1993 Annual Soft-Bottom Benthic Monitoring:

Massachusetts Bay Outfall Studies

Massachusetts Water Resources Authority
Environmental Quality Department
Report 1995-02

1993 Annual Soft-Bottom Benthic Monitoring Massachusetts Bay Outfall Studies

Submitted to

MASSACHUSETTS WATER RESOURCES AUTHORITY
ENVIRONMENTAL QUALITY DEPARTMENT
100 FIRST AVENUE
CHARLESTOWN NAVY YARD
BOSTON, MA 02129
(617) 242-6000

Prepared by

DOUGLAS A. COATS
EIJI IMAMURA
JAMES F. CAMPBELL

MARINE RESEARCH SPECIALISTS
3639 EAST HARBOR BOULEVARD, SUITE 208
VENTURA, CA 93001-4277
(805) 644-1180

APRIL 1995

ENVIRONMENTAL QUALITY DEPARTMENT TECHNICAL REPORT SERIES 95-2

Citation: Coats, D.A., E. Imamura, and J.F. Campbell. 1995. 1993 Annual Soft-Bottom Benthic Monitoring: Massachusetts Bay Outfall Studies. MWRA Enviro. Quality Dept. Tech. Rpt. Series No. 95-2. Massachusetts Water Resources Authority, Boston, MA. 137 pp.

TABLE OF CONTENTS

LIST OF FIG	GURESi	iii
LIST OF TA	BLES v	⁄ii
EXECUTIVE	E SUMMARY	iii
1.0 INTROD	UCTION	1
2.0 METHO	DS AND MATERIALS	3
2.1 STAT	TION DESIGN	3
2.2 SAM	PLE COLLECTION	3
2.3 MAC	CROINFAUNAL ANALYSES	8
2.3.1 2.3.2 2.3.3	Species Richness Species Evenness Combined Properties	8 9 10
3.0 RESULT	s 1	12
3.1 FIEL	D OPERATIONS 1	12
3.2 SEDI	IMENT QUALITY 1	12
3.2.1 3.2.2	Farfield Sediments	
3.3 FAR	FIELD MACROINFAUNAL ASSEMBLAGES	25
3.3.1 3.3.2 3.3.3 3.3.4	Taxonomic Composition 2 Numerical Classification 3 Diversity and Related Community Characteristics 4 Dominant Species 4	35 15
3.3.5 3.3.6 3.3.7	Relationship Among Cluster Groups Association with Abiotic Properties Interannual Variability	51 53

3.4 MID	FIELD MACROINFAUNAL ASSEMBLAGES	55
3.4.1	Taxonomic Composition	56
3.4.2	Numerical Classification	
3.4.3	Diversity and Related Community Characteristics	64
3.4.4	Dominant Taxa and the Relationship Among Cluster Groups	
3.4.5	Association with Abiotic Properties	
3.4.6	Interannual Variability	
4.0 FINDING	GS AND CONCLUSIONS	78
4.1 FARI	FIELD FINDINGS	78
4.2 FARI	FIELD CONCLUSIONS	79
4.3 NEA	RFIELD FINDINGS	80
4.4 NEA	RFIELD CONCLUSIONS	82
5.0 LITERA	TURE CITED	83
APPENDIX A	A-1: Nearfield Abundance (0.3-mm Fraction)	1
APPENDIX A	A-2: Nearfield Abundance (0.5-mm Fraction)	4
APPENDIX A	A-3: Farfield Abundance (0.3-mm Fraction)	9
APPENDIX A	A-4: Farfield Abundance (0.5-mm Fraction)	16
APPENDIX A	A-5: Taxa Identified to Species Level	25
APPENDIX I	B: Sediment Chemistry Data E	3-1

LIST OF FIGURES

Figure 2.1.1	Location of farfield stations	4
Figure 2.1.2	Location of near and farfield stations at midfield distances (≤8 km) from the diffuser. The inset shows the midfield study area located within Massachusetts and Cape Cod Bays	5
Figure 3.2.1	Geographic distribution of percent gravel at farfield stations. The diameter of the circles scales as a linear function of percent gravel. The inset shows the four farfield station groups determined from benthic infaunal community structure described in Section 3.3.2	13
Figure 3.2.2	Geographic distribution of percent sand at farfield stations. The inset is described in Figure 3.2.1	14
Figure 3.2.3	Geographic distribution of percent silt at farfield stations. The inset is described in Figure 3.2.1	15
Figure 3.2.4	Geographic distribution of percent clay at farfield stations. The inset is described in Figure 3.2.1	16
Figure 3.2.5	Geographic distribution of total organic carbon (wt %) at farfield stations. The inset is described in Figure 3.2.1	17
Figure 3.2.6	Geographic distribution of normalized Clostridium perfringens spore counts (colony-forming units/g dry wt) at farfield stations. The inset is described in Figure 3.2.1	19
Figure 3.2.7	Geographic distribution of total PAH (μg/g dry wt) at farfield stations. The inset is described in Figure 3.2.1	20
Figure 3.2.8	Geographic distribution of PCB concentration (ng/g dry wt) at farfield stations. The inset is described in Figure 3.2.1	21
Figure 3.2.9	Geographic distribution of silver concentration (µg/g dry wt) at farfield stations. The inset is described in Figure 3.2.1	22
Figure 3.2.10	Linear regression of Clostridium perfringens spore counts on silver concentration yielding an R ⁻² =0.8	23
Figure 3.2.11	Geographic distribution of normalized silver concentration (µg/g mud dry wt) at farfield stations. The inset is described in Figure 3.2.1	24
Figure 3.2.12	Geographic distribution of percent gravel at midfield distances (<8 km) from the diffuser. The diameter of the circles scales as a linear function of percent gravel. The inset shows midfield station groups determined from benthic infaunal community structure summarized in Table 4.3.1	26

Figure 3.2.13	Geographic distribution of percent sand at midfield distances from the diffuser. The inset is described in Figure 3.2.12	27
Figure 3.2.14	Geographic distribution of percent silt at midfield distances from the diffuser. The inset is described in Figure 3.2.12	28
Figure 3.2.15	Geographic distribution of percent clay at midfield distances from the diffuser. The inset is described in Figure 3.2.12	29
Figure 3.2.16	Geographic distribution of total organic carbon (wt %) at midfield distances from the diffuser. The inset is described in Figure 3.2.12	30
Figure 3.2.17	Geographic distribution of Clostridium perfringens spore counts (spores/g dry wt) at midfield distances from the diffuser. The inset is described in Figure 3.2.12	31
Figure 3.2.18	Geographic distribution of PAH (µg/g dry wt) at midfield distances from the diffuser. The inset is described in Figure 3.2.12	32
Figure 3.2.19	Geographic distribution of PCB concentration (ng/g dry wt) at midfield distances from the diffuser. The inset is described in Figure 3.2.12	33
Figure 3.2.20	Geographic distribution of normalized silver concentration (µg/g mud dry wt) at midfield distances from the diffuser. The inset is described in Figure 3.2.12	34
Figure 3.3.1	Density of organisms determined from the two sieve-size fractions at farfield stations. Station FF7 does not include Replicate 2	36
Figure 3.3.2	Dendrogram resulting from clustering (group average sorting) of NNESS similarity (m=200) among farfield replicates	37
Figure 3.3.3	Dendrogram resulting from clustering (group average sorting) of Bray-Curtis similarity among farfield replicates	38
Figure 3.3.4	Dendrograms resulting from clustering (group average sorting) of pooled replicate abundance data at farfield stations using (a) Bray-Curtis and (b) NNESS (m=200) similarity measures	39
Figure 3.3.5	Geographic distribution of farfield cluster groups. The inset shows the dendrogram of Figure 3.3.4b	40
Figure 3.3.6	Geographic distribution of total infaunal density at farfield stations. The diameter of the circles scales as a linear function of infaunal density and the numbers represent 10,000 individuals m ⁻² . The inset shows the four farfield station groups shown in Figure 3.3.5 and summarized in Table 4.1.1	41
Figure 3.3.7	Abundance (number of individuals m ⁻²) of organisms within the major polychaete families at farfield stations	42

