concentrations in the water column throughout the semi-annual period. It was a period of low productivity, except, again, in Cape Cod Bay.

Nutrient data clearly documented a regional late winter bloom (early March, W9502), dominated by small *Gymnodinium* and centric diatom production. Maximum nutrient scavenging occurred in the nearfield and Cape Cod Bay, with regional scavenging of silicate by diatom production. During this survey, both the bottom and surface water in the nearfield were oversaturated with respect to DO, suggesting an influence of productivity on DO concentration during the bloom.

In late March (W9503), a peak in chlorophyll-specific production in nearfield surface water served as a predictor of a productivity event, indicating a "gearing up" of production without an apparent generation of chlorophyll. Plankton data showed a reduction in phytoplankton abundance during this survey, but a peak of zooplankton abundance indicated rapid grazing of the newly produced chlorophyll. The following survey in April (W9504) resulted in elevated carbon-specific respiration, indicating a flux of fresh organic material. The two datasets suggested that a productive period occurred between the two surveys in the nearfield.

The spring nearfield bloom occurred in April (W9505), supported by a wide variety of data, including maximum measured values of surface water chlorophyll a, DO, POC, maximum rates of production and respiration, and a depletion of nutrients in the surface water. The second highest production value (3,847 mgCm⁻²d⁻¹), and the maximum rate of surface water respiration (2.4 µMO₂/hr) was measured at station N16 during this survey. Nearfield bottom water was oversaturated with respect to DO during this survey. Contours of chlorophyll a showed the center of production within the nearfield at station N21.

The spring bloom in April still had an effect on survey data collected in May (W9506). Most of the effect of the spring bloom in April was concentrated in the surface water, but by May, changes in bottom water indicated an effect from settling and decomposing plankton. Increased respiration rates indicated the availability of POC substrate material. Although phytoplankton abundances measured in May had decreased from April, zooplankton abundances had increased relative to the prior month suggesting increased grazing. At the same time, several bottom water parameter values began to merge with those measured in the surface water, including increases in temperature and DO, as well as a decrease in overall nutrient concentrations. An increase in bottom water DO can be attributed to biological production or mixing from surface water; in this case, the data suggest mixing occurred within the nearfield.

The second highest production episode was measured during the first summer survey in June (F23, 3,634 mgCm⁻²d⁻¹). In addition to production rates, the maximum value of DO saturation in surface water of the semi-annual period was measured in the nearfield, and this survey also resulted in the highest phytoplankton densities. The data suggest that the June survey was conducted during a bloom, with maximum chlorophyll concentrations measured in Boston Harbor, nearfield, and coastal water.

The early July survey (W9508) was marked by a cooling of nearfield surface water, resulting in a $\Delta \sigma_t$ increase of almost 1. The data suggested an upwelling event, supported by satellite data, where an upwelling event was documented in Western Massachusetts Bay at this time, and by moored temperature data collected by USGS at a buoy located between stations N18 and N21. Although there was no evidence collected during the early July survey, a peak in chlorophyll-specific production suggested a "gearing up" of productivity.

Further evidence that a productivity event occurred in July was collected during the final semi-annual survey of 1995 in late July. Carbon-specific respiration values in both the surface and bottom water of the nearfield increased, suggesting a source of recently-produced POC. Phytoplankton populations were concentrated at mid-depths during this survey, as opposed to in the surface water as during prior surveys, potentially explaining the increased DO concentration increase measured during this survey. The abundances of zooplankton also rebounded from the low numbers in early July, suggesting that grazing was an important factor in reducing chlorophyll produced during the July productivity episode. Supporting satellite and moored temperature data suggesting an upwelling event in July was most likely a catalyst for a productivity episode in the middle of the summer in the nearfield.

7.0 REFERENCES

Bowen, J.D., R.A. Zavistoski, S.J. Cibik, T. Loder, B. Howes, and C. Talyor, 1997. Combined Work/Quality Assurance Plan for Baseline Water Quality Monitoring: 1995-1997. MWRA Enviro. Quality Dept. Misc. Rpt. No. ms-45. Massachusetts Water Resources Authority, Boston, MA. 93pp.

MWRA. 1997. Contingency Plan. 73pp.

APPENDIX A

PRODUCTIVITY AND RESPIRATION METHODS

R:\PUBS\PROJECTS\4501006\331.APP September, 1997

Methods

Production Analyses by ¹⁴C - Field Procedures.

From each of the 5 productivity depths at each productivity station, samples were obtained by filtration through 300 mm Nitex screen (to remove zooplankton) from the Niskin bottles into opaque 1 gal polyethylene bottles. Under subdued green light, sub-samples were transferred by siphon into individual 75 ml acid cleaned polycarbonate bottles. Each bottle was flushed with approximately 250 ml of sample. A total of 16 bottles (14 light bottles, 2 dark bottles) were filled for each depth and incubated in a light and temperature controlled incubator. Light bottles from each depth are incubated at 14 light intensities (250 W tungsten-halogen lamps attenuated with Rosco neutral density filters) and all bottles incubated within 2° C of the *in situ* temperature at each depth for 4-6 hr (actual time was recorded). Single bottles of sample collected from each depth was assayed for background (time-zero) activity.

The 75 ml samples were incubated with 5-10 µCi ¹⁴C-bicarbonate (higher activity during winter and spring season) and biological activity terminated by filtration of the entire contents of the bottles through 2.5 cm diameter Whatman GF/F glass fiber filters and immediate contact of the filters with 0.2 ml of a 20% aqueous solution of acetic acid contained in pre-prepared 20 ml glass scintillation vials (vials immediately recapped). For specific activity determination 0.1 ml aliquots of sample were placed in pre-prepared 20 ml scintillation vials containing 0.2 ml of benzethonium hydroxide (approximately 1.0 M solution in methanol; Sigma Chemical Company) to covalently sequester the ¹⁴C inorganic carbon (vials immediately recapped). Specific activity was determined from the measured activity and measurements of DIC.

Samples for DIC analysis were collected from the Niskin bottles into 300 ml BOD bottles, following collection procedures used for oxygen analyses. Within 6 hr. of BOD sample collection, duplicate 10 ml samples were injected into 20 ml crimp-sealed serum bottles containing 0.5 ml of a 2N aqueous solution of sulfuric acid for subsequent I.R. analysis (Beckman IR-315 infrared analyzer) of the gaseous phase (5 - 150 ml samples) at the W.H.O.I. laboratory.

During summer months 1995 some of the ¹⁴C incubations (W9508-W9513) were incubated on shore in the MWRA laboratory at Deer Island. Samples were collected in opaque bottles and maintained at *in situ* temperature until transport to the lab. The ¹⁴C incubations were begun approximately 2 - 3 hr from sample collection and should compare favorably with samples that are incubated aboard the ship.

Production Analyses by ¹⁴C - Laboratory Procedures.

Sample processing. Upon arrival to the W.H.O.I. laboratory scintillation cocktail (10 ml Scintiverse II) were added to the scintillation vials containing the specific activity samples and analyzed using a Packard Tricarb 4000 liquid scintillation counter which possesses automated routines for quench correction. Vials containing acidified filters were opened and placed in a

 $b = \beta$ "I/Psb", and β "is a term relaying the degree of photoinhibition P_{max} "= light saturated maximum production

If it is not possible to converge upon a solution the model of Webb et al. (1974) was similarly fit to obtain the maximum production and the term for light-dependent rise in production:

$$P(I) = P_{\text{max}}"(1 - e^{-a'})$$

where:

P(I) = primary production at irradiance I corrected for dark fixation (P(i)-P(d))

P_{max}"= light saturated maximum production

 $a' = \alpha''I/Pmax''$, and α'' is the initial slope the light-dependent rise in production

Nearly all P-I curves obtained did not show evidence of photoinhibition and were fit according to the Webb model.

Light vs. depth profiles. To obtain a numerical representation of the light field throughout the water column bin averaged CTD light profiles (0.5 m intervals) was fit (SAAM II, 1994) to an empirical sum of exponentials equation of the form:

$$I_Z = A_1 e^{-a_1 Z} + A_2 e^{-a_2 Z}$$

which is an expansion of the standard irradiance vs. depth equation:

$$I_Z = I_0 e^{-kZ}$$

where:

 I_Z = light irradiance at depth Z

 I_0 = incident irradiance (Z=0)

k = extinction coefficient

 A_1 , A_2 = factors relating to incident irradiance ($I_0 = A_1 + A_2$)

 a_1 , a_2 = coefficients relating to the extinction coefficient (k = a_1+a_2)

The expanded equation was used as pigment absorption and other factors usually resulted in significant deviation from the idealized standard irradiance vs. depth equation. The best fit profiles were used to compute percent light attenuation for each of the sampling depths.

Daily incident light field. During normal CTD hydrocasts the incident light field was routinely measured via a deck light sensor at high temporal resolution. The average incident light intensity was determined for each of the CTD casts to provide, over the course of the photoperiod (12 hr period centered upon solar noon), a reasonably well resolved irradiance time series consisting of 12-17 data points. A 48 point time series (every 15 min.) of incident was obtained from these data by linear interpolation.

Calculation of daily primary production. Given the best fit parameters (Pmax", α ", β ") of the P-I curves obtained for each of the 5 sampling depths, percent in situ light attenuation at each depth determined from the sum of exponential fits of the in situ light field, and the photoperiod incident light (I₀) time series it was possible to compute daily volumetric production for each depth. To do this at a given depth, hourly production was determined for the in situ light intensity computed for each 15 min. interval of the photoperiod, using the appropriate P-I parameters and in situ irradiance computed from the percent attenuation and incident irradiance. Daily production (µgC l⁻¹d⁻¹) was obtained by integration of the determined activity throughout the 12 hr photoperiod. An advantage of this approach is that seasonal changes in photoperiod length are automatically incorporated into the integral computation. For example, during winter months computed early morning and late afternoon production contributes minimally to whole day production, whereas during summer months the relative contribution during these hours is more significant. The investigator does not have to decide which factor to employ when converting hourly production to daily production. The primary assumption for the approach is that the P-I relationship obtained at the time of sample procurement (towards the middle of the photoperiod) is representative of the majority of production occurring during the photoperiod.

Calculation of daily areal production. Areal production (mgC m⁻²d⁻¹) was obtained by trapezoidal integration of daily volumetric production vs. depth from the sea surface down to the 0.5% light level. The P-I factors from the uppermost sampling depth (approximately 1.2 - 2.7 m, depending upon weather state) were used to compute the contribution of the portion of the water column between the sea surface interface and uppermost sampling depth to areal production (rather than to assume that the activity in the uppermost sample is representative of that section of the water column, which is not always the case).

Calculation of chlorophyll-specific parameters. Chlorophyll-specific measures of the various parameters were determined by dividing by the appropriate chlorophyll term obtained from independent measurements:

$$a = \frac{a^n}{[chla]}$$

$$P \max = \frac{P \max}{|ch|a|}$$

where:

α = chlorophyll-a-specific initial slope of light-dependent production
[(gC(gchla)⁻¹h⁻¹(μEm⁻²s⁻¹)⁻¹]

Pmax = light saturated chlorophyll-specific production [gC(gchla)⁻¹h⁻¹]

APPENDIX B

SURFACE CONTOUR PLOTS - FARFIELD SURVEY

R:\PUBS\PROJECTS\4501006\331.APP September, 1997

APPENDIX B

All contour plots were created using data from the surface bottle sample (A). Each plot is labelled on the bottom right with the survey number ("9501"), and parameter as listed below. The minimum and maximum value, and the station where the value was measured, is provided for each plot, as well as the contour interval and parameter units.

Appendix B: Table of Contents

Parameter Name	Map Parameter Name	<u>Units</u>
Temperature	temp_lin	°C
Salinity	sal_lin	PSU
Transmissivity (beam attenuation)	tran_lin	/m
Nitrate (NO ₃)	no3_lin	μM
Phosphate (PO ₄)	po4_lin	$\mu \mathbf{M}$
Silicate (SiO ₄)	sio4_lin	μM
Dissolved Inorganic Nitrogen (DIN*)	din_lin	$\mu \mathbf{M}$
Chlorophyll a	fluo_lin	μg/L

 $^{*}NO_{3} + NO_{2} + NH_{4}$

R:\PUBS\PROJECTS\4501006\331.APP September, 1997

APPENDIX C

TRANSECT PLOTS

R:\PUBS\PROJECTS\4501006\331.APP September, 1997

APPENDIX C

Data were contoured relative to water depth and distance between stations as shown on the transects (Figure 1-3, text). Relative distances between stations and water depth at each station is shown on the transect. Water depth is labelled with negative values in meters, with zero depth at the sea surface, and shaded with slanted lines. Three transects (Boston-Nearfield, Cohasset, and Marshfield) are provided on each plot, as well as shaded contour levels on the scale bar at the bottom of the plot. Contour units are as noted on the table below. Each plot is labelled on the bottom right with the parameter as listed below, and the survey number ("9501").

Appendix C: Table of Contents

Parameter Name	Map Parameter Name	<u>Units</u>
Sigma-T (σ _i)	Sigma-T	n/a
Temperature	Temperature	°C
Salinity	Salinity	PSU
Transmissivity (beam attenuation)	Trans	/m
Nitrate (NO ₃)	NO3	μ M
Phosphate (PO ₄)	PO4	$\mu \mathbf{M}$
Silicate (SiO ₄)	SiO4	μ M
Dissolved Inorganic Nitrogen (DIN*)	DI Nitro	$\mu \mathbf{M}$
Chlorophyll a	Fluorescence	μg/L
DO Saturation	DO % Saturation	%

 $^*NO_3 + NO_2 + NH_4$

R:\PUBS\PROJECTS\4501006\331.APP September, 1997

Cohassett Transect

Cohassett Transect

Cohassett Transect

Cohassett Transect

Cohassett Transect

Cohassett Transect

Cohassett Transect

Cohassett Transect

Cohassett Transect

Cohassett Transect

Cohassett Transect

Cohassett Transect

Cohassett Transect

Cohassett Transect

Cohassett Transect

Cohassett Transect

Cohassett Transect

Cohassett Transect

Cohassett Transect

Cohassett Transect

Cohassett Transect

Cohassett Transect

Cohassett Transect

Cohassett Transect

Cohassett Transect

Cohassett Transect

Cohassett Transect

Cohassett Transect

Cohassett Transect

Cohassett Transect

Cohassett Transect

Cohassett Transect

Cohassett Transect

Cohassett Transect

Cohassett Transect

Cohassett Transect

APPENDIX D

NUTRIENT SCATTER PLOTS

R:\PUBS\PROJECTS\4501006\331.APP September, 1997

APPENDIX D

Scatter plots are included for every survey conducted during the semi-annual period. EAch plot includes all stations and all depths unless otherwise noted. The plots are organized by type of plot, and then by survey. Combined nearfield/farfield surveys show the regions with different symbols, including boundary (BOU), Cape Cod Bay (CCB), coastal (COA), Boston Harbor (BH), nearfield (NEA), and offshore (OFF). Available plots, in the order they appear in the appendix, are summarized in the table below.

Type of Plot	<u>Surveys</u>	<u>Comments</u>
PO ₄ :DIN; PO ₄ :NO ₃	W9501-09	Lines of nitrogen:phosphate
PO ₄ :NH ₄ ; SiO ₄ :NH ₄	W9501-09	
SiO ₄ :DIN; SiO ₄ :NO ₃	W9501-09	Lines of nitrogen:silicate
Salinity:DIN	W9501-09	Stations types A,D,F,G
Salinity:NH ₄ and NO ₃	W9501-09	
Salinity:PO ₄ and SiO ₄	W9501-09	
Salinity:TN and DIN+PON	W9501-09	Station types A,D,F,G
Depth:DIN	W9501-09	
Depth:NH ₄ and NO ₃	W9501-09	
Depth:PO ₄ and SiO ₄	W9501-09	•

Acronyms:

DIN = dissolved inorganic nitrogen

PON = particulate organic nitrogen

TN = total dissolved nitrogen + PON

R:\PUBS\PROJECTS\4501006\331.APP September, 1997

W9503

W9505

W9505

W9506

W9508

W9508

W9509

W9509

W9502 .