Figure 3.3.8	Geographic distribution of spionid polychaete abundance at farfield stations. The inset is described in Figure 3.3.6
Figure 3.3.9	Geographic distribution of paraonid polychaete abundance at farfield stations. The inset is described in Figure 3.3.6
Figure 3.3.10	Hurlbert rarefaction plots for farfield stations
Figure 3.3.11	Results of correspondence analysis (reciprocal averaging) ordination showing the distribution of (a) farfield replicate samples and (b) species along the two principal factors
Figure 3.4.1	Density of organisms determined from the two sieve-size fractions collected from stations at midfield distances from the diffuser
Figure 3.4.2	Dendrogram resulting from clustering (group average sorting) of NNESS similarity (m=200) among replicates collected at midfield distances from the diffuser. Replicates 1 and 2 from Station NF17 were necessarily excluded because they have fewer than 200 individuals. Stations which exhibit the highest similarities among all three replicates are enclosed by brackets
Figure 3.4.3	Dendrogram resulting from clustering (group average sorting) of Bray-Curtis similarity among replicates collected at midfield distances from the diffuser. Stations which exhibit the highest similarities among all three replicates are enclosed by brackets
Figure 3.4.4	Dendrograms resulting from clustering (group average sorting) of pooled replicate abundance data at midfield distances (<8km) from the diffuser using (a) Bray-Curtis and (b) NNESS (m=200) similarity measures
Figure 3.4.5	Geographic distribution of midfield cluster groups. The inset shows the dendrogram of Figure 3.4.4b
Figure 3.4.6	Geographic distribution of total infaunal density at midfield distances from the diffuser. The diameter of the circles scales as a linear function of infaunal density and the numbers represent 10,000 individuals m ⁻² . The inset shows midfield station groups determined from benthic infaunal community structure summarized in Table 4.3.1.
Figure 3.4.7	Abundance (number of individuals m ⁻²) of organisms within the major polychaete families at midfield distances from the diffuser
Figure 3.4.8	Geographic distribution of spionid polychaete abundance at midfield distances from the diffuser. The inset is described in Figure 3.4.6
Figure 3.4.9	Geographic distribution of paraonid polychaete abundance at midfield distances from the diffuser. The inset is described in Figure 3.4.6
Figure 3.4.10	Hurlbert rarefaction plots for nearfield stations

Figure 3.4.11	Results of correspondence analysis (reciprocal averaging) ordination showing the distribution of (a) stations at midfield distances (<8km) from the diffuser and (b) species along the two principal factors			
Figure 3.4.12	Results of correspondence analysis (reciprocal averaging) ordination showing the distribution of (a) replicates collected at midfield distances from the			
	diffuser and (b) species along the two principal factors. Outlier Stations NF2, NF4, and NF17 are not included	73		

LIST OF TABLES

Table 2.1.1	Reference coordinates of nearfield and farfield benthic stations	6
Table 2.2.1	Field samples and measurements	7
Table 3.2.1	Spearman's rank correlation coefficients (lower diagonal of matrix) between abiotic variables measured in 40 replicate sediment samples at all nearfield and farfield stations. The corresponding significance level (α) is shown in the upper diagonal of the matrix	18
Table 3.3.1	Number of macroinfaunal organisms recovered from replicates at farfield stations. Station FF7 does not include Replicate 2 for reasons described in the text	36
Table 3.3.2	Density and diversity related community parameters for farfield stations	42
Table 3.3.3	Dominant (top ten) macroinfaunal species and taxa identified at farfield stations	47
Table 3.3.4	Pearson correlation coefficients between logarithmically transformed abundance of indicator species and selected abiotic parameters at farfield stations. Lightly shaded coefficients are statistically significant at the 95% confidence level and dark shading delineates 99% confidence	53
Table 3.4.1	Number of macroinfaunal organisms recovered from replicates at nearfield stations.	57
Table 3.4.2	Density and diversity related community parameters for stations located at midfield distances (<8 km) from the diffuser	63
Table 3.4.3	Dominant (top ten) macroinfaunal species and taxa identified at nearfield stations	68
Table 3.4.4	Pearson correlation coefficients between logarithmically transformed abundance of indicator species and selected abiotic parameters at midfield distances from the diffuser. Lightly shaded coefficients are statistically significant at the 95% confidence level and dark shading delineates 99% confidence.	. 75
Table 3.4.5	Comparison of the mean mud fraction (percent silt and clay) in grab samples collected at stations sampled in both 1992 and 1993. Stations are ranked by greatest change between years	
Table 4.1.1	Summary of community structure among farfield station clusters	79
Table 4.3.1	Summary of community structure at midfield distances from the diffuser	81

EXECUTIVE SUMMARY

The Massachusetts Water Resources Authority (MWRA) implemented a long-term environmental monitoring program in conjunction with the development of secondary sewage treatment facilities at Deer Island and the new outfall located offshore in Massachusetts Bay, approximately 15 km from Deer Island. The purpose of the monitoring program is to verify compliance with the National Pollutant Discharge Elimination System (NPDES) discharge permit and to assess possible environmental impacts from the effluent discharged from the new outfall located in Massachusetts Bay.

This is the third report pertaining to the benthic component of the Phase I Outfall Monitoring Program. Blake et al. (1993) and Shea (1994) previously described the soft-bottom benthic infaunal communities and sediment chemistry from the 1992 sampling program. This report combines the benthic infaunal biology and chemistry results from the 1993 field program.

The overall objective of the Phase I Outfall Monitoring Program is to obtain baseline data for soft-bottom benthic communities and sediment contaminant concentrations at suspected depositional areas. The program consists of nearfield and farfield components. The nearfield sampling locations provide spatial coverage at known depositional sites within 5 km of the outfall. Data obtained at the nearfield stations during the Phase I baseline studies will be used to examine any changes observed to benthic communities and sediment chemistry after the outfall becomes operational. The farfield component provides data on benthic conditions at several stations located in Massachusetts and Cape Cod Bays. The farfield stations are intended to serve primarily as reference stations but can also provide possible warnings should effects to benthic communities or changes in sediment chemistry be observed at locations farther than originally expected. Farfield stations were chosen to correspond to previous benthic studies and also to other ongoing sediment studies in the region.

It should be noted that a change occurred to the benthic program in 1993. The original design, as described in the Effluent Outfall Monitoring Plan Phase I: Baseline Studies (MWRA, 1991), incorporated 15 to 20 nearfield and 12 farfield stations. In 1992, the first year of the program, a single biology grab sample was collected at each of the 20 stations in the nearfield, and three biology samples were collected at each of the 12 farfield stations. The overall objective of this initial approach in the nearfield was to achieve increased spatial descriptions of benthic infaunal communities and to the extent possible, establish relationships between chemical and biological parameters in the pre- and post-discharge phases of the program. In 1993, a change to the design of the benthic program was implemented. This change was due to concern that, in previous studies, the nearfield benthic community was characterized by substantial spatial variability which could make assessment of temporal changes difficult. Also, without some estimate of the scale of spatial variation, it would be difficult to determine whether site-specific changes over time were due to discharge or from sampling in slightly different locations. Results from the 1993 program support this concern. Hence, in consultation with the Outfall Monitoring Task Force, the MWRA's monitoring program oversight committee, the nearfield sampling locations was decreased to nine stations but with increased triplicate grab samples for biology. In the farfield, the original design largely remained unchanged. However, the number of stations were reduced from 11 to nine but maintained the original triplicate grab samples for benthic infaunal analysis.

Significant results from the 1993 sampling program are described below.

Sediment Quality

• The coarsest sediments were located near the mouth of Boston Harbor and grain size fractions were consistent with those of previous studies (e.g., Blake et al., 1993). TOC content was well correlated to mud fractions and coarse sediments near Boston Harbor contained less than 1% TOC. C. perfringens spores were

not strongly associated with fine grain size, and the highest counts at farfield stations were located near the mouth of Boston Harbor at Stations FF10, FF12, and FF13. Total PAH was somewhat elevated (>5 μ g/g) at the northernmost stations FF1 and FF11 compared to concentration ranges determined by Windsor and Hites (1979). Another organic contaminant, PCB, did not exhibit a clear spatial pattern and mean concentrations were comparable to those reported by other investigators (e.g., Boehm et al., 1984). Silver concentration correlated with C. perfringens spore counts and was highest at stations near Boston Harbor.

The anomalously high gravel content observed at Station NF14 was probably related to the high content of
glass and tile fragments of anthropogenic origin. However, this station does not appear to be anomalous in
other aspects of sediment quality or in macroinfaunal community structure.

Macroinfaunal Assemblages

- The farfield samples contained 39,717 organisms in 226 taxa. A total of 36,884 individuals, or 93%, was classified into 186 species. The density of organisms in the 0.5-mm sieve fraction exceeded that of the 0.3-mm fraction at all stations.
- Farfield stations consistently separate into four distinct groups by virtue of numerical classification and ordination. These four groups are geographically separate. Group A consists of five stations (FF1, FF4, FF5, FF11, and FF14) with the greatest water depths (>60 m) located furthest offshore over the Stellwagen Basin. Group D includes two stations (FF12 and FF13) with the shallowest water depths (≤22 m) adjacent to the entrance to Boston Harbor. Group C contains two mid-depth (27 to 49 m) stations (FF6 and FF7) positioned within Cape Cod Bay to the south. Group B consists of two mid-depth stations (FF10 and FF9) within Massachusetts Bay between Groups A and D.
- The first principal factor in the farfield ordination analysis is related to water depth. Species indicative of farfield Groups A and D correlate strongly with depth, C. perfringens spore counts, and silver concentration. Because C. perfringens spore counts and silver concentration correlate with total PAH and PCB concentrations, species affiliated with Groups A and D probably also correlate with organic contaminants. The second principal factor that differentiates farfield stations in Group B from C is related to grain size and TOC content.
- The geographic distribution of sediment properties and infaunal community parameters was largely consistent between 1992 and 1993. The greatest temporal disparity in community structure occurred at Station FF13. In 1992, this station was not clearly affiliated with other farfield stations, whereas in 1993 it clustered with Station FF12. The primary difference was the high density of Polydora cornuta at Station FF13 in 1992. P. cornuta was one of the most common species in Boston Harbor in 1993, yet Station FF13 was the only location within Massachusetts Bay where it was collected in either year. Thus, the affinity of Station FF13 with other farfield stations was determined by the abundance of P. cornuta. In 1992, Boston Harbor appeared to have a greater influence on the infaunal assemblage at Station FF13 as reflected by the increased P. cornuta abundance. In 1993, the declining influence of the Harbor at this station was reflected by the higher similarity in community structure between Stations FF12 and FF13.
- The midfield samples contained 35,741 organisms in 196 taxa. A total of 33,968 individuals, or 95%, was classified into 165 species. The density of organisms in the 0.5-mm sieve fraction exceeded that of the 0.3-mm fraction at all stations.
- The annelid phylum contained the majority (53%) of the organisms identified at all stations combined and 51% (88) of the species. However, annelids were not the most dominant major taxonomic group at Stations NF2 and NF17 where bivalves and crustaceans respectively dominated.

- Numerical classification revealed that the community structure at individual stations was not always distinct compared to inherent variability within replicates. Generally, the highest similarities among replicate samples were for replicates collected at the associated individual station. However, numerical classification was unable to distinguish between replicate samples from Stations NF9, NF10, and NF16. These stations are in close proximity (≤2.5 km) and their community structure exhibited the highest overall NNESS similarity.
- Stations at midfield distances from the diffuser separate into three distinct groups by virtue of numerical classification. The three groups are not geographically distinct because Group B (with low similarity) bifurcates Group C. Also, the three Stations NF2, NF4 and NF17 show marginal associations under NNESS agglomeration, but are independent of the major clusters using Bray-Curtis similarity measures. Ordination confirms the autonomy of Stations NF2, NF4, and NF17, and reanalysis without these stations resolves the geographic aberration by combining Station NF8 with Group A and Station NF12 with Group C.
- These two modified groups and three independent stations are geographically distinct. The modified Group A combines two farfield stations (FF12 and FF13), which constituted their own group in the farfield analysis, along with Station NF8. The modified Group C consists of the six Stations FF10, NF9, NF10, NF12, NF14, and NF16. The community structure associated with the remaining three stations at midfield distances from the diffuser was distinct and did not compare among one another or with either of the modified groups.
- There was no clear association between species indicative of midfield groups and abiotic variables. Although
 six of the ten indicator species for midfield groups were identical to those in the farfield, the limited depth
 range prevented significant correlations.
- Temporal changes in the midfield infaunal community structure were assessed by comparing 1992 and 1993 data. The lack of replication of nearfield infaunal data in 1992 measurably decreases the ability to resolve statistically significant changes over time. The numerical classification among nearfield stations was similar between years, with the lowest similarities between Stations NF2, NF4, and NF17. The only major difference in classification was for Station NF16. In 1992, this station was affiliated with Station NF8 whereas in 1993, this station was part of midfield Group C. Station NF8 was anomalous in both years in that it had the lowest diversity and evenness indices, and a rarefaction well below that of other nearfield stations. It also had the lowest sand and gravel content. The anomalous nature of the infaunal community at Station NF8 was consistent across years despite a three-fold increase in total abundance. However, that large increase was only marginally significant at the 90% confidence level.

1.0 INTRODUCTION

The Massachusetts Water Resources Authority (MWRA) implemented a long-term environmental monitoring program in conjunction with the development of secondary sewage treatment facilities at the Deer Island Sewage Treatment Plant. A new outfall, which is a part of these facilities, is located offshore Massachusetts Bay, at approximately 15 km from Deer Island at a water depth of 32 m. The purpose of the monitoring program is to verify compliance with the National Pollutant Discharge Elimination System (NPDES) discharge permit and to assess possible environmental impacts from effluent discharged into Massachusetts Bay.

In the Effluent Outfall Monitoring Plan Phase I: Baseline Studies (MWRA, 1991), MWRA developed an overall strategy for the monitoring program. The focus of this report is the outfall benthic component of the monitoring program. The results of the benthic studies conducted in Boston Harbor may be found in Kropp and Diaz (1995).

The overall objective of the Phase I Outfall Monitoring Program is to obtain baseline data for soft-bottom benthic communities and sediment contaminant concentrations at suspected depositional areas. By design, the outfall program consists of nearfield and farfield components. The nearfield sampling locations provide spatial coverage at known depositional sites within 5 km of the outfall. Data obtained at the nearfield stations during the Phase I baseline studies will be used to examine any changes observed to benthic communities and sediment chemistry after the outfall becomes operational. The farfield component provides data on benthic conditions at several stations located in Massachusetts and Cape Cod Bays. The farfield stations are intended to serve primarily as reference stations but can also provide possible warnings should effects to benthic communities or changes in sediment chemistry be observed at locations farther than originally expected. Farfield stations were chosen to correspond to previous benthic studies and also to other ongoing sediment studies in the region.

The benthic sampling component of the Outfall Monitoring Program began in 1992. Faunal results from the initial sampling program are presented in Blake et al. (1993) while sediment chemistry results are provided in Shea (1994). Data from studies conducted as part of initial outfall siting studies may be found in Battelle (1987), Blake et al. (1987, 1988), and Shea et al. (1991). Earlier studies in the region include Gilbert et al. (1976) and Young and Rhoads (1971). This report includes the results from the benthic component, faunal and chemistry, of the Outfall Monitoring Program which was conducted in 1993.

Lastly, it should be noted that a change occurred to the benthic program in 1993. The original design, as described in the Effluent Outfall Monitoring Plan Phase I: Baseline Studies (MWRA, 1991), incorporated 15 to 20 nearfield and 12 farfield stations. In 1992, the first year of the program, a single biology grab sample was collected at each of the 20 stations in the nearfield, and three biology samples were collected at each of the 12 farfield stations. The overall objective of this initial approach in the nearfield was to achieve increased spatial descriptions of benthic infaunal communities and to the extent possible, establish relationships between chemical and biological parameters in the pre- and post-discharge phases of the program. In 1993, a change to the design of the benthic program was implemented. This change was due to concern that, in previous studies, the nearfield benthic community was characterized by substantial spatial variability which could make assessment of temporal changes difficult. Also, without some estimate of the scale of spatial variation, it would be difficult to determine whether site-specific changes over time were due to discharge or from sampling in slightly different locations. Results from the 1993 program support this concern. Hence, in consultation with the Outfall Monitoring Task Force, the MWRA's monitoring program oversight committee, the nearfield sampling locations were decreased to nine stations but with increased triplicate grab samples for biology. In the farfield, the original design largely remained unchanged. However, the number of stations was reduced from 11 to nine but maintained the original triplicate grab samples for benthic infaunal analysis.