W9503

W9504 .

W9505

W9506

W9508

W9508

W9509

W9509

W9505 .

W9506 .

W9506

W9501 .

W9503 .

W9507 .

W9509

W9502

W9504

W9504

W9509

31.0

Salinity (ppt)

31.5

32.0

30.5

30.0

n=12

33.0

32.5

0

29.0

29.5

W9507 .

W9507 .

W9507

APPENDIX E

PHOTOSYNTHESIS-INTENSITY (P-I) CURVES

R:\PUBS\PROJECTS\4501006\331.APP September, 1997

APPENDIX E

Productivity calculations (Appendix A) utilized light attenuation data from a CTD-mounted 4π sensor and incident light time-series data from an on-deck 2π irradiance sensor. After collection of the productivity samples, they were incubated in a temperature-controlled incubator. The resulting productivity (mgC/m³/h) versus light intensity (μ E/m²/s, P-I) curves are comprehensively presented in this appendix. These data were used to determine hourly production at intervals throughout the day for each sampling depth.

R:\PUBS\PROJECTS\4501006\331.APP September, 1997

APPENDIX F-1

ABUNDANCE OF PREVALENT SPECIES IN SURFACE SAMPLE WHOLE WATER PHYTOPLANKTON FEBRUARY 6-14, 1995

Abundance of Prevalent Species (> 5% Total Count) in Surface Sample Whole Water Phytoplankton, February 6 - 14, 1995 (W9501)

	Group	Parameter	Harbor Stations			Constal Stations			Nearfield Stations			Offshore Stations	Palindard Stations 55	Cape Cod Bay Stations	
			1F23	1F30	1F31	1F13	1F24	1F25	1N10	1N16	2N16	1F06	1F27	1F01	1F02
CRYPTOMONAS SP#1 LENGTH <10 MICRONS	MF	10 ⁶ Cells/L			0.068						0.046	0.032	0.045	0.077	0.085
		%	7	6	7	l				10	8	6	9	19	17
CRYPTOMONAS SP#2 LENGTH > 10 MICRONS	MF	10 ⁶ Cells/L		+ 7	า กระทั่งเล่า หลังเล่นให้		HAT.		7,44	0.084	0.033		. 1	"	"
		%	41. A.Y						**	10	8	enself a			
GYMNODINIUM SP.#1 5-20UM W 10-20UM L	DF	10 ⁶ Cells/L									0.029		0.028		
OSCILLATORIA CELLS #1 DIAM <5UM	30.43	%	מנשינו	(E 125)	92	. valensii i	ga in taka	. 5	, ii		5		. 6	1	
OSOILLA TOTAL CELLO WI DIAM SOUM	0	10 ⁸ Cells/L	67	0.133	0.341	liá".	MATE .								
THALASSIOSIRA GRAVIDA	CD	% 10 ⁶ Cells/L	\$ 100 per 2 miles		37 0.068		0.024	0.000			24	endafu.	The African Set	esviningii (
		%	7		7		5	U.U23						0.113	0.124
THALASSIOSIRA NORDENSKIOLDII	€cb*	10° Cells/L	o Bare bry History		GARA.		GLANE:	- 140 g = 1 17						27	24
		3	2000 A	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1						A Miles William	-17-3			1	0.031
UNID. BLUE GREEN SINGLE SPHERE	0	10 ⁶ Cells/L	20m,277 (0.053	98 s∞¶		1. 2) C THE PERSON	Daymon C	States).	r - p4"-":1"	Garage.		÷	l ·	0
		%		9		ŀ								1	
UNID. BLUE GREEN TRICHOME (CELL)	O	10 ⁶ Celis/L	144		0.081		rrinely	1000	のかな。 構成し			and the artists of the			
	Har	%	開始		3.9 21		i Jac	Averaged a			Agenta.				
UNID. CHOANOFLAGELLATE	MF	10 ⁶ Cells/L				ii i	1) i	<u> </u>	·	Ì			0.022	
Thur High burgan takenan a takenan sa	::(EEE	%	المناسبة	SPACET	1766 0.15.0	n nama, je	greene e							5	
UNID. MICRO-PHYTOFLAG LENGTH <10 MICRONS	MF	10 ⁶ Cells/L							0.330			0.343	0.317	0.032	0.144
UNID. MICRO-PHYTOFLAG LENGTH > 10 MICRONS	MF	% 10 ⁶ Cells/L		33 0.072	E22	70	55	58	96	57	56	67	65	8	28
one monor in to the century to monore	MIL	%		12											
Group Definitions:	CD	Centric Diator	n	۱۴.	<u></u>	<u> </u>	<u> </u>	<u></u>	<u> </u>	<u></u>	<u></u>	<u> </u>		<u> </u>	
•	DF	Dinoflageilate													
	MF	Microflagellat													
	Ö	Other	_				•								٠
	PD	Pennate Diate	om												

Abundance of Prevalent Species (> 5% Total Count) in Surface Sample Whole Water Phytoplankton, February 28 - March 5, 1995, 1995 (W9502)

Paratas	l		Harbor				l Statio		Nearfie	id Static	ona 🐇	Offshore Stations	Boundary Stations	Cape Cod	Bay Stations
Species	Group	Parameter	1F23	1F30	1F31	1F13	1F24	1F25	1N10	1N16	2N16	1F06	1F27	1FO1	1F02
CHAETOCEROS SP#1 DIAM <10 MICRONS	CD	10 ⁶ Cells/L												.,,,,,,	0.057
		%	l					_		1					7
CRYPTOMONAS SP#1 LENGTH <10 MICRONS	MF	10 ⁶ Cells/L	7-9-	0.026		u.			· .			0.035	0.024		0.086
	La serie	%		10	Lay Lay	975	H.					23	8		10
CYLINDROTHECA CLOSTERIUM	PD	10 ⁶ Cells/L						"				0.010			10
CHAOILADIA ODEO LENOTU OS SOCIOS SUS		%		r	to rec							7	į		
FRAGILARIA SP#2 LENGTH 30-60 MICRONS	PD	10 ⁶ Cells/L	1. 1		0.028	1,41,41						· · · ()		0.051	
GRAMMATOPHORA SP.		%		170	9	11 (11)				1.				6	
GRAMINATOPHORA SP.	PD	10 ⁶ Cells/L	1		0.021										!
GYMNODINIUM SP.#1 5-20UM W 10-20UM L	50	%		11.1.250	7 ∃ਜ਼1-1	ig te		1	*						
C MINOS MINOS 1,841 0-200 44 10-200 M	DF	10 ⁶ Cells/L		1-7								0.012	0.025		0.133
MELOSIRA SP#1 DIAM <20 MICRONS	CD	% 10 ⁶ Cells/L		A Ab.	4.111	Ei.			. '			8	8		16
	65	10° Cells/L			0.025 8			0.038							
RHIZOSOLENIA DELICATULA	CD	10 ⁶ Cells/L	10.004	500,8164		ACM CT	1 1/2 1	10							
		%	T 2			\$1.00				10 10	5. 0			0.053	0.084
THALASSIONEMA NITZSCHIOIDES	PD	10 ⁶ Cells/L	1		-: 1F:-1	AN E								6	10
		%				1					i l	0.010			
THALASSIOSIRA GRAVIDA	CD	10 ⁶ Cells/L		0.017	a reg	1.85 T						'			•
	d Wilde	%		0,017 6	STATE:	7537	P. 11	401.1	i b	A 11 I.,		791 ·			
THALASSIOSIRA SP#1 DIAM <20 MICRONS	CD	10 ⁸ Cells/L		0.035				,	. '	. .				0,081	0.045
		%		13										9	0.043 5
THALASSIOSIRA SP#2 DIAM >20 MICRONS	CD	10 ⁶ Cells/L	0.034	in Alberta Communication	0.021		0.041	0.027	ļ.	0.030	0.024	0.015		0.073	a I
		%	9		7	E.E. 541	10	7		8	7	10		8	
UNID. BLUE GREEN SINGLE SPHERE	0	10 ⁶ Cells/L	0.023		0.015		0.032	0.024	0.025						0.127
		%	6		5		8	6	7						15
UNID. CENTRIC DIATOM DIAM <10 MICRONS	CD	10 ⁶ Cells/L	0.028	4.43	0,019	·	0.026			0.021	0.048				0.082
SINID OFNITOIO DIATOM DIAMA (C. C. C	1	%	7	<14.	. 7		7			5	14				10
UNID. CENTRIC DIATOM DIAM 10-30 MICRONS	CD	10 ⁶ Cells/L		0.017								0.011			
UNID. CHOANOFLAGELLATE	Nie o	%	1.05	6	2000		l					7			
CHIP CHANGE PROFFILE	MF	10 ⁶ Cells/L		0.046	044 1.756		F.1	τ.							
UNID. MICRO-PHYTOFLAG LENGTH <10 MICRONS	MF	10 ⁸ Cells/L	0.240	18	0.400	0000		- 7	1 1	1 % · ·					
THE PROPERTY OF THE PROPERTY O	WIF	10° Cells/L	63	0.049 19	0.130	0.308	0.230	0.226	0.250	0.172	0.152	0.023	0.169	0.361	0.094
Group Definitions:	CD	Centric Diaton		19	44	70	59	57	67	44	45	15	56	41	11

OF Dinoflagellate

MF Microflagellate

O Other

PD Pennate Diatom

4/8/96

1 of 1

W9502 A WW

Abundance of Prevalent Species (> 5% Total Count) in Surface Sample Whole Water Phytoplankton, March 20 - 22, 1995 (W9503)

			Nearfield	Stations
Species	Group	Parameter	1N10	1N16
CRYPTOMONAS SP#1 LENGTH <10 MICRONS To the control of the control	₫ MF∰	10° Cells/L	0.0683	0.0559
		%	46	72
UNID, CENTRIC DIATOM DIAM < 10 MICRONS	CD	10 ⁶ Cells/L	0.0095	
		**	6 5 5	
UNID. CHOANOFLAGELLATE	MF	10 ⁶ Cells/L	0.0102	marker 90, 1944 - 1, 120, 120 - 1
		%	7	Ì
UNID. MICRO-PHYTOFLAG LENGTH < 10 MICRONS	MF	10 ⁶ Cells/L	0.0402	0,0092
		3% L.,	≇ 27 ⊬	12
Group Definitions:	CD	Centric Diato	m	
•	DF	Dinoflagellate	•	
	MF	Microflagella	te	
•	0	Other		
	PD	Pennate Dia	tom	

1 of 1

Abundance of Prevalent Species (> 5% Total Count) in Surface Sample Whole Water Phytoplankton, April 3 - 10, 1995 (W9504)

			Harbor	Stations	and and	Coastal	Stations		Nearfiel	Station	18	Offshore Stations	Boundary Stations	Cape Cod B	ay Stations
Species	Group	Parameter	1F23	1F30	1F31	1F13	1F24	1F25	1N10	1N16	2N16	1F06	1F27	1F01	1F02
CHAETOCEROS SP#2 DIAM 10-30 MICRONS	CD	10 ⁶ Cells/L		l										0.707	0.155
		%	i .		i l									37	15
CRYPTOMONAS SP#1 LENGTH <10 MICRONS		10 ⁶ Cells/L							and the second s	100	0.026	0.031			1
	Jan in	₩. %				Abar.				745. m.l.s.	5.5	6	a indi		
CRYPTOMONAS SP#2 LENGTH >10 MICRONS	MF	10 ⁶ Cells/L	0.181	0.468	0.240	0.061	0.069	0,122	0.072	0.040	0.060	· 0.043	0.028	0.143	0.114
e e e e e e e e e e e e e e e e e e e		%	23	37	25	8	12	18	[11	11	12	8	7	7	11
FRAGILARIA SP#3 LENGTH >80 MICRONS	PD	10 ⁶ Cells/L					Jan 12 11	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	major in a	0.028					
· 10 24 1 24 6 4 6 25 1 1 1 25 25 25 25 25 25 25 25 25 25 25 25 25		* *	NA SPACE	N Ei	Fin	Thurst.			[T. 42]		87.13.	April 18 de la companya de la compan		1.	ļ
GYMNODINIUM SP.#1 5-20UM W 10-20UM L	DF	10 ⁶ Cells/L		1						0.040	0.057	0.046	0.041		
		%		was.	The Continues of		art arts.	ارزرا		10	11	8	[11	l	Į
UNID. CENTRIC DIATOM DIAM <10 MICRONS	CD.	10 ⁶ Cells/L		0.107		更多! 更为。			arryka.		Å.				
「漢字:「集計解字」「一字理論」「表示意思	FX 22 15	% /		8	8.		à .	12.						1	ļ
UNID, MICRO-PHYTOFLAG LENGTH <10 MICRONS	MF	10 ⁶ Cells/L	1	0.501	0.455	0.632	0.427	0.493		0.210	0.275	11	0.272	0.579	0.584
		%	60	39	48	83	76	66	68	55	55	71	71	30	55
Group Definitions:	CD	Centric Diato	m										`		
	DF	Dinoflagellate	3												
	MF	Microflagella	te												
	0	Other												•	
	PD	Pennate Dia	tom												

Abundance of Prevalent Species (> 5% Total Count) in Surface Sample Whole Water Phytoplankton, April 24 - 27, 1995 (W9505)

			Nearfield	Stations
Species	Group	Parameter	1N10	1N16
CHAETOCEROS SP#2 DIAM 10-30 MICRONS	CD	10 ⁶ Cells/L	0.4634	0.4025
A Tea School Commission of the		, %	22	25
CRYPTOMONAS SP#2 LENGTH >10 MICRONS	MF	10 ⁶ Cells/L	0.7379	0.2561
		%	36	16
GYMNODINIUM SP.#1 5-20UM W 10-20UM L	#DF∴	10 ⁶ Cells/L		
		 %		
UNID, CENTRIC DIATOM DIAM <10 MICRONS	CD	10 ⁶ Cells/L	0.1677	0.2165
•		%	8	14
UNID. CENTRIC DIATOM DIAM 10-30 MICRONS	ÇD [™]	10 ⁶ Cells/L	AND TAKE SECTION	
	W. Par	%		
UNID, MICRO-PHYTOFLAG LENGTH <10 MICRONS	MF	10 ⁶ Cells/L	0.4208	0.3842
, , , , , , , , , , , , , , , , , , ,		%	20	24
Group Definitions:	CD	Centric Diator	m	
•	DF	Dinoflagellate	1	
	MF	Microflagellat	e	
	0	Other		
·	PD	Pennate Diate	om	

Abundance of Prevalent Species (> 5% Total Count) in Surface Sample Whole Water Phytoplankton, May 15 - 17, 1995 (W9506)

			Nearfield	Stations
Species	Group	Parameter	1N10	1N16
CRYPTOMONAS SP#2 LENGTH >10 MICRONS	MF	10 ⁶ Cells/L		0.1719
GYMNODINIUM SP.#1.5-20UM W.10-20UM L	DF	% 10° Cells/L %	31.	22
UNID. MICRO-PHYTOFLAG LENGTH <10 MICRON	MF	10 ⁶ Cells/L %	0.5532 56	0.4527 58
Group Definitions:	CD	Centric Diato	m	
	DF	Dinoflagellate	•	
	MF	Microflagella	ie	
	0	Other		
	PD	Pennate Diat	om	

Abundance of Prevalent Species (> 5% Total Count) in Surface Sample Whole Water Phytoplankton, June 20 - 25, 1995 (W9507)