Organizationally, this report consists of four sections with Appendices. In Section 2, descriptions of chemical and infaunal sampling protocols and benthic infaunal analysis methods are provided. Results and conclusions are presented in Sections 3 and 4 respectively. Appendix A consists of raw infaunal abundance data and a species list, and raw sediment chemistry data is presented in Appendix B.

2.0 METHODS AND MATERIALS

2.1 STATION DESIGN

As described in the Introduction, the design of the outfall sampling for the Soft-Bottom Benthic Monitoring Program was changed in 1993 in response to concerns regarding nonreplication in the previous design. There were 20 nearfield stations in 1992 at which one grab sample each for benthic infauna and chemistry was analyzed. Under the new design for 1993 sampling, the number of stations was reduced to nine at which three replicate grab samples for benthic infauna and two for chemistry were collected and analyzed. The farfield design in 1992 consisted of 12 stations at which three replicate grab samples were collected and analyzed for benthic infauna, and two grab samples were collected and analyzed for chemistry. In 1993, the number of stations was reduced to 11 without any changes in replication. Station locations for the 1993 program are shown in Figure 2.1.1 and 2.1.2 for farfield and nearfield stations, respectively. Farfield stations are designated as "FF" and nearfield stations as "NF." Table 2.1.1 lists the location and depth of each of the sampling stations.

Data analyses were conducted on a modified grouping of stations, designated "midfield," to characterize the local benthic community and sediment chemistry within 8 km of the diffuser (Figure 2.1.2). Three farfield stations (FF10, FF12 and FF13) were included along with nearfield stations in the midfield analyses because they were in the general vicinity (<8 km) of the outfall and there was no *a priori* reason to exclude them. Moreover, their inclusion links nearfield and farfield benthic community structure and provides a smooth transition in its interpretation. Because of the inclusion of farfield stations, the midfield analyses examined a total of twelve stations. To avoid confusion with station designators, "midfield" will refer to analysis of these twelve stations and "nearfield" will refer to sampling at the subset of nine nearfield stations designated with the "NF" prefix in Figure 2.1.2.

2.2 SAMPLE COLLECTION

The type of samples, measurements, and shipboard processing methods are summarized in Table 2.2.1. At each of the nearfield and farfield stations, benthic grabs (Kynar-coated 0.04-m² Young grab) were collected for macrofauna and sediment chemistry. Three replicate grab samples were collected for benthic macrofauna. Macrofauna samples were sieved onboard through nested 0.5-mm and 0.3-mm mesh sieves and preserved in buffered 10% formalin. Two replicate grab samples were collected for sediment chemistry, grain size, TOC, and Clostridium perfringens spores. Onboard processing of samples and shipboard sampling methods are described in Kropp and Peven (1993). Analysis methods for sediment chemistry samples and Clostridium perfringens spore counts were also described in Kropp and Peven (1993). Protocols for collection and analysis of samples follow those specified by the National Oceanic and Atmospheric Administration for the National Status and Trends Mussel Watch Project (Battelle Ocean Sciences, 1992). TOC content of solid samples was determined using a LECO model 761-100 carbon analyzer. Sediment grain size analyses were performed according to methods presented in Folk (1974). C. perfringens analysis was performed on sediment samples using methods developed by Emerson and Cabelli (1982) as modified by Saad (D. Saad, MTH Environmental Associates, personal communication).

Navigational positioning was accomplished with a Northstar 8000/Magnavox 4200D differential GPS receiver with a Magnavox MX-5OR DGPS beacon receiver which has an absolute accuracy of 5 m. The Battelle Ocean Sampling System (BOSS) navigation computer was used to track and log the vessel's position throughout the survey, and to fix the sampling position and the time that the grab sampler contacted the seafloor. Coordinates were printed on hardcopy as well as recorded to disk. The navigational system was checked daily for accuracy as described in the CW/QAPP (Kropp and Peven, 1993).

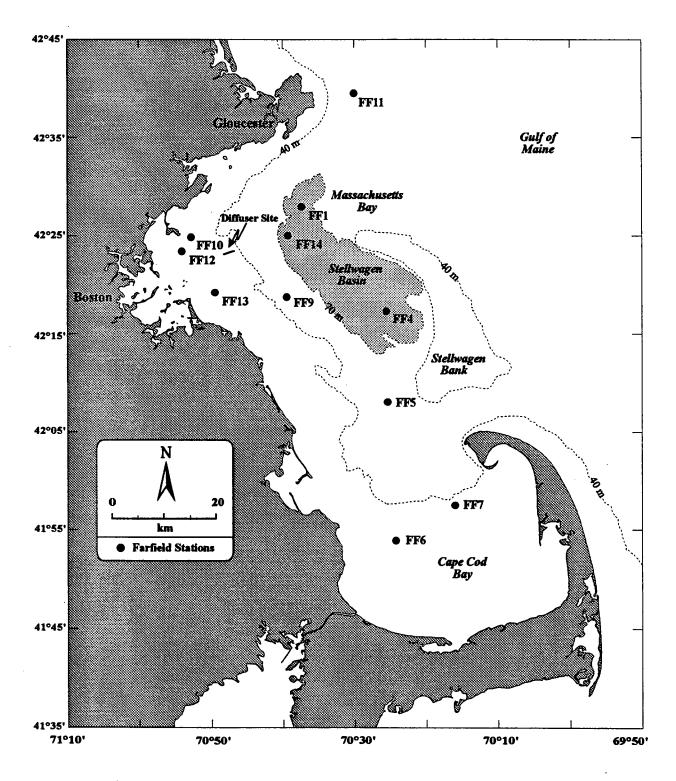


Figure 2.1.1 Location of farfield stations.

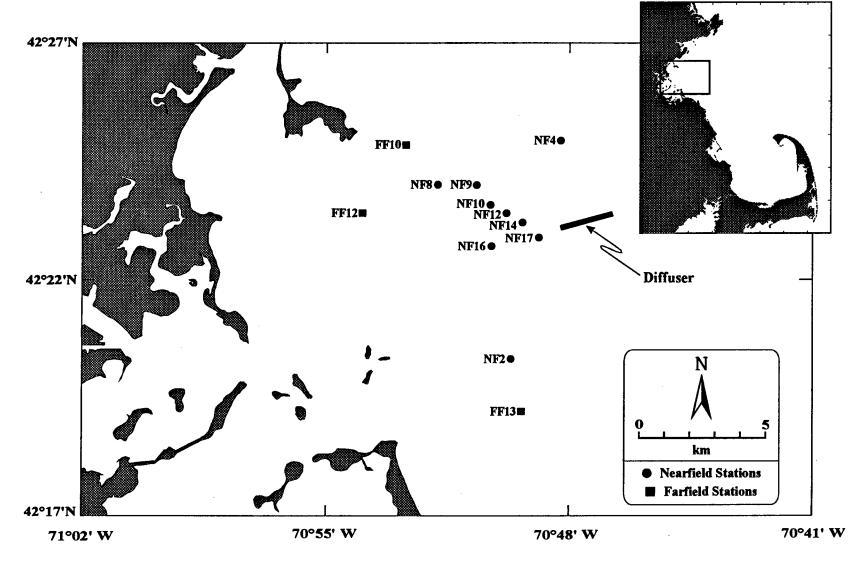


Figure 2.1.2 Location of near and farfield stations at midfield distances (<8 km) from the diffuser. The inset shows the midfield study area located within Massachusetts and Cape Cod Bays.

Table 2.1.1 Reference coordinates of nearfield and farfield benthic stations.

Station	Latitude	Longitude	Depth (m)					
Nearfield Stations								
NF2	42°20.31′N	7 0°49.69′W	30					
NF4	42°24.93′N	70°48.27′W	38					
NF8	42°24.00′N	70°51.81′W	30					
NF9	42°23.99′N	70°50.69′W	31					
NF10	42°23.57′N	70°50.29′W	32					
NF12	42°23.40′N	70°49.83′W	34					
NF14	42°23.20′N	70°49.36′W	34					
NF16	42°22.70′N	70°50.26′W	34					
NF17	42°22.88′N	70°48.89′W	32					
	Farfield Stations							
FF1	42°27.94′N	70°37.31′W	84					
FF4	42°17.30′N	70°25.50′W	90					
FF5	42°08.00′N	70°25.35′W	65					
FF6	41°53.90′N	70°24.20′W	37					
FF7	41°57.50′N	70°16.00′W	40					
FF9	42°18.75′N	70°39.40′W	49					
FF10	42°24.84′N	70°52.72′W	29					
FF11	42°39.50′N	70°30.00′W	90					
FF12	42°23.40′N	70°53.98′W	26					
FF13	42°19.19′N	70°49.38′W	22					
FF14	42°25.00′N	70°39.29′W	77					

Table 2.2.1 Field samples and measurements.

Parameter	Stations ¹	#/Volume	Container	Shipboard Processing/ Preservation	
Macrofauna	NF FF	3 grabs per station	Clean, labeled jar	Washed over nested 0.5- & 0.3-mm mesh sieves. Fixed in buffered 10% formalin.	
Chemistry	NF FF	2 grabs/ 200 mL	Clean, labeled jar	Used Kynar-coated scoop to remove subsample from top 0-2 cm of sediment surface. Frozen.	
Grain Size	NF FF	2 grabs/ 75 mL	Sterile WhirlPak TM bag	As for chemistry	
Clostridium perfringens	NF FF	2 grabs/ 100 mL	Sterile sample cup	As for chemistry	
Weather	NF, FF			Recorded general conditions	
Sea State	NF, FF		_	Recorded general conditions	
Bottom Depth	NF, FF			Recorded to nearest 0.1 m	
Grab Penetration	NF, FF			Recorded to nearest 0.5 cm	
Grab Sediment Volume	NF, FF		_	Recorded to nearest 0.5 L	
Sediment Texture	NF, FF		-	Described qualitatively	
Redox Potential Discontinuity Depth	NF, FF	_	_	Recorded to nearest 0.5 cm	

¹Stations NF are Nearfield Stations: NF2, NF4, NF8, NF9, NF10, NF12, NF14, NF16, NF17; Stations FF are Farfield Stations: FF1, FF4-FF7, FF9-FF14.

2.3 MACROINFAUNAL ANALYSES

Three replicate grab samples from each station were sorted for infaunal organisms. Samples were transferred from formalin to 70% ethanol in the laboratory. Sorting was accomplished under dissecting microscopes and organisms were picked by fine dissecting forceps. Organisms were sorted into the major taxonomic categories (polychaetes, arthropods, mollusks, and miscellaneous) prior to shipment to taxonomists for identification and enumeration. Identifications were made to the lowest practical taxonomic level, usually species. Quality control methods are described in Kropp and Peven (1993).

Macroinfaunal abundance data were coded and entered into the Battelle database and are summarized in Appendix A. Abundance was computed from the total number of organisms contained in replicate samples collected over a 0.04-m² area of the seafloor. Raw abundance data are presented by taxon, replicate, and size fraction in Appendices A-1 through A-4. Replicate 2 at farfield Station FF7 was not included in the macroinfaunal analyses because of anomalously low abundance for the 0.5-mm fraction. A total of 158 organisms was found in the 0.5-mm fraction of the second replicate sample at Station FF7. This is a factor of ten lower than the abundance observed in the other two replicate samples, while the abundance for the 0.3-mm fraction was comparable to that of the replicates.

To quantify the structure and variability in the macroinfauna of the Massachusetts and Cape Cod Bays, a variety of computational methods was applied to the taxonomic enumeration. These can be categorized as: (1) inspection of species lists ranked by abundance to determine taxonomic composition and species dominance; (2) calculation of species diversity and related community characteristics; and (3) numerical classification and ordination to identify groups of samples having similar species composition and to determine underlying biological and environmental factors responsible for determining community structure.

The methodologies for the computational methods are described below. All community parameters, other than abundance, were computed only for those organisms identified to species level. A list of all taxa identified to species level is presented in Appendix A-5. The first category of analyses defines the phylogenetic structure of these infaunal communities. The second group of computational methods is described in Section 2.3.1 and covers diversity indices that succinctly characterize species abundance relationships. Section 2.3.2 details the third computational category, which addresses similarity indices and clustering. Finally, Section 2.3.3 presents the methodology for community ordination used to distill complex community relationships into a few principal factors.

2.3.1 Species Diversity

Diversity indices quantify the species richness (number of species at a station), the species evenness (distribution of abundance among species) or a combination of these community properties.

Species Richness

In its simplest form, the total number of individual species present at a station characterizes the diversity of the infaunal community. However, to allow comparison of species richness from samples of varying size, indices are normalized by the total number of individuals N present in the sample. The Margalef species richness index (d') (Margalef, 1951) is commonly used. It strongly increases for increasing number of species and increases only logarithmically for decreasing number of individuals. If only one species is present, then d' is 0.00. For other distributions, the Margalef richness index is given by

$$d' = \frac{S-1}{\ln N}$$

where: S = total number of species

N = total number of individualsln = natural logarithm (base e).

The usefulness of this index is limited by an a priori assumption of a uniform logarithmic relationship between S and N. This assumption is not likely to hold in general and some bias may be introduced in d'. A less-biased method for investigating species richness is Hurlbert's (1971) modification of Sander's (1968) rarefaction method. This method predicts the expected number of species $E(S_n)$ present in increasingly rarefied samples of n individuals selected at random from a finite collection of organisms. In this case, the finite collection consists of pooled replicate samples from a particular station. The family of curves generated by plotting $E(S_n)$ as a function of n for several stations provides a measure of richness by comparing $E(S_n)$ at the same n, namely the smallest sample size. In this way, rarefaction curves provide a more rigorous method to account for differences in the total number of organisms among a group of samples, each having a unique functional relationship between S and N.

Species Evenness

The Pielou evenness index (J') (Pielou, 1977) measures the evenness of the distribution of individual organisms among the species present in the sample. J' increases for more even distributions of individuals among species. It expresses the diversity (measured by H' described below) relative to the maximum value it can attain when species are perfectly even, namely $\ln S$. Thus, if each species contains the same number of individual organisms, then J' will be a maximum at 1.00. For other distributions, the Pielou evenness index is given by

$$J' = \frac{H'}{\ln S}$$

where: S = total number of species

H' = Shannon-Wiener diversity index.

Peet (1974) has shown that J' is influenced by species richness and that its high sensitivity to sample variation makes it difficult to interpret.

A community parameter inversely related to diversity and evenness indices is the Whittaker dominance index (C') (Whittaker, 1965). C' increases with increasing proportions of individuals associated with a few species. If all individuals are of one species, then C' is maximum and equal to 1.00. If individual organisms are evenly distributed among species (J'=1.00), then C' asymptotically approaches 0.00 with increasing numbers of individuals. The Whittaker dominance measure is given by

$$C' = \sum_{j=1}^{S} \left(\frac{n_j}{N} \right)^2$$

where: S = total number of species

 n_j = number of individuals in the jth species N = total number of individuals.

Combined Properties

A measure of species diversity that combines the concepts of species richness and evenness is the Shannon-Wiener diversity index (H') (Shannon and Weaver, 1949; Green, 1979). It quantifies the relative distribution of individual organisms among the species present in the sample. H' increases for broader distributions of individuals among species (evenness) and for a larger number of evenly distributed species (richness). If only one species is present, then all individuals are members of that species and H' is 0.00. If each individual organism is a separate species, then H' will be a maximum determined by the logarithm of the number of individuals. For other distributions, the Shannon-Wiener diversity index is given by

$$H' = -\sum_{j=1}^{S} \left[\left(\frac{n_j}{N} \right) \ln \left(\frac{n_j}{N} \right) \right]$$

where: S = total number of species

 n_i = number of individuals in the jth species

 \dot{N} = total number of individuals

In = natural logarithm (base e).

Alone, this index is difficult to interpret ecologically because the same value can arise from a community with low richness and high evenness or from a community with high richness and low evenness. Nevertheless, it is a measure that is often cited, is used in the evenness index described above, and has been included in past MWRA reports.

2.3.2 Infaunal Similarity

The similarity between pairs of samples is determined from numerical classification based on the unweighted pair-group method (Sneath and Sokal, 1973). Results are expressed in the form of dendrograms where sample pairs are ordered into groups of increasingly greater similarity as measured by resemblance between the abundance for individual species (Boesch, 1977).