	Ī		Harbor	Stations	45.5	Coastal	Stations	4.1	Nearfiel	d Station		Offshore Stations	Boundary Stations	Cape Cod F	lay Stations
Species	Group	Parameter	2F23	1F30	1F31	1F13	1F24	1F25	1N10	1N16	3N16	1F06	1F27	1F01	1F02
Calycomonas Wulfii	0	10 ⁶ Cells/L	0.132												
Cryptomonas Sp#1 Length <10 Microns	MF	% 10 [®] Cells/L %				0.159 l 5	्रम् इस्याद्ध			1	t* ,			:	
Cryptomonas Sp#2 Length >10 Microns	MF	10 ⁶ Cells/L.			a spirit	0.213 7	0.564 6					0.351 16			
Fragilaria Sp#2 Length 30-60 Microns Rhizosolenia Fragilissima	PD CD	10 ⁸ Cells/L % 10 ⁸ Cells/L	0.132	(計2) (14) (14) (14)			in with			1,,					0.137 6
Unid. Centric Diatom Diam <10 Microns Unid. Micro-Phytoflag Length <10 Microns	CD MF	% 10 [®] Cells/L %	6 1.307	3.720 24 10.001	7,531 43 8,019		2.561 28 3.903	20	2.555 21 7.056	0.503 8 4.787	0.281 6 3.267	1.601	0.507	1.217	1,504
Onia, Micro-Phytoliag Length < 10 Microis	NIF	10 ⁶ Cells/L %	64	63	48	67	42	61	58	73	72	73	86	78	68
Unid, Micro-Phytoflag Length >10 Microns	MF	10 ⁶ Cells/L %		ANGLES V		14	1.265 14			1			<u> </u>		
Group Definitions:	CD	Centric Diaton	1												
	DF	Dinoflagellate													
e ·	MF	Microflagellate	•												
	0	Other													
<u> </u>	PD	Pennate Diato	m												

1 of 1 W9507 A WW

Abundance of Prevalent Species (> 5% Total Count) in Surface Sample Whole Water Phytoplankton, July 5 - 7, 1995 (W9508)

			→ Nearfield	Stations
Species	Group	Parameter	1N10	2N16
Rhizosolenia Fragilissima	CD	10 ⁶ Cells/L	3.1100	
·	\	%	15	
Unid: Centric Diatom Diam <10 Microris	CD	10 ⁸ Cells/L	2,7136	1.1098
		%	13	15
Unid. Micro-Phytoflag Length <10 Microns	MF	10 ⁶ Cells/L	11.3423	4.7930
	1	%	55	65
Group Definitions:	CD	Centric Diato	m	
	DF	Dinoflagellate)	
	MF	Microflagellat	le	
	0	Other		
	PD	Pennate Diat	om	

1 of 1

4/8/96

Abundance of Prevalent Species (> 5% Total Count) in Surface Sample Whole Water Phytoplankton, July 24 - 26, 1995 (W9509)

			, Nearfield	Stations
Species	Group	Parameter	1N10	3 N16
Cryptomonas Sp#2 Length >10 Microns	MF	10 ⁶ Cells/L	0.7623	
	Ì	%	8	•
Unid. Centric Diatom Diam <10 Microns	CD CD	10° Cells/L %	4.1466 45	
Unid. Micro-Phytoflag Length <10 Microns	MF	10 ⁶ Cells/L	3.2015	1.8396
		%	34	86
Group Definitions:	CD	Centric Diato	m	
	DF	Dinoflagellate	3	
	MF	Microflagella	le .	
	0	Other		
	PD	Pennate Diat	om	

APPENDIX F-2

ABUNDANCE OF PREVALENT SPECIES IN CHLOROPHYLL a MAXIMUM SAMPLE WHOLE WATER PHYTOPLANKTON FEBRUARY 6-14, 1995

Abundance of Prevalent Species (> 5% Total Count) in Chlorophyll a Maximum Sample Whole Water Phytoplankton, February 6 - 14, 1995 (W9501)

			Harbor	Station	6)	Coasta	Statio	18 7 %	Néarfie	ld Stati	one	Olfshore Stations	Boundary Stations	Cane Crut	Bay Stations
Species	Group		1F23	1F30	1F31	1F13	1F24		1N10			1F06	1F27	1F01	1F02
COSCINOSIRA POLYCHORDA	CD	10 ⁶ Cells/L													0.026
		%]										6
CRYPTOMONAS SP#1 LENGTH <10 MICRONS	ME	10 ⁶ Cells/L	0.029	นญา เกรเก็บ	- Militar Line dan			ildi	φ(Max	0.057	0.058		0.043	0.083	0.063
	. (%	 .		N 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Adam.				5	9		8	15	- 13
CRYPTOMONAS SP#2 LENGTH >10 MICRONS	MF	10 ⁸ Cells/L					0.032		1 11 12	a mediak tan	0.056		0.101	"	
		%	6		, , , , ,		6				9	7	19		
FRAGILARIA SP#2 LENGTH 30-60 MICRONS	PD	10 ⁶ Cells/L		, , , , , , , , , , , , , , , , , , ,	estator Nacional			0.035							
CVANIODINI IN OD HA C COLUMN AS COLUMN		%	3.15	A FLATER] .				6		777	457				
GYMNODINIUM SP.#1 5-20UM W 10-20UM L	DF	10 ⁶ Celis/L									0.037		0.052	ľ	
RHIZOSOLENIA DELICATULA	CD:	% 	er tertuir		ta tik.	tige at	95 ×			14 4 4 5	6		10		
		10 ⁶ Cells/L		75. 1 7.34 -				2.7			- 3		e .	· ·	0.029
THALASSIONEMA NITZSCHIOIDES	PD	% 10 ⁶ Cells/L	4 J. Hall	1.23-1.634	Sid on i	ilyja.	390.	n eyêr	1407 · 1	dittar.	(Apr	#421 S			6
	' "	10 Cells/L	1		}			,						0.028	0.044
THALASSIOSIRA GRAVIDA	CD	10° Cells/L	ก กลก	· 15*	5. 544 L		1,0	ergy 1	Ma ^{AA} AD			1 1 8 200		5	9
		/ W.	6					d ye	7			0.026		0.122	0.086
THALASSIOSIRA SP#2 DIAM >20 MICRONS	CD	10 ⁶ Ceils/L	m Ma.	TINL.	43 %	f 1:	ŕ	124	44.7-	. H. i.	4.1	5	,	22	18
		%													0.025
UNID. BLUE GREEN TRICHOME (CELL)	0	10 ⁶ Cells/L	43.3	0.030	通道		4 J			j: "				1	5
		%		5	1 10/10/1		364			ig."					
UNID. CHOANOFLAGELLATE	MF	10 ⁸ Cells/L		v er*1.	Tranta.	*1,754		'B.O	a deli	affilia i i a			1	0.037	
]	%		ļ										7	
UNID. MICRO-PHYTOFLAG LENGTH <10 MICRON	MF	10° Cells/L	0.285	0:389	0.395	0.556	0.334	0,343	0.279	0.519	0.294	0.290	0.203	0,145	0.095
		%	53	64	63	76		56	-66	48	46	58	38	27	20
UNID. MICRO-PHYTOFLAG LENGTH >10 MICRON	MF	10 ⁶ Cells/L		0.043	0.061				311 M., G.	7-201-F4	0.037		, -	-	
		%		7	10			:			6				
Group Definitions:	CD	Centric Diator	m		*****								1	<u> </u>	
	DF	Dinoflagellate	1												
	MF	Microflagellat	e												
	0	Other													
	PD	Pennate Diate	om						<u> </u>						

Abundance of Prevalent Species (> 5% Total Count) in Chlorophyll a Maximum Sample Whole Water Phytoplankton, February 28 - March 5, 1995 (W9502)

			Harbor	Station	3 () ()	Coasta	Station	18 🕯 🖫	Nearfle	ld Stati	ons 💮	Offshore Stations	Boundary Stations	Cana Cod I	Bay Stations
	Group	Parameter	1F23	1F30	1F31	1F13	1F24					1F06	1F27	1F01	1F02
ANABAENA SP.	0	10 ⁶ Cells/L					<u> </u>						0.030	11.01	1702
CRYPTOMONAS SP#1 LENGTH <10 MICRONS CRYPTOMONAS SP#2 LENGTH >10 MICRONS	MF.	% 10 ⁶ Cells/L % 10 ⁶ Cells/L			4011 11912 9173	0.020	10 (10 (10 (10 (10 (10 (10 (10 (10 (10 (0.023		0.058 19	0.017 6 0.021	11	0,065 8	0.070 8
FRAGILARIA SP#2 LENGTH 30-60 MICRONS GYMNODINIUM SP.#1 5-20UM W 10-20UM L	PD DF	% 10 ⁶ Cells/L % 10 ⁶ Cells/L			4.4 4.4	6			7	and II need The Control of the Control	0.020	7	0.022	0.094 11	0.475
GYMNODINIUM SP.#2 21-40UM W 21-50UM L MELOSIRA SP#1 DIAM <20 MICRONS	DF CD	% 10 ⁶ Cells/L % 10 ⁶ Cells/L %		in the second				0.203	Project Project		7 0.015 5		0.015		52
RHIZOSOLENIA DELICATULA THALASSIOSIRA SP#1 DIAM <20 MICRONS	GD CD	10 ⁶ Cells/L % 10 ⁶ Cells/L						41		0.046	0.020		5	0.061 7 0.065	0.070 8
THALASSIOSIRA SP#2 DIAM >20 MICRONS UNID. BLUE GREEN SINGLE SPHERE	CD· (April O	% 10 ⁶ Cells/L % 10 ⁶ Cells/L	0.045	0.047	0.019 6	0.022 7	0.044 12	1		8 0.054 10	0.022	0,018 5	0,015 5	8	
UNID. CENTRIC DIATOM DIAM <10 MICRONS UNID. CHOANOFLAGELLATE	CD MF	% 10 ⁶ Cells/L % 10 ⁵ Cells/L	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 0.043 5	(4) (4) (5)	0.020 , 6	•			0.028 5	7 0.017 6	0.016 5!			0.057
UNID. MICRO-PHYTOFLAG LENGTH <10 MICRONS	MF.	% 10 ⁵ Cells/L %	0,427 69	0,579 70	0.210 63	0,199 59	0.213 56	0.149 30	0,194 59	0,261 48	0.069 23	0.148 48	0.133 48	0.298 35	6 .:.
Group Definitions:	CD	Centric Diatorr	1												
	DF	Dinoflagellate													
	MF	Microflagellate	:												
	O PD	Other Pennate Diato	m	<u> </u>				·							

Abundance of Prevalent Species (> 5% Total Count) in Chlorophyll a Maximum Sample Whole Water Phytoplankton, March 20 - 22, 1995 (W9503)

			Nearfield	Stations
Species	Group	Parameter	1N10	1N16
CRYPTOMONAS SP#1 LENGTH <10 MICRONS	MF	10 ⁶ Cells/L	0.0338	0.0215
		%	50	49
GYMNODINIUM SP.#1 5-20UM W 10-20UM L	DF	10 ⁸ Cells/L		0.0038
The second secon	ng (si) La Yu dig	%		9
GYRODINIUM SP#1 5-20UM W 10-20UM L	DF	10 ⁸ Cells/L		0.0024
	İ	%		5
UNID. CENTRIC DIATOM DIAM <10 MICRONS	CD	10 ⁶ Cells/L %	0.0034 5	
UNID. CHOANOFLAGELLATE	MF	10 ⁶ Cells/L	0.0048	
·		%	7	
UNID. MICRO-PHYTOFLAG LENGTH < 10 MICRONS	MF	10 ⁶ Celis/L	0.0140	0.0123
		%	21	28
Group Definitions:	CD	Centric Diato	m	
	DF	Dinoflagellate	9	
	MF	Microflagella	te	
	0	Other		
	PD .	Pennate Dia	tom	

Abundance of Prevalent Species (> 5% Total Count) in Chlorophyll a Maximum Sample Whole Water Phytoplankton, April 3 - 10, 1995 (W9504)

			Harbor	Stations		Coasta	Stations	Magain	Nearfiel	d Statio	ns 🖟	Offshore Stations	Boundary Stations.	Cape God E	ay Stations
Species	Group	Parameter	1F23	1F30	1F31	1F13	1F24	1F25	1N10	1N16	2N16	1F06	1F27	1F01	1F02
CHAETOCEROS SP#2 DIAM 10-30 MICRONS	CD	10 ⁶ Celis/L												1.223	0.142
	1	%] •			1 1))	1	Ϊ.	51	12
CRYPTOMONAS SP#1 LENGTH <10 MICRONS	MF	10 ⁶ Cells/L		4-447	4 4 40.			F. 1. 1	0.076					7 S	
				in said			1 4 1 1 1	Lange of the	13	7	M-Ma		1	∥	
CRYPTOMONAS SP#2 LENGTH >10 MICRONS	MF	10 ⁵ Cells/L	0.108	0.246	0.254	0,055	0.035		0.077	0.034	0.032	0.075		0.201	0.102
·	- अक्ट	%	16	31 	24	11 #62005	8	16	13	9	7 1.5.550	13		8	9
GYMNODINIUM SP.#1 5-20UM W 10-20UM L	DF	10 ⁶ Cells/L			7 7 7	0.057	0.023	1.00	0.030	7 7 7	0.084	0.070	0.040		
	DF	% · · ·	al ,		Apriliti:		6	Dis#	5	12	18	40年(計 12	12	0.125	
KATODINIUM ROTUNDATUM	Ur	10 ⁵ Cells/L	į	ļ	ļ		ļ			ļ			1	0.125	
UNID. CENTRIC DIATOM DIAM <10 MICRONS	CD.	10 ⁹ Celis/L	STATES.	0.047	0.068		. داشس		Stři	artin,	24.0	en Portur			
		%		6	. 6∵	1 19								7.1	
UNID, MICRO-PHYTOFLAG LENGTH <10 MICRONS	MF	10 ⁸ Cells/L	0.474	Eugenia and	0,556	0.345	0.318	0.484	0.294	0.248	0.306	0,370	0.262	0.564	0.650
	1.	_%	68	42	52	67	74	65	50	65	64	63	75	24	56
Group Definitions:	CD	Centric Diato	m			·	-		-						
•	DF	Dinoflagellate	е												
	MF	Microflagella	le												
	0	Other													
	PD	Pennale Dia	lom		<u></u>										

Abundance of Prevalent Species (> 5% Total Count) in Chlorophyll a Maximum Sample Whole Water Phytoplankton, April 24 - 27, 1995 (W9505)

			. Nearfield	Stations .
Species	Group	Parameter	1N10	1N16
CHAETOCEROS SP#2 DIAM 10-30 MICRONS	CD	10 ⁶ Cells/L	0.0774	0.0488
		%	8 4	7
CRYPTOMONAS SP#2 LENGTH >10 MICRONS	MF	10 ⁶ Cells/L	0.1243	0.0427
		%	13	6
GYMNODINIUM SP:#1,5-20UM W 10-20UM L	DF	10 ⁶ Cells/L	0.1009	0.1860
		%	14	26
UNID. CENTRIC DIATOM DIAM <10 MICRONS	CD	10 ⁶ Cells/L	0.1079	0.0457
		%	11	6
UNID. CENTRIC DIATOM DIAM 10-30 MICRONS	CD	10 ⁶ Cells/L	0.0563	
	147 9197 17 17 17 1	%	6	
UNID. MICRO-PHYTOFLAG LENGTH <10 MICRONS		10 ⁶ Cells/L	0.3846	0.2973
		%	40	41
Group Definitions:	CD	Centric Diator	m	
·	DF	Dinoflagellate)	
	MF	Microflagellat	е	
	0	Other		
	PD	Pennate Diate	om	

Abundance of Prevalent Species (> 5% Total Count) in Chlorophyll a Maximum Sample Whole Water Phytoplankton, May 15 - 17, 1995 (W9506)

			, Nearfield	Stations
Species	Group	Parameter	1N10	1N16
CRYPTOMONAS SP#2 LENGTH >10 MICRONS	MF	10 ⁶ Cells/L	0.4955	0.0146
		%	43	5
GYMNODINIUM SP.#1 5-20UM W 10-20UM L	DF	10 ⁶ Cells/L		0.0444
	Histor	%		16
UNID. MICRO-PHYTOFLAG LENGTH <10 MICRON	MF	10 ⁶ Cells/L	0.5387	0.1929
	.	%	47	68
Group Definitions:	CD	Centric Diato	m	
	DF	Dinoflagellate	•	
	MF	Microflagella	e	
	0	Other		
	PD	Pennate Diat	om	

Abundance of Prevalent Species (> 5% Total Count) in Chlorophyll a Maximum Sample Whole Water Phytoplankton, June 20 - 25, 1995 (W9507)

			Harbor	Stations	1,196	Coastal	Station		Nearfiel	d Station	19 4	Offshore Stations	Boundary Stations 🐦	Cape Cod Ba	y Stations
Species	Group	Parameter	2F23	1F30_	1F31	1F13	1F24	1F25	1N10	1N16	3N16	1F06	1F27	1F01	1F02
Cryptomonas Sp#1 Length <10 Microns	MF	10 ⁶ Cells/L									0.224				
		%									5				
Cryptomonas Sp#2 Length > 10 Microns	MF	106 Cells/L				0.183	THE			0.232	0.335	0.118		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	7.
	TO MADE					. 6	LANGE CO.			7	8	7		* * .	
Katodinium Rotundatum	DF	10 ⁶ Cells/L	1	PARITHER STREET, COAT	· tanamin	0.402	3 - 523 165-255	i uni a a cario		, porte de la constante de la	22. 1041.81			1	
		%				13									
Unid. Centric Diatom Diam <10 Microns	CD	10° Cells/L	2.744	4.330	3,598		3,217	t Akg	1,890	10.20	排選	the State of the S	0.019	r. ura	4
	inegralija. Walionio		28	23	24		30		25	1 TWE			8		
Unid, Micro-Phytoflag Length <10 Microns	MF	10 ⁶ Cells/L	5,473	12.166		1.00 marine 1.	6,113	5.625	4.223	2.728	3.445	1.488	0.199	2.567	1.414
, -		%	57	65	65	64	58	77	56	82	81	81	79	78	76
Group Definitions:	CD	Centric Diaton	n						-						
•	DF	Dinoflagellate													
	MF	Microflagellate	1												
	0	Other													
·	PD	Pennate Diato	m												

Abundance of Prevalent Species (> 5% Total Count) in Chlorophyll a Maximum Sample Whole Water Phytoplankton, July 5 - 7, 1995 (W9508)

			, Nearfleid	Stations
Species	Group	Parameter	1N10	2N16
Rhizosolenia Fragilissima	CD	10 ⁶ Cells/L	2.8965	
		%	15	
Unid, Centric Diatom Diam <10 Microns	CD	10 ⁸ Cells/L	2.3782	
	\$3.PT.	%	₩≢.13 . ∵	
Unid. Micro-Phytoflag Length <10 Microns	MF	10 ⁶ Cells/L	10.9764	4.2808
		%	59	75
Group Definitions:	CD	Centric Diato	m	•
	DF	Dinoflagellate	•	
	MF	Microflagella	te	
	0	Other		
	PD	Pennate Diat	om	

Abundance of Prevalent Species (> 5% Total Count) in Chlorophyll a Maximum Sample Whole Water Phytoplankton, July 24 - 26, 1995 (W9509)

			Contract	Sations
Species	Group	Parameter	1N10	3N16
Cryptomonas Sp#2 Length >10 Microns	MF	10 ⁶ Cells/L	0.4574	
		%	6	
Linid : Centric Diatom Diam <10 Micronis	CD	10° Cells/L	1,8751	
		%	25	
Unid. Micro-Phytoflag Length <10 Microns	MF	10 ⁶ Cells/L	4.2686	4,3174
		%	57	92
Group Definitions:	CD	Centric Diator	η	
·	DF	Dinoflagellate		
	MF	Microflageliate	9	
	0	Other		
	PD .	Pennate Diate	om	

APPENDIX G-1

ABUNDANCE OF ALL IDENTIFIED TAXA IN SCREENED SAMPLES
COLLECTED NEAR THE SURFACE
FEBRUARY 6-14, 1995

Abundance of all identified taxa in screened samples collected near the surface February 6 - 14, 1995 (W9501)

	Harbor, \$	lations (4)	BANGARIA.	Coașt	l Stations	Attack to	e Nearfle	d Stations	30.144	Offshore Stations	Boundary Stations	Cape Cod Báy	Stations
_1	1F23A	1F30A	1F31A	1F13A	1F24A	1F25A	1N10A	1N16A	2N16A	1F06A	1F27A	1F01A	1F02A
Group													
OF						0.038							
OF				}	0.005	0.002		0.004		0.013	0.002	0.004	0.002
OF	1	}	1		0.002)	1		0.004		1	0.007
OF	Į.	[l i					0.008				0.006	
DF	ĺ		l i	•	0.002	0.002				0.004		Į	
DF	į	į	[į	[[t	l	
DF				0.002		1		1	0.002	0.009			ļ
OF						1					t		
DF	i				[0.113	•	1			0.058		0.134
DF	0.063	0.030	0.013	0.107	0.214	0.075	0.116	0.228	0.098	1	0.115	0.271	0.134
DF				1		0.038		1	0.196	1		ı	0.004
DF		ļ	•	1		0.038	ŀ					i	
DF	! .	Ì	1	1						1		j	
DF	1	1 .	1	ľ	ì			i	ì	ĭ	0.058	0.090	ì
DF			ŀ						0.098		0.004	H	
DF				l l			0.116			0.013			
DF	0.063		0.002		i	•		0.057					
'MF	1	Ì	1		ì	1		1	1]	1	0.134
MF	1	Ì		0,132		1	H	1		a	1	l l	•
MF	1			0.002	0.357] ,	1	Į.		0.017		ı	1
0	0.002	Į.	Į.	il .	Į.	1	Ŋ.	0.171	0.002	(0.288	0.090	0.011
l o						1							
0		1		Ĭ	l	1	ı					l l	ł
0			0.510				li .	2.570					
٥ ا	1	1	1	<u> </u>	\	I		·	ł	1	N		{
	Group OF OF OF OF OF OF OF OF OF O	Group OF OF OF OF OF OF OF OF OF O	Name	1F23A 1F30A 1F31A Group OF	1F23A	1F23A	1F23A	1F23A	1F23A	1F23A	Second	1F23A	1F23A

DF Dinoflagellate MF Microflagellate Other

		Mearfiel	d Stations at a
		1N10A	1N16A
Species	Group		
Ceratium Longipes	DF	0.006	0,006
Ceratium Massiliense	ÐF	i i	ĺ
Ceratium Sp.	DF		0,035
Gymnodinium Sp.#1 5-20Um W 10-20Um L	DF		
Gymnodinium Sp.#3 41-70Um W 51-70Um L	DF]]
Prorocentrum Micans	ÐF	0.002	1
Prorocentrum Minimum	DF	1	}
Protoperidinium Sp.#1 10-30W 10-40L	DF	1	\
Protoperidinium Sp.#2 31-75W 41-80L	DF	ļ	ļ
Eutreptia Sp.	MF	į	
Pyramimonas Sp.	MF]
Distephanus Speculum) 0	0.146	0.423
Unid. Blue Green Single Sphere	0	0.474	1
Group Definitions:			
` DF	Dinoflagel	late	
MF	Microflage	illate	
0	Other		•

Abundance of all identified taxa in screened samples collected near the surface February 28 - March 5, 1995 (W9502)

		19 Harb	or Stations		Coss	lai Station	36	Nead	ield Statio	ns	Offshore Stations	Boundary Stations	Cape Cod Bay	Stations
		1F23A	1F30A	1F31A	1F13A	1F24A	1F25A	1N10A	1N16A	2N16A	1F06A	1F27A	1F01A	1F02A
Species	Group													IFUZA
Ceralium Fusus	ΩF										0.002		 	0.002
Ceratium Lineatum	DF				i								ı	0.002
Ceratium Longipes	DF	l		0.002					İ			0.068	ı]
Ceralium Massiliense	DF		l						1				#	
Ceratium Tripos	DF								0.003	0.002			ı	
Dinophysis Sp.	DF				0.002					0.141		ł		
Diplopasiis Sp.	ÐF		}											
Gymnodinium Sp.#1 5-20Um W 10-20Um L	DF			0.340	0.425	l	0.136	0.056	1.093	0.986	0.656	0.002	0.700	26,424
Gymnodinium Sp.#2 21-40Um W 21-50Um L	DF	0.116	0.215	0.227	0.425	0.191	0.272	0.394	1.822	0,986	0.328	1	0.544	20.424
Gymnodinium Sp.#3 41-70Um W 51-70Um L	DF			0.002		0.096			1				0.577	
Prorocentrum Micans	DF		0.005	0.002	0.085	0.003		i	0.045	0.021	0.328	0.068	0.013	0.019
Prorocentrum Minimum	DF	0.002	ŀ	0.113	i		0.002	0.006	0.012			0.002	0.078	0.015
Protoperidinium Leonis	DF	1										5.552	J 0.076	
Protoperidinium Pellucidum	DF	1	ŀ			1		0.002						
Protoperidinium Sp.#1 10-30W 10-40L	DF	0.002	•					İ		0.002	0.002	0.068	0.003	0.002
Protoperidinium Sp.#2 31-75W 41-80L	DF]		0.002			0.136	0.113	0.009	0.002	0.002	0.005	0.003	0.317
Unid. Dinoflagellate	DF ·												0.003	0.317
Cryptomonas Sp#1 Length <10 Microns	MF	[l					ł	l		1			
Cryptomonas Sp#2 Length >10 Microns	MF					ŀ		İ	İ				1	
Eutreptia Lenowii	MF		İ					}	l		·			
Unid. Choanoflagellate	MF	0.116		0.113	0.425	1.626	0.136	0.113	l	0.282		0.136	0.156	0.106
Unid. Micro-Phytoflag Length >10 Microns	MF	•]			i	l			5.105	0.130	0.108
Distephanus Speculum	0		0.003		0.002	i		0.002	0,182	0.141	0.328		0.078	
Ebria Tripartita	1 0					l	0.136		l				0.070	ļ
Oscillatoria Cells #1 Diam <5Um	0	3.471]				ŀ	l
Group Definitions;		1						u	l		<u> </u>	<u> </u>	<u> </u>	<u></u>
DF	Dinoflagell	iate												
MF	Microflage	llate									•			
0	Other													

Abundance of all identified taxa in screened samples collected near the surface April 3 - 10, 1995 (W9504)

Species Ceratium Fusus Ceratium Lineatum Ceratium Longipes	Group DF DF	1F23A 0.001	1F30A	1F31A	1F13A	Stations 1F24A	1F25A	1N10A	eld Station		Offshore Stations		Cape Cod Ba	y Stations
Ceratium Fusus Ceratium Lineatum	DF	0.001									1F06A	A COT A		***************************************
Ceratium Linealum		0.001						******	INTOX	2N16A	IFOOA	1F27A	1F01A	1F02A
	DF			0,001		0.002		0.005			·	0.000		
Paratium Longipes				-,,		0,002		0.000	0.001			0.002	•	
	DF	0.003	0.004		0.010	0.018			0.031	0.146	0.046		i . i	
Ceratium Macroceros	DF				1 0.01.0	5.010	1		0.031	0.146	0.046	0.015	0.024	0.052
Ceratium Sp.	DF			ļ]		0,003	0.007		0,013	l .	j	j j	
Ceratium Tripos	DF	0.001					0,000	0.069		0.013				
Dinophysis Acuminata	DF	_,,,,					•	0.005	0.001		0.002			0.003
Dinophysis Norvegica	DF .						ł		0.001		0.002			
Dinophysis Sp.	DF									0.001		· ·		
Gonyaulax Spinifera	DF				1		į			0.001	0.061	ļ		
Symnodinium Sp.#1 5-20Um W 10-20Um L	DF					0.055				0.109	0.061			
Symnodinium Sp.#2 21-40Um W 21-50Um L	DF	0.049								0.103	i			
Kalodinium Rotundatum	DF	0.097	,		0.039						0.004			
Prorocentrum Balticum	DF		0.124							1	0.061 0.304		1 :	
rorocenirum Micens	DF				1			0,069			0.304		l i	
rorocentrum Minimum	DF			0.002			0.001	0,000	0.001					
Protoperidinium Depressum	DF								0.001		0.002			
Protoperidinium Pallidum	DF						i				0.002	-		
Protoperidinium Pyriforme	DF				0.001		I		0.004		0,061]	
Protoperidinium Sp.#1 10-30W 10-40L	DF	•						0.007	0.004		0,011			
Protoperidinium Sp.#2 31-75W 41-80L	DF	0.001			0.039	0.055	Ī	5,55,	0.001		0.002	0.094		
Dinobryon Sp.	MF		0.025				1		0.001		0.002	0.094	Į l	
Eutreptia Lanowii	MF						ł					0.094	{	
yramimonas Sp.	MF	0.049			ľ		i				ì		1	0.103
Jnid. Choanoflagellate	MF	0.049		0.073			0.126	0.480				0.234	1	0.207
Jnld. Micro-Phytoflag Length > 10 Microns	MF				ļ			-7.00			ł	0,234		0.774
Agmenellum Sp.	。				0.141			1						
Dictyocha Fibula	١٥١						1				1	,		
Distephanus Speculum	0	0.194	0.248	0.146	0.078	0,109	0.063	0.137	0.097	0.328	0.121	0.281	0.002	0.103
Gloeocystis Sp.	0		0.070	Ï				-7.14.	0.007	0.020	0.121	0.26;	0.119	0.207
Oscillatoria Sp. (Trichome)	。		0.248	ļ	ł									
Pediastrum Simplex	ا ہ		0.007				- 1	i			,	·	ł I	
Rhabdosphaera Longistylis	0	0.097				0.002						0.140		j
Scenedesmus Quadricauda	0		0.007				į					0.140	[[Ì
Scenedesmus Sp.	ō						į]		ţ	f l	Ì
Staurastrum Sp.	ō		0.002				1							
Unid. Blue Green Trichome (Cell)	0					ľ		[0.515		
Group Definitions:				·····		L				<u> </u>		0.010	<u>_</u> i	
DF D	Dinoflage	liate												
MF A	Vicroflage	eliale												
0 0	Other													İ

Abundance of all identified taxa in screened samples collected near the surface April 24 - April 27, 1995 (W9505)

) Nearfléid St	ations & Secretar
		1N10A	2N16A
Species	Group		
Ceratium Lineatum	DF		0.027
Ceratium Longipes	DF	0.100	0.699
Ceratium Sp.	DF	0.020	
Ceratium Tripos	DF		0.015
Dinophysis Norvegica	DF		0.009
Gymnodinium Sp.#2 21-40Um W 21-50Um L	DF		
Protoperidinium Pyriforme	DF		0.009
Protoperidinium Sp.#2 31-75W 41-80L	DF	0.004	0.063
Unid. Choanoflagellate	MF		
Distephanus Speculum	0_	2.673	4.139
Group Definitions:			
DF	Dinoflagel	llate	
MF	Microflage	ellate	
0	Other		

Abundance of all identified taxa in screened samples collected near the surface May 15 - 17, 1995 (W9506)