The Bray-Curtis and NNESS represent two possible measures of infaunal similarity between samples. The Bray-Curtis similarity coefficient (B) (Clifford and Stephenson, 1975; Swartz, 1978) is used to classify abundance data into groups of similar stations or replicate samples. The similarity coefficient ranges between 0 and 1. For pairs of samples that have identical numbers of individuals for each species, the coefficient is 1.00. The similarity coefficient is 0.00 when all species present in one sample are completely absent in the other sample and viceversa. The Bray-Curtis coefficient is computed as follows

$$B_{jk} = \frac{2\sum_{i=1}^{S} \min(N_{ij}, N_{ik})}{\sum_{i=1}^{S} (N_{ij} + N_{ik})}$$

where: B_{ik} = similarity coefficient between sample j and sample k

S'' = total number of species

 N_{ii} = number of individuals for species i in sample j.

When computing similarity coefficients, the abundance (N) is logarithmically transformed and the summation is only performed over the dominant species that account for more than 0.5% of the total abundance.

The NESS or Normalized Expected Species Shared (Grassle and Smith, 1976) is a family of similarity measures. They are based on the expected number of species shared between random subsamples of size m drawn from each of two sample populations that are under comparison. As with the Bray-Curtis measure, NESS similarities range between 0 and 1. A high similarity coefficient results when most species are shared between sample pairs and their abundances are similar. The advantage of the NESS measure is that the influence of dominant species compared with rare species can be controlled by the sample size m. For large m, the similarity measure is sensitive to the less-common species. Early formulations of NESS were not able to properly analyze data sets containing species represented by single individuals. To allow for the possibility of singleton species in this data set, a new formulation, designated newNESS or NNESS by Trueblood $et\ al.\ (1994)$, was used in this investigation. This new formulation is designated NNESS in this report.

2.3.3 Community Ordination

The fundamental purpose of ordination is to condense abundance data to a few factors that may be responsible for observed patterns. The ordination technique used here is known as correspondence analysis and is related to principal component analysis (Ludwig and Reynolds, 1988). It is used to simultaneously examine the interrelationship between replicate samples and species abundance, and to reduce that relationship to a few important factors. This technique is equivalent to the reciprocal averaging method used in MWRA reports from prior years.

3.0 RESULTS

3.1 FIELD OPERATIONS

The survey for the outfall nearfield and farfield monitoring was conducted from August 15 to August 19, 1993. The sampling vessel used for the survey was the M/V Sea Breeze. All required samples were successfully collected.

3.2 SEDIMENT QUALITY

This section describes the physical and chemical properties of sediment samples as they relate to the quality of the benthic habitat for macroinfaunal communities. As described in Section 2.2, duplicate sediment samples were collected contemporaneously with infaunal samples at all nearfield and farfield stations. Trends in sediment quality data are described separately for nearfield and farfield stations. However, because of the limited distribution of stations and large-amplitude variability over small scales, no contour maps were generated. For the same reasons, spatial trends in the farfield data are uncertain but are provided because they appear to be qualitatively consistent with historical data and there are plausible physical mechanisms for the distribution. Specifically, these mechanisms are low kinetic energy associated with depositional areas and isolated contaminant sources such as Boston Harbor. Further discussion of uncertainties in mapping sediment quality parameters is provided in Section 3.2.2.

3.2.1 Farfield Sediments

The surficial sediment texture at farfield stations is shown in Figures 3.2.1 through 3.2.4. The coarsest sediments were collected at the four shallow stations near the mouth of Boston Harbor (Stations FF9, FF10, FF12, and FF13). This distribution is consistent with those of previous studies (e.g., Blake et al., 1993). The presence of coarse sediments near the Boston Harbor mouth has been ascribed to the higher benthic kinetic energy associated with these shallow unprotected sites. In comparison, there is a depositional environment within the deep Stellwagen Basin and in the more-protected Cape Cod Bay. With the exception of Station FF12, little or no gravel was collected at most stations (Figure 3.2.1). Station FF12 lies closest to the mouth of Boston Harbor and had a gravel fraction four times greater than any other farfield station. Sand content (Figure 3.2.2) decreased with increasing distance offshore, and the lowest fractions were observed within Stellwagen Basin (Stations FF1, FF4 and FF14) and offshore Cape Ann (Station FF11). Silt (Figure 3.2.3) and clay (Figure 3.2.4) exhibited the reverse pattern with these mud facies also prevalent within Cape Cod Bay (Stations FF6 and FF7).

The distribution of mean total organic carbon (TOC) at farfield stations is shown in Figure 3.2.5. The TOC pattern is similar to that observed for fine-grained sediments. Higher TOC levels are expected in low kinetic energy environments where organic matter is not washed from sediments. This relationship is reflected in the strong linear association between TOC and mud fraction (silt and clay). Spearman's rank correlation coefficient (R) between mud and TOC in replicate samples was above 0.8 and was statistically significant at confidence levels above 99.9% as shown in Table 3.2.1. Sediments contained less than 1% TOC at the four stations near the mouth of Boston Harbor where the sand fraction exceeds 0.6. Spearman's rank correlations between untransformed variables were used in Table 3.2.1 because many of the variables departed from a normal frequency distribution.

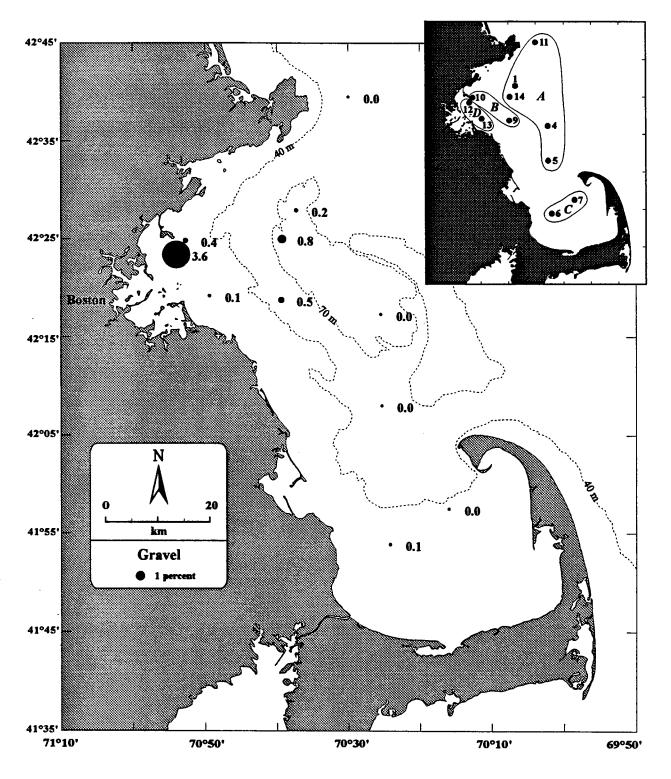


Figure 3.2.1 Geographic distribution of percent gravel at farfield stations. The diameter of the circles scales as a linear function of percent gravel. The inset shows the four farfield station groups determined from benthic infaunal community structure described in Section 3.3.2.

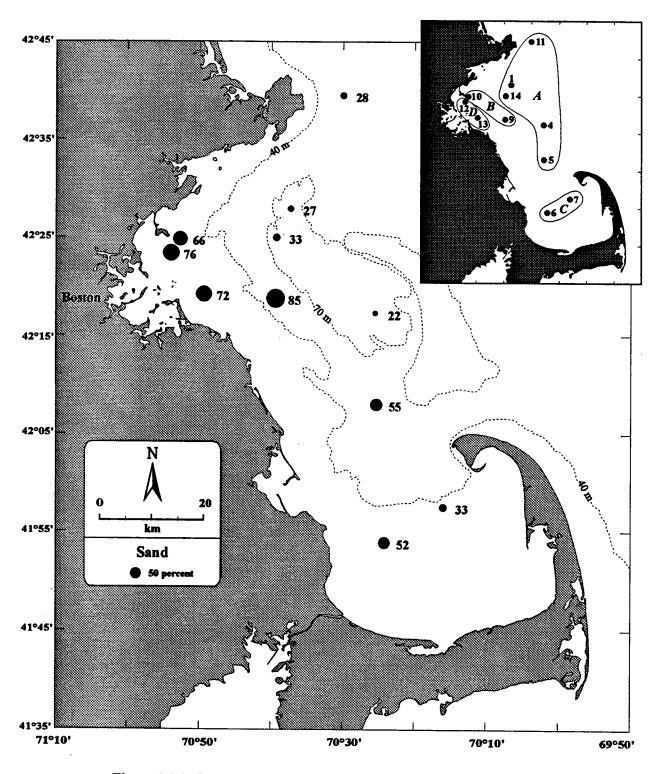


Figure 3.2.2 Geographic distribution of percent sand at farfield stations.