	100	. Nearfield	Stations :-
	l [1N10A	2N16A
Species	Group		
Ceratium Fusus	DF	0.002	0.004
Ceratium Lineatum	DF		0.024
Ceratium Longipes	DF	0.015	0.462
Ceratium Sp.	DF	0.002	
Ceratium Tripos	DF	0.002	0.002
Dinophysis Acuminata	DF		0.035
Dinophysis Norvegica	DF	0.013	0.112
Dinophysis Punctata	DF		0.002
Dinophysis Sp.	DF		
Gonyaulax Digitalis	DF		
Gymnodinium Sp.#3 41-70Um W 51-70Um L	DF		
Prorocentrum Balticum	DF		
Protoperidinium Depressum	DF		0.007
Protoperidinium Sp.#1 10-30W 10-40L	DF	0.007	0.004
Protoperidinium Sp.#2 31-75W 41-80L	DF	0.051	
ProtoperidInium Sp.#3 76-150W 81-150L	DF	0.002	
Unid. Choanoflagellate	MF		
Distephanus Speculum	0	0.051	0.002
Pseudopedinella Pyriforme	0		
Unid. Blue Green Trichome (Cell)		0.044	
Group Definitions:			
CD	Centric Dia	tom	
DF	Dinoflagella	ite	
MF	Microflagel		
0	Other		
PD	Pennate Di	atom	

Species Amylax Triacantha Gonyaulax Triacantha Ceratium Fusus	Group	2F23A	45004									Offshore Stations			
		21237	_1F30A	1F31A	1F13A	1F24A	1F25A	1N10A	1N16A	2N16A	3N16A	1F06A	Boundary Stations	Cape Cod Bay : 1F01A	1F02A
Jeratum Fusus	OF												0.032	NOIA.	IFUZA
	DF	0.019		0.003	0.016		0.004		0.016	ŀ	0.020	0.002	0.010	0.050	
Ceratium Lineatum	DF	0.004		1	0.005	0.005	0.011		0.013		0.005	-1442	0.010	0.050	0.019
Ceratium Longipes	DF	0.131	0.048	0.038	0.484	0.080	0.109	0.090	0.208		0.242	0.315	0.079	5.047	
Ceratium Macroceros	DF				0.044				0.085		0.016	4.010	0.079	0.217	İ
Ceratium Sp.	DF		!		0.002			0.003	0.002		0.002			i .	
Ceratium Tripos	DF	1	1								0.003	0.005	0.004		
Dinophysis Acuminate	DF	0.007		0.009	0.091	0.040	0.088	0.021	1		0.032	0.000	0.004	0.013	0.243
Dinophysis Norvagica	DF	0.074	0.288		0.033	0.911	0.049		0.005	· ·	0.038	0.055	0.036		0.029
Dinophysis Punctala	DF	0.002		0.038			1	0.009			0.003	0.001	0.036	0.001	0.007
Dinophysis Sp.	DF		! !						ļ	} .	0.000	0.001		0.003	l
Dipiopsalis Lenticula	DF		0.024												
Gonyaulax Digitalis	ÐF	0.002	1												
Gonyaulax Verior G. Diacaniha	DF										0.095			į.	
Gymnodinium Sp.#1 5-20Um W 10-20Um L	DF	0.241					0.213	0.182			0.093			ı	
Gymnodinium Sp.#2 21-40Um W 21-50Um L	ÐF		0.024	0.006	0.221			01102				:	0.032	i	0.053
Helerocepse Triquetra	ÐF								ŀ		:				
Katodinium Rotundatum	DF		1 1			İ			1,264			0.033			i
Miniscula Bipes = Protoperidinium Bipes	DF		! !						1.204			0.033	0.875		
Prorocentrum Balticum	DF		1 1												
Prorocentrum Micens	ÐF		1												
Protoperidinium Depressum	ÐF	0.005		0.003		0.005	0.004	0.003	١.		0.001	0.004	0.001		
Protoperidinium Paliidum	DF						0.004	0.003	'	i :	0.001	0.004		•	0.002
Protoperidinium Pyriforme	DF									!				0.001	
Protoperidinium Sp.#1 10-30W 10-40L	DF	0.002											0.001	0.003	į
Protoperidinium Sp.#2 31-75W 41-80L	DF			0,003			0.007				0.001	•		0.003	ĺ
Protoperidinium Sp.#3 76-150W 81-150L	DF						0.001			l I	0.001				0.002
Scrippsiella Trocholdea	DF			0.009					ŀ	•		!			
Euglena Sp.	MF	0.121	1	0.000			1	0.182	l			1		l	
Eutreplia Lanowii	MF		1					U. 102	ŀ					l .	
Eutreptia Sp.	MF		ŀ		1				ł					ł	}
Pyramimonas Sp.	MF	1.328	1.656	0.176							0.047				
Unid. Chosnoflageliste	MF		"""	0.170						1			0.227		
Unid. Micro-Phyloflag Length >10 Microns	MF	0.121							1						
Crucigenia Tetrapedia	0	·					1					'	0,324		
Distephanus Speculum	ō	•	!	0.006	0,111		0.011	0.364							1
Emillenia Huxleyi	ō		1	0.000	0,111		0.011	0.304	0.003	•		0.002	0.032	0.043	0.003
Micractinium Pusillum	o		1						!	1					
Oscillatoria Sp. (Trichome)	o		1			0.005								l	
Pediastrum Duplex V. Clathratum	o		!			0,000								Ì	
Pediastrum Duplex V. Gracilimum	ŏ		i l		·									1	ľ
Pediastrum Simplex	ő													1]
Rhabdosphaera Ciaviger	ő		1						1	;			0.015	i	i
Scenedesmus Quadricauda	o		1 1	į		0.000									
Scenedesmus Sp.	ő]			0.020			}						
Staurastrum Sp.	0								1]					
Unid. Blue Green Single Sphere	0								l					1	
Unid. Blue Green Trichome	Ö								l					1	0.316
Unid. Blue Green Trichome (Cell)	0	1				1								1	0.053
Group Definitions:		L	l	3.523	L			0.078	<u> </u>	<u> </u>				1	1
4/11/96 DF	Dinoflage	llate													

TBLSU19.XLS

MF

0

Microflagellate

Other

Abundance of all Identified taxa in screened samples collected near the surface July 5 - 7, 1995 (W9508)

		Nearfield Stations				
	[1N10A	2N16A			
Species	Group					
Ceratium Fusus	DF	0.007	0.021			
Ceratium Longipes	DF	0.101	0.111			
Ceratium Macroceros	DF		0.014			
Ceratium Sp.	DF		0.002			
Ceratium Tripos	DF					
Dinophysis Acuminata	DF	0.007				
Dinophysis Norvegica	DF	0.014	0.002			
Gymnodinium Sp.#1 5-20Um W 10-20Um L	DF		0.499			
Protoperidinium Depressum	DF					
Scrippslella Trocholdea	DF		0.125			
Euglena Sp.	MF					
Unid. Choanofiagellate	MF		0.249			
Group Definitions:	•					
DF	Dinoflagel	late				
MF	Microflage	ilale				
О	Other					

Abundance of all identified taxa in screened samples collected near the surface July 24 - 26, 1995 (W9509)

		Mearfield	Stations 💮 😘 🐧
		1N10A	3N16A
Species	Group		
Ceratium Fusus	DF	0.002	
Ceratium Longipes	DF	0.010	0.062
Ceratium Tripos	DF	0.003	0.004
Dinophysis Norvegica	DF		0.001
Dinophysis Punctata	DF	1	1
Diplopsalis Sp.	DF	0.275	
Gymnodinium Sp.#2 21-40Um W 21-50Um L	DF	0.004	
Gymnodinium Sp.#3 41-70Um W 51-70Um L	DF	0.005	
Heterocapsa Triquetra	DF	0.001	
Prorocentrum Rotundatum	DF	0.017	
Protoperidinium Depressum	DF	0.001	ì
Protoperidinium Sp.#2 31-75W 41-80L	DF	0.013	
Scrippsiella Trocholdea	DF	0.071	
Group Definitions:			
DF	Dinoflage	ellate	
MF	Microflag	ellate	
0	Other		

APPENDIX G-2

ABUNDANCE OF ALL IDENTIFIED TAXA IN SCREENED SAMPLES
NEAR THE CHLOROPHYLL MAXIMUM
FEBRUARY 6-14, 1995

Abundance of all identified taxa in screened samples collected near the Chlorophyll maximum February 6 - 14, 1995 (W9501)

) Sapiani		Coartel Stations			in in			Offshore Stauuris	Soundary Stations	Cape Cod Bay s	PAGE 1980-90000000000000000000000000000000000
	i .	1F23C	1F30C	1F31C	1F13C	1F24C	1F25C	1N10C	1N16C	2N16C	1F06C	1F27B	2	****
Species	Group								-		- 1005	IFZIB	1F01C	1F02C
Amphidinium Sp. Syn. Phalacroma Sp.	DF								<u> </u>					
Ceratium Fusus	DF]			0.002			0.001		[0,001	!	
Ceratium Lineatum	DF			1					0.002		0.004	0,001	0.003	0.002
Ceratium Longipes	DF								0.001		0,004	0.001	0.003	0.002
Ceratium Macroceros	DF		!				1					0.002	i	0.002
Ceratium Sp	DF			1 1						i		0.002		
Ceratium Tripes	DF		•			0.002	Ì		0.001			0.001		
Diplopsalis Lenticula	DF								0.22				0.003	
Gymnodinium Sp.#2 21-40Um W 21-50Um t.	ÐF								0.001				0.198	
Prorocentrum Micens	DF	0.315		0.048	0.969	0.353	0.211	0.061	0.265	0.077	0.059	0.058	0.400	
Prorocentrum Minimum	DF		0.077						0.007	0.003	0.258	0.056	0.198	0.105
Protoperidinium Brevipes	DF	i					İ		0.00	5.555	0.230		1	0.105
Protoperidinium Divergens	DF									1	0.004			
Protoperidinium Sp.#1 10-30W 10-40L	DF	i								ĺ	0,504		0.003	
Protoperidinium Sp.#2 31-75W 41-80L	DF	0.002							1	0.003		0.055	0.003	
Protoperidinium Sp.#3 78-150W 81-150L	DF									"""		0,055		
Unid. Dinoflagellate Cyst	DF			•										
Ochromonas Sp.	MF	i												
Unid. Choanoflageliste	MF	i	0.077					0.061						
Unid. Silicoflagellate	MF	1										0,168		
Distephanus Speculum	١o	0.158	0.004			0.283	0.005		0.133	0.077	İ	U. 100	0.007	
Ebria Tripartita	l o					0.002				1		ŀ	0.007	0.105
Oocystis Sp.	١٥		l	0.193		,]					
Oscillatoria Cells #1 Diam <5Um	0		1			1				İ				
Unid. Blue Green Trichome (Cell)	ا ہ	0.709												
Group Definitions:			<u></u>	1					L		II		ł	<u> </u>
DF	Dinoflagai	late												
MF	Microflage													
· o	Other	•												

4/16/96

Abundance of all identified taxa in screened samples collected near the Chlorophyll maximum February 28 - March 5, 1995 (W9502)

		No. How	or Station		Coas	al Station) - , ·	Nearf	eld Station	18 26	Offshore Stations	Boundary Stations	Cape Cod Bay S	ations
		1F23C	1F30C	1F31C	1F13C	1F24C	1F25C	1N10C	1N16C	2N16C	1F06C	1F27C	1F01C	1F02C
Species	Group													
Ceratium Fusus	DF						0.002	0.002		0.003	0.002		0.002	
Ceratium Lineatum	DF				0.135]	0.002		0.003	1		0.002	
Ceratium Longipes	DF					0.002	1	0.002		0.006	1		1	
Ceratium Massiliense	DF						i i		0.002					
Ceralium Tripos	DF						,	0.002	0.006	0.003	0.002	ļ	Ŋ :	
Dinophysis Sp.	DF							0.002					{	
Diplopsalis Sp.	DF						Į į	0.248		[<u>[</u>	
Gymnodinium Sp.#1 5-20Um W 10-20Um L	DF	0.294	0.228	0.007	1.614	0.437	0.026	0.165	1.803	1.225	0,202	0.103	8.248	22.211
Gymnodinium Sp.#2 21-40Um W 21-50Um L	DF	0.147	0.228	0.401	0.135	0.875	0.729	1.817	0.515	1.400	0.508		1.356	0.079
Gymnodinium Sp.#3 41-70Um W 51-70Um L	DF			,	0,53B		0,010		0.129	ì '			1	
Prorocentrum Micans	DF	•	0.002	0.004	0.012	0.146	0.012	0.008	0.030	0.009			0.011	0.003
Prorocentrum Minimum	DF	0.019	0.002		0.135	İ	0,002	1	0.006	ļ	0,046		Ų.	
Protoperidinium Leanis	DF				Į.	i	ļ	0.083	l	l			1	
Protoperidinium Pellucidum	DF	Į	Į	l	l	l	Į	İ	l	l				
Protoperidinium Sp.#1 10-30W 10-40L	DF		ŀ	0,002	0,404		0.002	0.002	0.129	0,175		ł	0.004	0.001
Protoperidinium Sp.#2 31-75W 41-80L	DF	ŀ	l	ł	0.003		0.005		ŀ	0,175	0,002	0,002		0.001
Unid, Dinoflagellate	DF.	1	1	ì	ħ	Ì	0.243	1	1	}	1	ľ	Ĭ	<u> </u>
Cryptomonas Sp#1 Length <10 Microns	MF		l		Ì		0,364		ļ	1				ł
Cryptomonas Sp#2 Length >10 Microns	MF	1	}	\	1	0.146	1	# 11	\	1	-	4	Ŋ.	}
Eutreptia Lanowii	MF	1	ļ		l			1		0.350]			i
Unid. Choanoflagellate	MF	0.588	l	Į.	2.287	0.146	0.607	0.496	Į	Į.	0.405		0.678	
Unid. Micro-Phytoflag Length >10 Microns	MF	ł	1		0.135		1	1	1		}			
Distephanus Speculum	0		1		0.009		0.002	0.083	0.129		0.304	0,005	0.113	0.079
Ebria Tripartita	0	1	1	1))	1	1	ì	1	B	1	1]
Oscillatoria Cells #1 Diam <5Um	0	<u> </u>	<u> </u>		<u></u>	<u> </u>	<u> </u>		L		<u> </u>	<u> </u>		
Group Definitions:				-										
DF	Dinoflage	liste												
MF	Microflage	ellat o												
0	Other													

4/11/96 1 of 1 TBLCH19.XLS

Abundance of all screened samples near the Chlorophyll maximum March 20 - 22, 1995 (W9503)

		See Nearfile	i Stations		
·		1N10C	1N16C		
Species	Group				
Ceratium Longipes	DF	0.087	0.001		
Ceralium Massiliense	DF	0.003			
Ceratium Sp.	DF	1			
Gymnodinium Sp.#1 5-20Um W 10-20Um L	DF	0.044	0.045		
Gymnodinium Sp.#3 41-70Um W 51-70Um L	DF		0.045		
Prorocentrum Micans	DF	0.004	0.001		
Prorocentrum Minimum	DF		0.045		
Protoperidinium Sp.#1 10-30W 10-40L	DF	0.044	0.001		
Protoperidinium Sp.#2 31-75W 41-80L	DF	0.044	0.045		
Eutreptia Sp.	MF		0.090		
Pyramimonas Sp.	MF	0.044			
Distephanus Speculum	0	0.175	· 0.090		
Unid. Blue Green Single Sphere	0	1.356			
Group Definitions:					
DF	Dinoflaget	ate			
MF	Microflage	ellate			
O	Other				

Abundance of all identified taxa in screened samples collected near the Chlorophyll maximum April 3 - 10, 1995 (W9504)

		Hart Care	or Station	Side Uni	Coastal Stations			Nearfield Stations			Offshore Stations	I de la contrata del contrata de la contrata del contrata de la contrata del contrata de la contrata de la contrata de la contrata del contrata de la contrata del la contrata del la contrata del la contrata del la contrata del la contrata del la contrata del la contrata del la contrata del la contrata del la contrata del la contrata del la contrata	1000	OALAR SIGN SIGN
·		1F23C	1F30C	1F31C	1F13C	1F24C	1F25C	1N10C	1N16C	2N16C		Boundary Stations		
Species	Group					11 2-5	11200	111100	14100	ZIVIBC	1F06C	1F27C	1F01C	1F02C
Ceratium Fusus	DF	0.001		0.001		0.002			0.003					
Ceratium Linealum .	DF				ţ	1.202	i		0.003				0.002	
Ceralium Longipes	OF	0.008	0.003	0.002	0.012	0.014	0.005	0.026	0.149	0.007	0.024			
Ceratium Macroceros	DF		,]	0,000	0.020	0.175	0.007	0.024	0.001	0.005	0.037
Ceratium Sp.	DF	0.001		0,004		1		0.004	ļ	0.002	0.067		0.109	
Ceratium Tripos	ÐF			0.002	İ	0.005		0.004		0.002	0.087	0.001	0,007	
Dinophysis Acuminata	DF	!			0.001	0.002			ĺ			0.001		
Dinophysis Norvegica	DF			ļ		****-	i l	1	0.003			0.001		
Dinophysis Sp.	DF								0.000					
Gonyaulax Spinifera	DF	,												
Gymnodinium Sp.#1 5-20Um W 10-20Um L	DF					0.104		0.265		0.134	0.334		0547	
Gymnodinium Sp.#2 21-40Um W 21-50Um L	DF					5.1.5	0.001	0.066	0.002	0.002	0.067		0.547	
Katodinium Rotundatum	DF			l	1		1 3,55,	0.066	0.002	0.002	0.007			
Prorocentrum Balticum .	OF			1	0.034	0.157		0.199		1				
Prorocentrum Micans	DF			Ì				5,,55	i					0.090
Prorocentrum Minimum	DF	1						0.002		0.004				
Protoperidinium Depressum	DF		1		1	1		0.002		0.004				
Protoperidinium Pallidum	DF		0.002								ł			
Protoperidinium Pyriforme	DF	1	0.002		0.034	0.002		0.009	j	1	•			
Protoperidinium Sp.#1 10-30W 10-40L	DF		0.002	0.002					0.149	1				
Protoperidinium Sp.#2 31-75W 41-80L	DF	0.001	ľ	·	į .	0.002	0.042		0.100	0.134	0.011	0.002	l	
Dinobryon Sp.	MF		ł		l	1			5.,,55		0.011	0.002		
Eutreptia Lanowii	MF								1		0.067		0.164	
Pyramimonas Sp.	MF]					1	0.066	1		0.557	0.035	0.164	
Unid. Choanoflagellate	MF	ļ	•	0.031		0.157	0.253	0.861	0.050	0.401		0.208	0.528	
Unid. Micro-Phytoflag Length >10 Microns	MF	1	ŀ						1	0.067		0.200	0.109	0.090
Agmeneilum Sp.	0						1	ļ					0.105	0.030
Dictyocha Fibula	0		i	ŀ	0.034		1	l		•				0.090
Distephanus Speculum	0	0.092	0.197	0.031	0.035	0.009	0.042	0.728	0.100	0,134	0.200 -	0.003	0.328	0.090
Gloeocystis Sp.	0		1										0.020	0.101
Oscillatoria Sp. (Trichome)	0		1	· ·				j					H I	
Pediastrum Simplex	0					1			1					1.085
Rhabdosphaera Longistylis	0					1	0.126	0.066	1	0.668		0.104		1.000
Scenedesmus Quadricauda	0	1	0,006			1		H	1				l	
Scenedesmus Sp.	0	0.006		0.003	H				ľ					
Staurastrum Sp.	\ o			t					1		Į.	Ä		
Unid. Blue Green Trichome (Cell)	0		1		Ā	l	0,379	H	1					
Group Definitions:					" -		-	<u> </u>			П			
DF	Dinoflage	sllate												

DF Dinoflagellate
MF Microflagellate
O Other

Abundance of all identified screened samples collected near the Chlorophyll maximum April 24 - April 27, 1995 (W9505)

		Nearfiled Stations				
	\	1N10C	2N16C			
Species	Group					
Ceratium Lineatum	DF					
Ceratium Longipes .	DF	0.009	0.011			
Ceratium Sp.	DF					
Ceratium Tripos	DF	\ \	0.001			
Dinophysis Norvegica	DF					
Gymnodinium Sp.#2 21-40Um W 21-50Um L	DF	l l	0.050			
Protoperidinium Pyriforme	DF	0.237				
Protoperidinium Sp.#2 31-75W 41-80L	DF					
Unid. Choanoflagellate	MF	1	0.050			
Distephanus Speculum	0	0.031	0.150			
Group Definitions:	-		<u></u>			
DF	Dinoflage	llate				
MF	Microflag	Microflagellate				
o .	Other					

Abundance of all identified taxa in screened samples collected near the Clorophyll maximum May 15 - 17, 1995 (W9506)

		Nearfiled Stations					
		1N10C	2N16C				
Species	Group						
Ceratium Fusus	DF	0.004					
Ceratium Lineatum	DF	0.006					
Ceratium Longipes	DF	0.233	0.022				
Ceratium Sp.	DF						
Ceratium Tripos	DF						
Dinophysis Acuminata	DF	0.064 ·					
Dinophysis Norvegica	DF	0.070	0.011				
Dinophysis Punctata	DF	0.064	0.004				
Dinophysis Sp.	DF		0.002				
Gonyaulax Digitalis	DF		0.002				
Gymnodinium Sp.#3 41-70Um W 51-70Um L	DF		0.002				
Prorocentrum Balticum	DF	0.064	0.062				
Protoperidinium Depressum	DF	0.004	0.009				
Protoperidinium Sp.#1 10-30W 10-40L	DF		0.007				
Protoperidinium Sp.#2 31-75W 41-80L	DF	0.064	0.009				
Protoperidinium Sp.#3 76-150W 81-150L	DF		0.011				
Unid. Choanoflagellate	MF	0.322					
Distephanus Speculum	. 0	0.004	0.062				
Pseudopedinella Pyriforme	0		0.062				
Unid. Blue Green Trichome (Cell)	0						
Group Definitions:							
DF .	Dinoflagel	late					
MF	Microflage	Microflagellate					
0	Olher						

pecles .	_ ا		e St embrie				************		Hiperi	Ja sin lan		Officia Siguicate	e de la compania del compania de la compania del compania de la compania del compania de la compania de la compania de la compania del compania de la compania de la compania de la compania del compania	CHARLES AND A	Maria Company
·	Group	2F23C	1F30C	1F31C	1F13C	1F24C	1F25C	1N10B	1N16C	2N16C	3N16C	1F06C	1F27G	1F01C	1F02C
	DF		i												11 020
Foreitum Fusus	OF	0.005	Į.			0.022	i	0.004	0.005		0.006	0.006	0.001	0.054	
Geralium Lineatum	DF	0.001			l	0.009		0.007			0.004	0.005	0.001	0.002	0.021
eraitum Longipes	DF	0.113	0.040	0.040	0.133	0.307	0.088	0.237	0.647		0.545	0.231	0.019		0.001
eratum Macroceros	DF				0.004			0.019	0.002		0.074	0.201	0.018	0.481	0.428
eratum Sp.	DF	l			ŀ .	.		0.004	-,,,,		0.0.7			0.002	
eralium Tripos	DF	0.002										0.004			0.001
inophysis Acuminata	DF		ĺ	0.011	0.340	0.423	0.092	0.081	0.003		0.004	0.001	0.001	0.026	
Nnophysis Norvegica	DF	0.112	0.180	0.021	2.867	0.683	0.072	0.074	0.128		0.004		0.007	1	0.048
Inophysis Punctata	DF	0.008	"""	0.042	0.008	V.V00	0.012	0.211	U. 126		0.019	0.673	0.008	0.176	0.027
inophysis Sp.	DF		ĺ	0.004	V.000	1		0.211		i		0.002		800.0	
ipiopsals Lenicula	DF	l	0.020	0.004										l .	
ionyaulax Digitalis	DF	1	V.010	,		\	1			·				5	\
ionysulex Verior G, Discenths	DF	1					1					0.001	i	l .	
hymnodinium Sp.#1 5-20Um W 10-20Um L	DF	0,610			0.400		l l								l
lymnodinkum Sp.#2 21-40Um W 21-50Um L	DF	"."			0.462		0.243		0.115		0.236			0.039	0.087
ieterocepse Triqueira	DF	0.073	ł	ļ	0.116	•							0.028	1	0.029
atodinium Rotundatum	DF	0.073	İ		l							,			1
Wriscult Bipes = Protoperklinkm Bipes	DF	ł			0.231						0.118			0.039	
rorocentrum Baticum	1	ļ	0.020												ŀ
Torocentrum Micana	DF		l											0.039	
roloperidinium Depressum	D₽	0.001	i												
•	DF	0.004	ĺ		0.006	0,018		0.004	0.007		0.016	0.032	0.002		
rotoperidinium Patidum	DF	1.	1	1	1	i '	1			· '	7.			1	ì
roloperidinium Pytiforme	DF	0.001		1				1	0.115			0.009		0.001	
troloperidinium Sp.#1 10-30W 10-40L	DF		0.040	1		:			0.115					J.331	
troloperidinium Sp.#2 31-75W 41-80L	DF	0,004	0.020	0.004	0.008	0.004	0.004	0.004	0.002		0.002		0.005	i	0.068
toloperidinium Sp.#3 76-150W 81-150L	D#		l	0.002			-								0,000
crippsielle Trocholdee	D₽		i	0.002											ŀ
uglena Sp.	MF	0.291													
ulreptis Lancuit	MF		1	0.128		0.541									
utropia Sp.	MF	1	l							1					
yramimonas 8p.	MF	0.437	1,380		Ē I				0.229		0.118			}	!
inid. Choenofiegeliete	MF	1	l	Į .	į						0.118			Į.	Į.
Inid, Micro-Phyloting Length > 10 Microns	MF	0.291										0,046			
audgeria Tetrapedia	0	2.330										0,040		0.156	İ
Vistephanus Speculum	0	0.073	0.020	0.128	0.231		0.024	0.011				0.040			
imitania Hudeyi	0	1			1		-,-4	-,				0,040		0.117	0.029
Horactinium Pusitum	٥	1			I						}			0.039	1
Scillatoria Sp. (Trichome)	0	1					l.								0.039
edastum Duplex V. Clettratum	o	1			ł										
edinstrum Duplex V. Gracilmum	١٠	1	l		ł]]		A		1	0.023
ediastrum Simplex	١٠	I		ł						l i		0.016			
thebdospheera Claviger	l ŏ	I	l]	1					l		İ			1
Cenedesmus Quadricaude		1	0.080	1	1	}	1				0.118			1	}
Scenedesmus Sp.	l ŏ		3.000	1	i	0.038	[·	1					Ì
Staurastrum Sp.			1	1	1	0.038									l
Inid. Blue Green Single Sphere	%			1			[· '	1					0.001
Inid. Blue Green Trichome	0			l			[i				0.018
Inid. Blue Green Trichome (Cell)	"		ŀ	l		·			'	[Ì	
roup Definitions;			L	<u> </u>		1	14.338	L	ــــــــــــــــــــــــــــــــــــــ	L	ليسيا			L	l
DF	Diagram and the											 			
MF	Dinoflegeliste														
MF	Microfiagellai	7													

Abundance of all identified taxa in screened samples collected near the Chlorophyll maximum July 5 - 7, 1995 (W9508)

	-	Nearfiled Stations
Species	Group	1N10B
Ceratium Fusus	DF	0.004
Ceratium Longipes	DF	0.128
Ceratlum Tripos	DF	0.002
Dinophysis Acuminata	DF	0.004
Dinophysis Norvegica	DF	0.147
Protoperklinium Depressum	DF	0.002
Euglena Sp.	MF	0,002
Group Definitions:		<u> </u>
DF	Dinoflage	illate
MF	Microflag	ellate
0	Other	

Abundance of all Identified taxa in screened samples collected near the Chlorophyll maximum July 24 - 26, 1995 (W9509)

		N.	earfied Stations
		1N10B	3N16C
Species	Group		
Ceratium Fusus	DF		0,002
Ceratium Longipes	DF	0.023	0.405
Ceratium Tripos	DF	0.006	0.005
Dinophysis Norvegica	DF	1	0.003
Dinophysis Punctata	DF	0.001	•
Dipiopsalis Sp.	DF	0.025	
Gymnodinium Sp.#2 21-40Um W 21-50Um L	DF	0.001	
Gymnodinium Sp.#3 41-70Um W 51-70Um L	DF	ļ	
Heterocapsa Triquetra	DF		
Prorocentrum Rotundatum	DF	ļ ļ	
Protoperidinium Depressum	DF	0.008	0.004
Protoperidinium Sp.#2 31-75W 41-80L	DF	0.003	
Scrippsiella Trochoidea	DF		0.001
Group Definitions:			
DF	Dinoflage	ellate	
MF	Microflag	jeliate	
0	Other		

APPENDIX H

ZOOPLANKTON SPECIES DATA (IND/M³) W9501-W9509

			Life		1.					<u> </u>	S	tation Ca	st				
Event	Species	[Stage	Group	1F01Z	1F02Z	1F06Z	1F13Z	1F23Z	1F24Z	1F25Z	1F27Z	1F30Z	1F31Z	1N10Z	1N16Z 2F23Z	2N16Z 3N16Z
W9501	ACARTIA HUDSONICA		С.	С				100					24				
W9501	ACARTIA HUDSONICA		F	С	1			19	34				36		:		
W9501	ACARTIA HUDSONICA		M	С	ļ				17			19.	36				
W9501	BIVALVIA SPP.		Ļ	0	İ		24	\$ 4 m		105	40	lara:		Marie 1	22		
W9501	BRYOZOA SPP.		-	0		20							:			10.00	
W9501	CALANUS FINMARCHICUS	1	С	C.	1	[]						26					
W9501	CALANUS FINMARCHICUS		F	C								26				14454	
W9501	CENTROPAGES TYPICUS	i	С	С	l	400	73 ·						!			44	55
W9501	CENTROPAGES TYPICUS		F	C	ŀ	80				35		26					
W9501	CENTROPAGES TYPICUS		М	С		7:44	24					heden i	5				18
W9501	CHAETOGNATHIA SPP.		-	0					17		20					撒汉的	
W9501	CIRRIPEDE SPP.	- 1	N	В	64		219	493	122	279	360	PA PE	1477	E. Say	944	22	55
W9501	COPEPOD SPP.		-	C			24	76		35	560				88		
W9501	COPEPOD SPP.	- 1	С	C	64		24			663			1				18
W9501	COPEPOD SPP.	1	N) c	2675	3140	4750	3908	3238	7332	3880	6257	2131		2679	2836	6544
W9501	EURYTEMORA HERDMANI		M	С		i di					40		:				
W9501	GASTROPODA;MOLLUSCA		Ĺ	0	1	120					20	51				87	37
W9501	HARPACTICOIDA SPP.		-	С	16		49	19		70		반하님	36		44	Part In	
W9501	MICROSETELLA NORVEGICA	- 1	-	С	193	20	24	76	244	314	60	51	61		527	131	92
W9501	MICROSETELLA NORVEGICA		F	С	-			38									
W9501	MICROSETELLA NORVEGICA		M	С				19		A sail		Art but it					
W9501	NEMATODA SPP.	- 1	-	0		and I			17				:			<u>4.174</u> 1	ka saira
W9501	OIKOPLEURA DIOICA	1	-	0	177	180	1632	360	209	1222	160	129	85	l for the	263	589	533
W9501	OITHONA ATLANTICA	ŀ	-	C	l		73								;		
W9501	OITHONA SIMILIS	CLAUS	С	C	1048	860	1949	778	400	3177	520	1596	448		1427	611	1213
W9501	OITHONA SIMILIS	CLAUS	F	С	548	300	390	360	226	489	140	386	85		483	175	129
W9501	OITHONA SIMILIS	CLAUS	M	С	İ	41年1月			34	in e		26	109		44	Page 1	NETERINA
W9501	PARACALANUS PARVUS	ł	С	C	ļ			Bridge			120		•			3343	
W9501	PLATYHELMINTHES:TURBELLARIA		-	0	l			ht.		le, va	20						
W9501	POLYCHAETE SPP.	- 1	Ĺ	0	113	60	24	360	313	594	760		182		615	502	423
W9501	POLYCHAETE SPP.	l	T	0	16			228	70	医甲烷烷	200		133		88	65	18
W9501	PSEUDOCALANUS NEWMANI		С	C	790	100	24	493	122	314	60	103	182	hini	461	349	147
W9501	PSEUDOCALANUS NEWMANI		F	С	226	60	24	38		35	100	26	61		22	65	37
W9501	PSEUDOCALANUS NEWMANI		М	С	16	40	24	19		y. Tai		Link'i		ler i			
W9501	TEMORA LONGICORNIS		С	С	32											经 运用	DINELAN
W9501	TEMORA LONGICORNIS		F	С	16					35		lën d					10-12-16-18
W9501	TEMORA LONGICORNIS		М	С	16	MAG		[agg]	•	r Ka						집생활	
W9501	TORTANUS DISCAUDATUS		С	С					:								18
W9501	TORTANUS DISCAUDATUS	- 1	M	C	Į.											長少質	18