The inset is described in Figure 3.2.1.

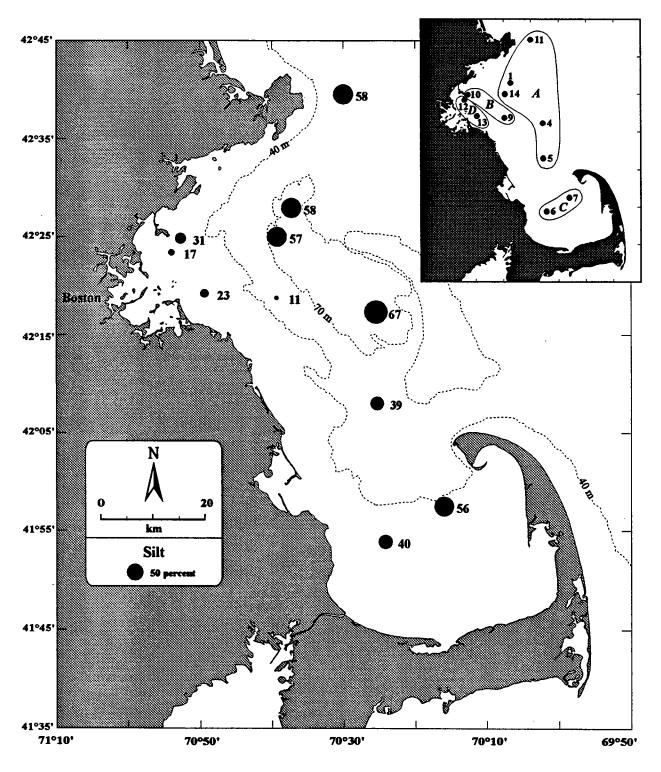


Figure 3.2.3 Geographic distribution of percent silt at farfield stations.

The inset is described in Figure 3.2.1.

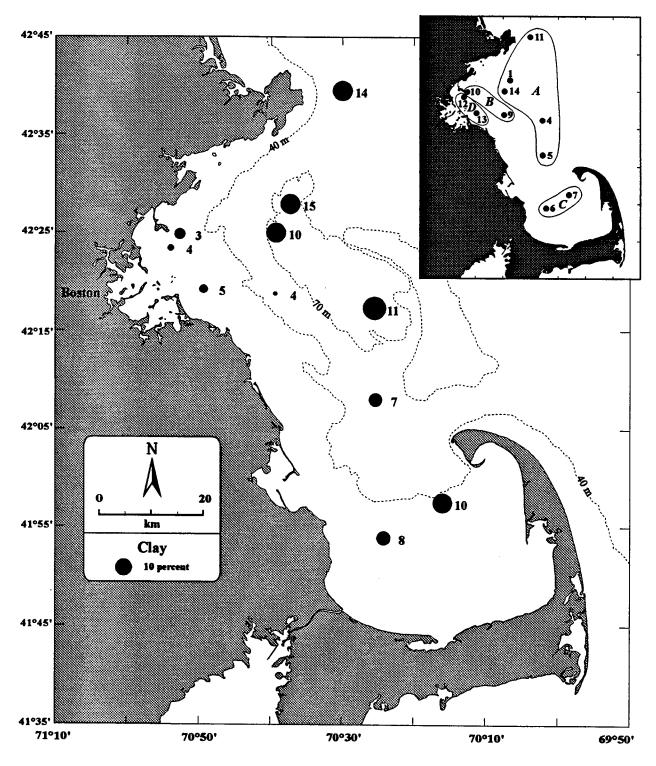


Figure 3.2.4 Geographic distribution of percent clay at farfield stations.

The inset is described in Figure 3.2.1.

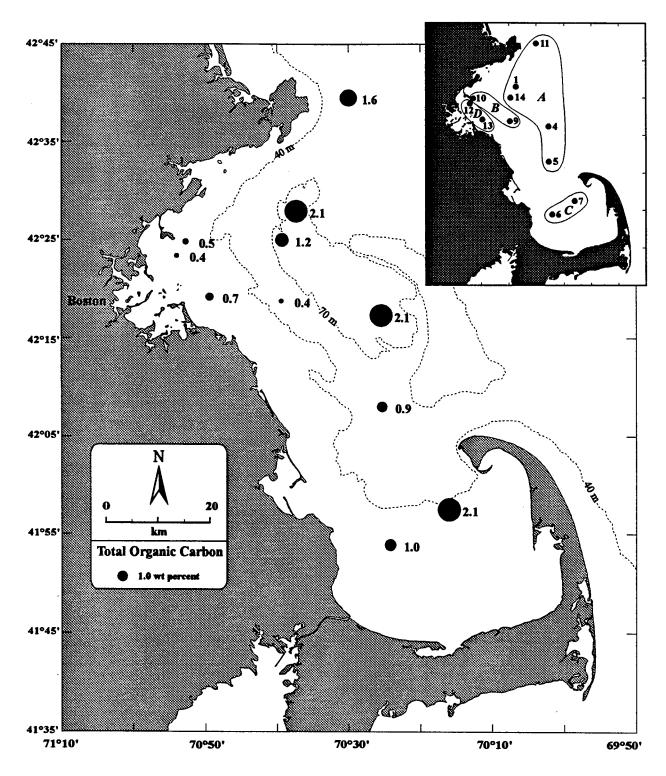


Figure 3.2.5 Geographic distribution of total organic carbon (wt %) at farfield stations. The inset is described in Figure 3.2.1.

Table 3.2.1 Spearman's rank correlation coefficients (lower diagonal of matrix) between abiotic¹ variables measured in 40 replicate sediment samples at all nearfield and farfield stations. The corresponding significance level (α) is shown in the upper diagonal of the matrix.

	Depth (m)	Mud	TOC	C. perfringens	Silver	PAH	PCB
Depth (m)	1.0000	0.001	0.002	0.002	0.058	0.818	0.778
Mud fraction	0.5207	1.0000	0.000	0.039	0.000	0.000	0.000
тос	0.4687	0.8469	1.0000	0.024	0.001	0.000	0.000
C. perfringens	-0.4745	0.3278	0.3560	1.0000	0.000	0.000	0.000
Silver	-0.3019	0.5396	0.5231	0.8339	1.0000	0.000	0.000
РАН	0.0376	0.6099	0.6771	0.7771	0.6811	1.0000	0.000
PCB	0.0459	0.7709	0.7451	0.6872	0.8783	0.7578	1.0000

¹Including Clostridium perfringens spore counts.

Although Clostridium perfringens spores are not strictly abiotic, they are grouped with abiotic variables in this report since they are highly correlated with silver concentration and are indicative of anthropogenic activities. Here, the term "biotic" is reserved strictly for macro-infaunal organisms collected in grab samples. Figure 3.2.6 shows the distribution of C. perfringens spores represented by average colony-forming units per gram of dry weight of sediment. These spores are from a naturally occurring bacterium found in the intestinal tract of mammals and their distribution has been established as a sewage effluent tracer (Keay et al., 1993; Hill et al., 1993). In contrast to mud and TOC distributions, C. perfringens spores were not strongly associated with grain size (R=0.3, α =0.04) as shown in Table 3.2.1. Instead, the highest counts were near the mouth of Boston Harbor at Stations FF10, FF12, and FF13.

The distribution of organic contaminants at farfield stations is represented by total PAH concentrations shown in Figure 3.2.7 and PCB concentrations shown in Figure 3.2.8. Among replicate data, both correlated (R > 0.6) with TOC levels and C. perfringens spore counts (Table 3.2.1). However, the spatial distribution of average levels of total PAH concentration differed slightly from TOC and fine-grained sediment in that the highest PAH concentrations were at northern Stations FF1 and FF11. The levels at these stations exceeded 5 μ g/g whereas other stations were close to the range (0.16 to 3.4 μ g/g) found by Windsor and Hites (1979). PCB concentration was more spatially uniform and had a mean concentration of 25.4 ng/g comparable to the mean concentration 20.9 ng/g reported by Boehm et al. (1984).