			Life	Ĭ <u> </u>						·	s	tation Ca	st						
Event	Species		Stage	Group	1F01Z	1F02Z	1F06Z	1F13Z	1F23Z	1F24Z	1F25Z	1F27Z	1F30Z	1F31Z	1N10Z	1N16Z	2F23Z	2N16Z	3N16Z
W9501	UNIDENTIFIED LARVAE		L	0	161		24	38		140	-		48		66			312	0,1,02
W9502	ACARTIA HUDSONICA		С	c	103				90				85	fa Pr	-			F. Miles	
W9502	ACARTIA HUDSONICA		F	l c	205				107			834	355	27				接出。	
W9502	ACARTIA HUDSONICA		M	С						42			70	H 77					
W9502	BIVALVIA SPP.		L	0	51	41	19		18					t Nati	28			production in	
W9502	CALANUS FINMARCHICUS	}	С	С	51	81	564	825	143	211	151	377	31	896	809	217		264	
W9502	CALANUS FINMARCHICUS		F	С		‡ * 4. ±.		26						54					
W9502	CALANUS FINMARCHICUS		М	С		41		26											
W9502	CENTROPAGES TYPICUS	ł	С	C			155	103						Hali.	84	72		22	5,450
W9502	CENTROPAGES TYPICUS		F	c			78	26										22	r (z.j.j.)
W9502	CENTROPAGES TYPICUS		м	c		i 1.75	39	5	I				8		28	36			april
W9502	CIRRIPEDE SPP.		-	В		计具点	19	1.5-21				i sa sat							
W9502	CIRRIPEDE SPP.		N	В	820	162	175	2293	1397	1644	1045	24	1205	2660	2984	615		176	
W9502 [*]	COPEPOD SPP.	Į	С	[. c	51		19	26	36				15	27	112	36		gar interpreta En la companya	
W9502	COPEPOD SPP.		N	С	10660	4944	7132	8554	3545	5270	1842	5771	1097	2361	6357	6225		3083	Total (C
W9502	ECHINODERM PLUTEI		-	0	51	81	39	77			27	47		27	195	977		352	30 S. S.
W9502	EURYTEMORA HERDMANI		F	C									15						
W9502	EURYTEMORA HERDMANI		М	C					-				23						
W9502	FISH SPP.		-	0		100						FE 13.1	8						
W9502	GASTROPODA;MOLLUSCA		L	0	154	41	97	309	18	126	206	94		109	418	109		132	
W9502	HARPACTICOIDA SPP.		-	c		lant.	19		36	42			46			36			1-1-2
W9502	MICROSETELLA NORVEGICA		-	С	154	162	136	180	36	84	27	24	23	109					
W9502	NEMATODA SPP.	<u> </u>	-	0	1				18										
W9502	OIKOPLEURA DIOICA		-	0	410	608	797	773	125	675	302	188	15	136	1311	1122		1189	
W9502	OITHONA ATLANTICA		-	С		41		i ya .		1. 1	14							22	
W9502	OITHONA ATLANTICA		С	C								Tage 1		1				22	
W9502	OITHONA ATLANTICA		F	С					18		14								
W9502	OITHONA SIMILIS	CLAUS	-	C	51	405	136				41		15	27		36		22	
W9502	OITHONA SIMILIS	CLAUS	С	С	564	1013	2176	3015	716	970	660	966	162	1086	1701	1592		1035	
W9502	OITHONA SIMILIS	CLAUS	F	С	564	284	214	593	125	211	234	306	62	380	195	145		220	
W9502	OITHONA SIMILIS	CLAUS	M	[c	154	81	155	103	36	211		71	8	109	84			22	400
W9502	PARACALANUS PARVUS		М] c			:					Min				36			
W9502	POLYCHAETE SPP.		-	0	51						:	JÆN.				120			
W9502	POLYCHAETE SPP.		L	0	820	446	525	361	537	1223	385	71	46	679	586	181		198	
W9502	POLYCHAETE SPP.		Т	0	564	81	97	-52	304	42	41	tatru	54	353	139	109			
W9502	PSEUDOCALANUS NEWMANI		С	c	1025	1054	466	309	161	211	55	165	131	543	56	36		66	Strain s
W9502	PSEUDOCALANUS NEWMANI		F	C	308	324	97	52	36			Kara	15	190	84	36		22	Lee of
W9502	PSEUDOCALANUS NEWMANI		М	c		243						1-13	15	27		1 a 712 .		22	an e e e e e e e e e e e e e e e e e e e
W9502	TEMORA LONGICORNIS		С	С	51	A 40 %		26						54					

			Life					·			<u> </u>	Station Cas	st						
Event	Species	ł	Stage	Group	1F01Z	1F02Z	1F06Z	1F13Z	1F23Z	1F24Z	1F25Z	1F27Z		1F31Z	1N10Z	1N16Z	2F23Z	2N16Z	3N16Z
W9502	TEMORA LONGICORNIS		F	С	51	- 1	_		18					ACCUMPANTA		1, 71,		7 211102	O, E, IOZ.
W9502	TEMORA LONGICORNIS		M	C									15	A. 11 1)		
W9502	TORTANUS DISCAUDATUS	İ	М	c				4-4-1	18				15	27					
W9502	UNIDENTIFIED LARVAE		L	0	410	81	78	77	72	84		24	8			1 - 1		22	
W9503	ACARTIA HUDSONICA	1	C	l c		抗肾压力		transfer in the contract of th					•		46		:		
W9503	BIVALVIA SPP.	- 1	L	٥ ا	l										91		:		
W9503	CALANUS FINMARCHICUS		С	C	ļ										777	2967	:		
W9503	CALANUS FINMARCHICUS	1	F	C	Ì			Parts.								52		Daniel (
W9503	CENTROPAGES TYPICUS		С	l c		1 2 4 4								Day of		208			
W9503	CENTROPAGES TYPICUS	ļ	F	l c												52		KVK	
W9503	CENTROPAGES TYPICUS	Ī	М	l c		The Part		1. 1 M.							46	(WE)			4411
W9503	CIRRIPEDE SPP.		N	В											3109	208			
W9503	CIRRIPEDE SPP.		Υ	В				Later		hu di		[wakan]			46	52		ř.	
W9503	COPEPOD SPP.	- 1	С	l c	1			117 11. 1				控制 悄			40	156			
W9503	COPEPOD SPP.	1	N	C	1		:	441.3							5531	10515			
W9503	ECHINODERM PLUTEI		-	0				R La							46	52	:		
W9503	GASTROPODA;MOLLUSCA	i	L	0										l part	46	825	:		
W9503	HARPACTICOIDA SPP.		-	C											46	VLO,		2000	
W9503	METRIDIA LUCENS		М	C								and North			46				
W9503	OIKOPLEURA DIOICA		- '	1 0				In Hall						i yaşi	823	1614			
W9503	OITHONA SIMILIS	CLAUS		l c		Harriage Control									46	52			
W9503	OITHONA SIMILIS	CLAUS	С	l c	1					koj si		481.54			1691	2707		M at	
W9503	OITHONA SIMILIS	CLAUS	F	l c	l	1000				V 7 (2)		Property.		Little 1	183	208			
W9503	OITHONA SIMILIS	CLAUS	M	C											46	312			
W9503	POLYCHAETE SPP.		L	١٥									-		183	52			
W9503	POLYCHAETE SPP.		Т	0								Irian-l			183	104			
W9503	PSEUDOCALANUS NEWMANI		C	l c						-					229	260			
W9503	PSEUDOCALANUS NEWMANI		F	l c		Bally a	٠.					Madel		Line 1 14	137	52			
W9503	PSEUDOCALANUS NEWMANI		M	l c				1000		<u>Derivi</u>		M MA		\$	137	104			
W9503	UNIDENTIFIED LARVAE		L.	١٠										No si ei	46	104			
W9504	ACARTIA HUDSONICA		c	C	55			-30	14		30		134	176	40				and en de Linear (1911)
W9504	ACARTIA HUDSONICA	1	F	C	"				14		00		19	130					
W9504	ACARTIA HUDSONICA	i	М	l č		MARI		[H: H]	,7		30	国歌诗	38						
W9504	BIVALVIA SPP.		L	١٥	304	480	227	151	14		241	1023	36 77	132	245				HT.A
W9504	CALANUS FINMARCHICUS		C		994	2280	1285	1448	335	3402	662	1023 585	403	经银矿工作业员	315	45		250	
W9504	CALANUS FINMARCHICUS		F	٦	334	EEOU	1200	1740		94VZ	002	965	403	132	1828	1310		849	
W9504	CALANUS FINMARCHICUS		M	C		80	38		14 14	81			38	###					
W9504	CENTROPAGES TYPICUS		C	C	166	40	302	121	14	486		214		Bay II	400			150	
W9504	CENTROPAGES TYPICUS	ľ	F	ا د	,,,,	70	38	25 (4 1) 26 (41)		400		341	19	44	189 63	361			机燃料

		Life		<u> </u>						s	tation Ca	st						
Event	Species	Stage	Group	1F01Z	1F02Z	1F06Z	1F13Z	1F23Z	1F24Z	1F25Z	1F27Z	1F30Z	1F31Z	1N10Z	1N16Z	2F23Z	2N16Z	3N16Z
W9504	CENTROPAGES TYPICUS	М	С						81						45		7 7 7 7 7 7	
W9504	CIRRIPEDE SPP.	N	В	193	640	1512	694	196	1134	693	1218	230	528	630	226		699	
W9504	CIRRIPEDE SPP.	Y	В	28							49	19	14 T		45		1000	
W9504	COPEPOD SPP.	-	С			76	1000			30		:		:			50	
W9504	COPEPOD SPP.	С	C	55	s Markan	76	1	14			49	19	44	:			50	
W9504	COPEPOD SPP.	N	l c	5052	7760	6880	2836	1216	7775	3643	5944	3143	3737	9896	8041		6541	
W9504	CRUSTACEA:UNIDED CRUSTACEAN	-	0			38			81	-			Early	!				
W9504	DECAPODA SPP.	-	0					1				i	ki k	63		:		
W9504	ECHINODERM PLUTEI	-	0	28	2.74							: :	ling in	-	45		50	Jay'iy
W9504	EURYTEMORA HERDMANI	C	c	ļ	Maria	:		252		783	排程的	134	528	126			* *	
W9504	EURYTEMORA HERDMANI	M	C			:		14			h may	19	44					
W9504	GASTROPODA;MOLLUSCA	L	0	55	680	113	121	56	405	181	438	173	44	1198	361		549	
W9504	HARPACTICOIDA SPP.	-	c		- L			154		60		192	132	63			50	and Sign
W9504	METRIDIA LUCENS	-	C											126			N. F. W	
W9504	MICROSETELLA NORVEGICA	-	C	ł	40	38		28	243	30	97	38		378			250	
W9504	MICROSETELLA NORVEGICA	M	C	1				14	-1	-	ne e períodica. Na		N. Staff					
W9504	OIKOPLEURA DIOICA	-	0		80	756	30		486	120	828			630	632		499	
W9504	OITHONA ATLANTICA	С	C						1296		199 d	f	176	504				
W9504	OITHONA ATLANTICA	F	c						81	60		į.	396		45			
W9504	OITHONA ATLANTICA	M	c					:					88				Laja	
W9504	OITHONA SIMILIS CLAU	s -	c	276	40		and getting		1		146	19		189	136		100	
W9504	OITHONA SIMILIS CLAU	s c	С	1104	1960	3213	1388	783	5831	1174	4482	997	1671	5799	5466		3445	
W9504	OITHONA SIMILIS CLAU	S F	C	359	480	491	211	168	729	331	731	173	176	1450	452		399	
W9504	OITHONA SIMILIS CLAU	s M	c	55	240	265	60	98		60	341	134		126	138		50	
W9504	POLYCHAETE SPP.	L	0		120	38	60	783	162	1265	244	690	2242	126				N. Asid
W9504	POLYCHAETE SPP.	Т	0	28	80	38	60	126		211	97	134	132	63			100	
W9504	PSEUDOCALANUS NEWMANI	С	C	773	680	1550	422	293	1539	933	1949	345	352	1324	587		1698	
W9504	PSEUDOCALANUS NEWMANI	F	С	28	120	38	30	14	81	120				252	90		100	
W9504	PSEUDOCALANUS NEWMANI	М	C	28		. 38	30		324	60	49	19			45			A Heri-
W9504	TEMORA LONGICORNIS	С	C	28	40		151	14		90	195	96	88	63	226		100	
W9504	TEMORA LONGICORNIS	M	С						11.44.1		49	:	2300				Mark	
W9504	UNIDENTIFIED LARVAE	L	0	28	40	76	60	56	648	30	97	58	132	189			50	
W9505	ACARTIA HUDSONICA	c	С	1					-								58	
W9505	BIVALVIA SPP.	L	0											342			467	
W9505	CALANUS FINMARCHICUS	С	C					:					iş keşir.	958			758	
W9505	CENTROPAGES TYPICUS	С	c					-				:		68			le Etc	
W9505	CIRRIPEDE SPP.	N	В		护护机							:		2259			292	
W9505	CIRRIPEDE SPP.	Y	В				: #[:].	:						68			117	
W9505	COPEPOD SPP.	С	c											68			58	

		Llfe	1							S	tation Cas	st					
Event	Species	Stage	Group	1F01Z	1F02Z	1F06Z	1F13Z	1F23Z	1F24Z	1F25Z			1N10Z	1N16Z	2F23Z	2N16Z	3N16Z
W9505	COPEPOD SPP.	N	<u> </u>	1				1	7 (8 4)		, !!	11 GOZ 11 G 1	9514	114102	21 232	4667	SINIBZ
W9505	CRUSTACEA:UNIDED CRUSTACEAN	-	١٠	1				:					68		:	#4	
W9505	ECHINODERM PLUTEI	_	0	۱.				21				\$		Application		117	Mag P
W9505	EVADNE SPP.	_	١٥]				1					137 68			58	
W9505	GASTROPODA;MOLLUSCA	L	١٠				1	1				I Post Control of the	13			0600	
W9505	MICROSETELLA NORVEGICA	l -	lč	Į	lai in			14 81					684			2392	
W9505	OIKOPLEURA DIOICA	-	0	ļ	12.5			1			F. Sel	9.A.S	205			292	
W9505	OITHONA ATLANTICA	C	C	i	1 -1			i	1. [1]		Egland	Al. 1	2190	The species of the second		350	
W9505	OITHONA SIMILIS CLAUS		C										205		1	467	
W9505	OITHONA SIMILIS CLAUS		C	1					1145				68			350	
W9505	OITHONA SIMILIS CLAUS	1	C	1			Gara.		114 14			12.3	5818			3383	pel XI
W9505	OITHONA SIMILIS CLAUS	1	C						din i		HEH		890			875	
W9505	POLYCHAETE SPP.		0		Park A								205			117	
W9505	POLYCHAETE SPP.	l	ا آ										68				
W9505	POLYCHAETE SPP.	ΙŢ	۱ . ·								beliefe	+11.	68			.117	
W9505	PSEUDOCALANUS NEWMANI	Ċ	C	ŀ	riski kali K			:	3				137			200	
W9505	PSEUDOCALANUS NEWMANI	F	l c	}								100	1711			992	
W9505	TEMORA LONGICORNIS	c	l c	1									137 548				
W9505	TEMORA LONGICORNIS	F	l c	İ			1. 20.01	÷.								오네란	
W9505	UNIDENTIFIED LARVAE	Ĺ	٥					:					68 68				
W9506	ACARTIA HUDSONICA	c	C	1				÷.	医透透				68			58	
W9506	ACARTIA HUDSONICA	F	C	l				4.					269			84	
W9506	ACARTIA HUDSONICA	l M	ادًا	Į									405	唐书山		84	
W9506	BIVALVIA SPP.	l "i	0				事 1944	,					135	据法庭			
W9506	CALANUS FINMARCHICUS	l c	C		h Mehr								1480			9036	
W9506	CENTROPAGES TYPICUS	Č	C										1480		:	1689	
W9506	CENTROPAGES TYPICUS	F	C										135			253	
W9506	CENTROPAGES TYPICUS	М	C				\$1					ile (all)	135	La tra		84	diby
W9506	CIRRIPEDE SPP.	N N	B	i				ş.					135			44	ar Bihi
W9506	CIRRIPEDE SPP.	Ÿ	8		-, 11. [1]			i.					404			591	
W9506	COPEPOD SPP.	<u> </u>	l č				£ 1	:	i an				538			84	
W9506	COPEPOD SPP.	l N	l č				1 19	į	100			1	40004		-	84	JUL 19
W9506	CRUSTACEA:UNIDED CRUSTACEAN	l "	l ő		Ryst		表别 (DET)	Ė.	. Harri		# 1.4	18-11	16684			9289	
W9506	ECHINODERM PLUTEI		l ő		J. San y		¥	F:				Est.		Legislan		760	
W9506	EURYTEMORA HERDMANI	c	l č				u Grundska	i i					135			1013	
W9506	EURYTEMORA HERDMANI	F	l c	1				Ì;				Star Bud	1884	Mark (Tale of the second	
W9506	EURYTEMORA HERDMANI	M	l č	1				T Y					807				
W9506	EVADNE SPP.	- 1VI	١٥					į.				[UK:5]	1211	y Yan			
W9506	GASTROPODA;MOLLUSCA	, i	ŏ				lmad	1			1000		538 807			169 84	Test.

	<u> </u>	Life	1	1						Station Ca	et		·		_		
Event	Species	Stage	Group	1F01Z	1F02Z	1F06Z	1F13Z	1F23Z 1F24Z	1F25Z			1F31Z	1N10Z	1N16Z	2F23Z	2N16Z	- ONICY
W9506	HARPACTICOIDA SPP.	-	С		4				., 202	Jan 19	1,002	11.012	404	MAIOZ	21-232	201.102	3N16Z
W9506	MICROSETELLA NORVEGICA	-	c			į					1		135			****	
W9506	OIKOPLEURA DIOICA] -	0			i			:		j		538			422	
W9506	OITHONA ATLANTICA	l c	С						:	Hydie.		1	330			929	
W9506	OITHONA ATLANTICA	F	С		1.				:	100		\$424 Y	!			84 84	, du të
W9506	OITHONA SIMILIS CLAUS	s c	С		1 1/1 1/1	1	1			***	į.		4978	1 1. 1		A TOTAL STREET	
W9506	OITHONA SIMILIS CLAUS	S F	С		1 1	-							1749			6502 1436	
W9506	OITHONA SIMILIS CLAUS	s. м	С		4 × 5 * **			•		1470			1076			591	
W9506	PODON SPP.	-	0		i				· :				269	:		951	
W9506	POLYCHAETE SPP.	L	0			i i			:	i Harri	1	it was	1076		-	169	3000
W9506	POLYCHAETE SPP.	Т	0		1100-	ž.				100			673				3142
W9506	PSEUDOCALANUS NEWMANI	C	С		i de la composición dela composición de la composición de la composición dela composición dela composición dela composición de la composición de la composición dela composición dela composición dela composición dela composición dela composición dela composición dela composición dela composición dela composición dela composición dela composición dela composición dela com	1						基层气	1884			1689	
W9506	PSEUDOCALANUS NEWMAN!	F	С			}					!	17-25-6	269			84	
W9506	PSEUDOCALANUS NEWMANI	М	С	1			Page 1			F.			135		į.	253	
W9506	TEMORA LONGICORNIS	С	С	1	1						1		1480			253	
W9506	TEMORA LONGICORNIS	F	С	1	loż.	:				指忘點	Ì					84	
W9506	UNIDENTIFIED LARVAE	L	0			:		in tak					135	Bale (lisiya	
W9507	ACARTIA HUDSONICA	C	С	1	上為 實	:				To Make	4700	342		407	1003		ver if
W9507	ACARTIA HUDSONICA	F	С					139			188				167		Bara di Kopa Kabupatèn
W9507	ACARTIA HUDSONICA	М	С			:					i	171			502	he e	
W9507	ACARTIA TONSA	c	С			152		139		to, is							
W9507	BIVALVIA SPP.	L	0		53	152		2773	568	73	2256	427	2678	813	1338	200 j. j. j. j. j. j. j. j. j. j. j. j. j.	4070
W9507	BRYOZOA SPP.	-	0	115	jaga et			139		1861	ş		223	136			
W9507	CALANUS FINMARCHICUS	C	С			1213		139		877		Bart :	223	3795	836		1707
W9507	CALANUS FINMARCHICUS	F	С		100	:					į						656
W9507	CALANUS FINMARCHICUS	М	С		100	. 152				292					167		131
W9507	CENTROPAGES TYPICUS	C	С	231	53		1 + + 1	139		2338				136			
W9507	CENTROPAGES TYPICUS	F	С		53	152				73	; :	ال حدثا				i i i i i i i i i i i i i i i i i i i	
W9507	CENTROPAGES TYPICUS	M	С		P11.		1. 4. 34			146							
W9507	CIRRIPEDE SPP.	N	8		1112	:		277	568	In Engl	752	1195		le i se i i l			
W9507	CIRRIPEDE SPP.) Y	В		15:40			1.441.5				85					
W9507	COPEPOD SPP.	-	С	115	53			139	114	73		85			167		131
W9507	COPEPOD SPP.	C	С	346	53	303		555			-	342			167		
W9507	COPEPOD SPP.	N	С	15811	8552	21537	医绿冠	13728	19537	7306	25192	18614	36602	. 41201	46646		30064
W9507	CRUSTACEA:UNIDED CRUSTACEAN	-	0		1. 斯拉尔	152	基特的	139						136			
W9507	EURYTEMORA HERDMANI	c	С	1	53	1	其合語		227		2632	939			669		919
W9507	EURYTEMORA HERDMANI	F	С]	细胞		中国			程模块。	4	85			167		
W9507	EURYTEMORA HERDMANI	М	С	1	53		185.14				188	427			836		
W9507	EVADNE SPP.		0					832	795		752	171	670	136	669		

			Life			<u></u> _		· · · · · ·		-	S	tation Ca	st.						
Event	Species		Stage	Group	1F01Z	1F02Z	1F06Z	1F13Z	1F23Z	1F24Z	1F25Z	1F27Z	1F30Z	1F31Z	1N10Z	1N16Z	2F23Z	2N16Z	3N16Z
W9507	GASTROPODA;MOLLUSCA		L	0		53				416	568		564	256	446	111702	334	DATOR	131
W9507	HARPACTICOIDA SPP.		-	С											, ,,,	271			263
W9507	MEDUSA	ŀ	-	0			152			139	227			i.	223		167	热压挡	. 4 . .
-W9507	METRIDIA LUCENS		С	С		l ;	303		:	139									263
W9507	MICROSETELLA NORVEGICA		-	С	115	321	303			139	114	365		85		813			131
W9507	OITHONA ATLANTICA		F	С	692			1 2 2 1						4.714		136		20 CE	
W9507	OITHONA SIMILIS	CLAUS	-	С	l		152					Barrell (7	136			
W9507	OITHONA SIMILIS	CLAUS	С	С	6463	5185	12588			5547	3521	13151	2632	1281	6026	18703	5016		12997
W9507	OITHONA SIMILIS	CLAUS	F	С	2077	1710	2123			1387	1022	877	1880	598	1562	2711	1338	IHA	1575
W9507	OITHONA SIMILIS	CLAUS	М	С	231	53	455			139	114	73		171	223	271	167		525
W9507	PARACALANUS PARVUS	I	F	С		1						打造物				407	100	B. Calo	
W9507	PODON POLYPHEMOIDES		-	0										427				kyris	
W9507	PODON SPP.		-	0	1						568		376	ffil	446				
W9507	POLYCHAETE SPP.		L.	0	1					139	454		4324	1366	223		1505	Miss	
W9507	PSEUDOCALANUS NEWMANI		С	С	2654	1871	5763			6379	2499	73	752	683	5803	1762	669	\$1679 m 100 m \$400 m 100 m	1969
W9507	PSEUDOCALANUS NEWMANI		F	С	1385	1710	303			971	1249			342	670	678	836		919
W9507	PSEUDOCALANUS NEWMANI	- 1	M	С	231	107	152			277	227			85	223	271		N. YO.	
W9507	TEMORA LONGICORNIS		С	С	115	1 48 11	1668			10261	1931	2119	188	768	1785	813	1003	<u> Seria</u>	131
W9507	TEMORA LONGICORNIS		F	С	692	Territoria. Reconstruction			[277	454	73		427	2455		669		
W9507	TEMORA LONGICORNIS		M	С	808	53		1,0		416	454	146		171	2232		836		
W9507	TORTANUS DISCAUDATUS		С	С	115					139									
W9507	TORTANUS DISCAUDATUS		F	С						139					223				
W9507	TORTANUS DISCAUDATUS		M	С	115			Part Sugar	· i	277		[#B#]							
W9507	UNIDENTIFIED LARVAE		L	0	j	53	152		:	139			376	171	223	271			131
W9508	ACARTIA TONSA		С	С					ì						135			59	
W9508	BRYOZOA SPP.		-	0														59	
W9508	CALANUS FINMARCHICUS		С	С											808			1179	
W9508	CALANUS FINMARCHICUS		F	С											135			59	主性學的
W9508	CALANUS FINMARCHICUS		M	С											404	HE ST		118	
W9508	COPEPOD SPP.		N	С											20749			10257	VQ 5.E
W9508	MICROSETELLA NORVEGICA		-	С				in the state of th				nă l		* **	674			59	
W9508	OITHONA ATLANTICA		С	С					:			Dan Y			135				
W9508	OITHONA SIMILIS C	CLAUS	-	С						riir i					269				
W9508	OITHONA SIMILIS C	CLAUS	С	C		Hould						rkk			8893			3891	
W9508	OITHONA SIMILIS C	CLAUS	F	C				Mari	;			hills	1		3503			884	
W9508	OITHONA SIMILIS C	CLAUS	M	С		Kari I			Ÿ			ii Aid	•	a Aleij	135			59	
W9508	PSEUDOCALANUS NEWMANI	1	С	С											5389			1238	
W9508	PSEUDOCALANUS NEWMANI		F	C				h. P. J	:					l Halei	2425	and the second		472	
W9508	PSEUDOCALANUS NEWMANI		M	С		Later Till Control		Jacob H	:	er in vigit di Permulai sa					404			118	

		Life								Sta	ation Cas	t					•	
Event	Species	Stage	Group	1F01Z	1F02Z	1F06Z	1F13Z	1F23Z	1F24Z	1F25Z	1F27Z	1F30Z	1F31Z	1N10Z	1N16Z	2F23Z	2N16Z	3N16Z
W9508	TEMORA LONGICORNIS	С	С		1 1 1 1 1	· · · · ·			1	1				1213			juli ir s	
W9508	TEMORA LONGICORNIS	F	c	1			1-1-1			1				539			59	
W9508	TEMORA LONGICORNIS) м) c				1 11	,	1					539				
W9508	TORTANUS DISCAUDATUS	c	c	l	1 .					:				135		:		140 B
W9508	TORTANUS DISCAUDATUS	F	c	,										135				n North Anna
W9508	TORTANUS DISCAUDATUS) м) c) '	. 1									135				1.4 1.4 4
W9509	ACARTIA TONSA	c	c	,	1				1					1625			f at	1.1
W9509	BIVALVIA SPP.	L	0	[·							法法方			1625				3168
W9509	CALANUS FINMARCHICUS	С	c				15.04). 2.				1219				3335
W9509	CALANUS FINMARCHICUS	М	C		4. B f				i e	1				813	Jak Mil	;		667
W9509	COPEPOD SPP.	N	C		ing eight in the					: 				53634		:	ļ	29683
W9509	CRUSTACEA:UNIDED CRUSTACEA	N -	0											406				
W9509	EURYTEMORA HERDMANI	C	C				7			:				1219	1700	:		
W9509	GASTROPODA;MOLLUSCA	L	\ 0	1					1:51	1				406		:	Maril (
W9509	METRIDIA LUCENS	С	C							i					1-1-5			167
W9509	MICROSETELLA NORVEGICA	- 1	C			!								1219		-	100 mm	167
W9509	OITHONA SIMILIS	CLAUS C	\ c	1	- 1- 1					:			il Pari	18691			1 1/4	12874.
W9509	OITHONA SIMILIS	CLAUS F	C			Ì					3.41.1			2032	113.14		4.30	1501
W9509	OITHONA SIMILIS	CLAUS M	[c	1						:				2032		:		334
W9509	PSEUDOCALANUS NEWMAN!	С	C											6907	PAGE 1	1		12007
W9509	PSEUDOCALANUS NEWMANI	F	С							3				7314		:		1001
W9509	PSEUDOCALANUS NEWMANI	M	[C	l		i :								2032	建铁			334
W9509	TEMORA LONGICORNIS	C	c											4063				667
W9509	TEMORA LONGICORNIS	F	c				A dist						lan s	1219				
W9509	TEMORA LONGICORNIS	M	С			· -	1, 1, 1, 1,	:			int'in		Morns	406				
Life Stage	Definitions:	c	Copepodi	te stages I-	٧				Group De	finitions:		В	Barnacle					
		F	Copepoda	a adult fem:	ale							¢	Copepod					
		L	Larva									OZ	Other Zo	oplankton)			
	•	М		a adult male	В													
		N	Naupiii															
		т	· ·	ore (larval :		olychaet	8											
		Y_	Cypris La	rva of Barn	acle													

8 of 8

Massachusetts Water Resources Authority Charlestown Navy Yard 100 First Avenue Boston, MA 02129 (617) 242-6000