The distribution of the trace metal silver is shown in Figure 3.2.9. Silver has been suggested as a useful chemical indicator of sewage related particulates within Massachusetts and Cape Cod Bays (Bothner et al., 1993). This suggestion was based on the positive correlation silver exhibits with C. perfringens spore counts as shown in Figure 3.2.10. The high silver concentrations near Boston Harbor at Stations FF12 and FF13 became further elevated (Figure 3.2.11) when normalized by the mud fraction, as suggested by Bothner et al. (1993). The distribution of silver was generally consistent with the interpretation by Shea (1994).

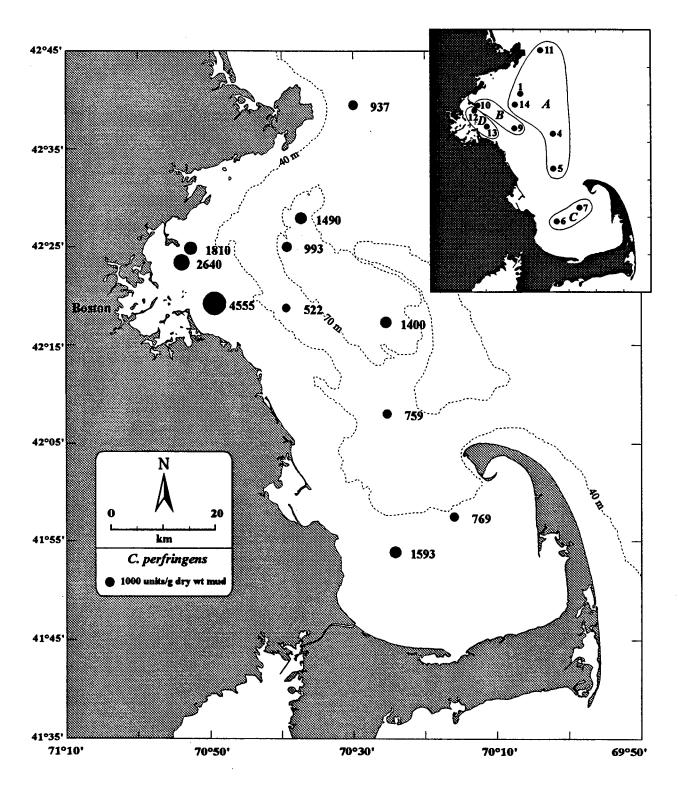


Figure 3.2.6 Geographic distribution of *Clostridium perfringens* spore counts (colony-forming units/g dry wt) at farfield stations.

The inset is described in Figure 3.2.1.

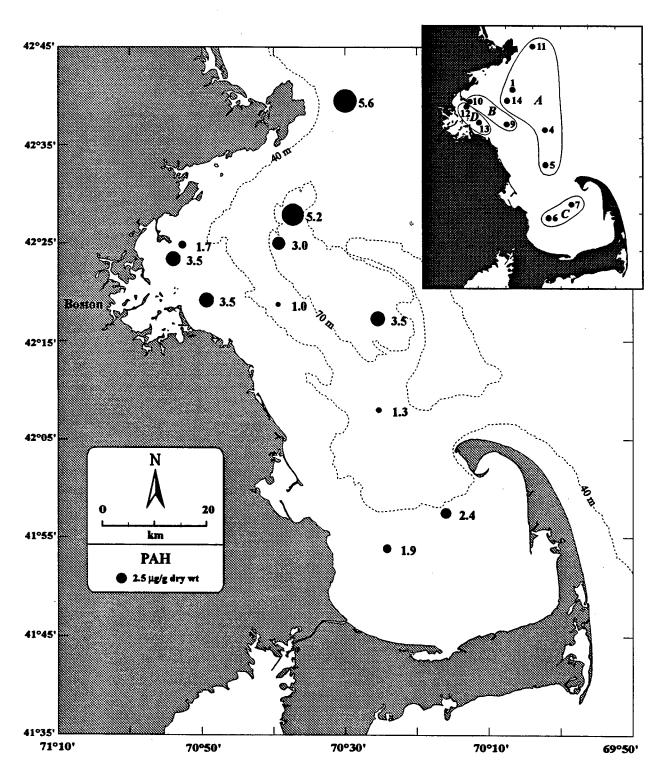


Figure 3.2.7 Geographic distribution of total PAH ($\mu g/g$ dry wt) at farfield stations. The inset is described in Figure 3.2.1.

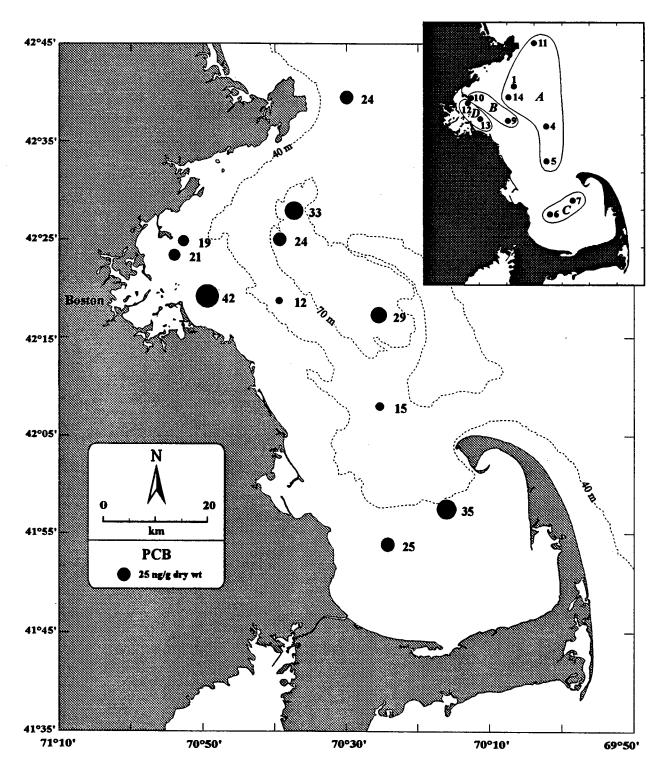


Figure 3.2.8 Geographic distribution of PCB concentration (ng/g dry wt) at farfield stations. The inset is described in Figure 3.2.1.

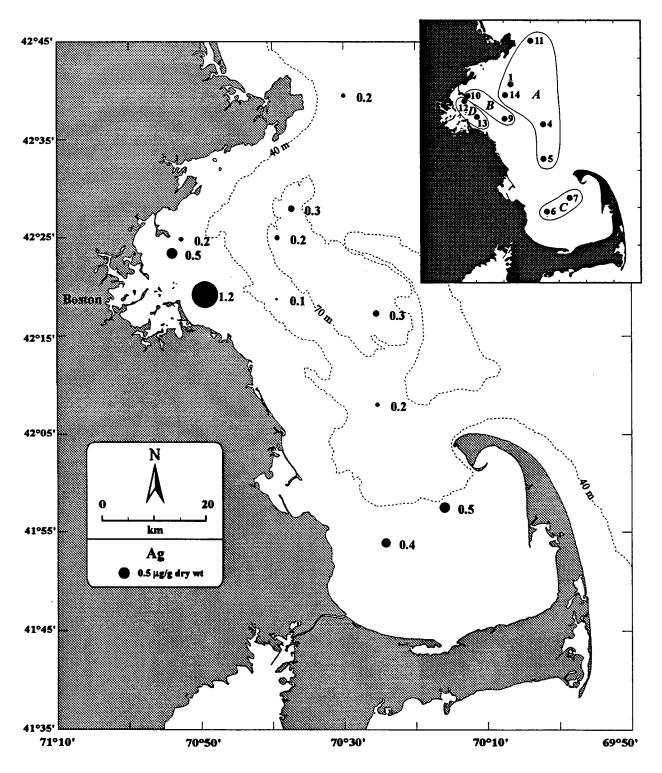


Figure 3.2.9 Geographic distribution of silver concentration ($\mu g/g$ dry wt) at farfield stations. The inset is described in Figure 3.2.1.

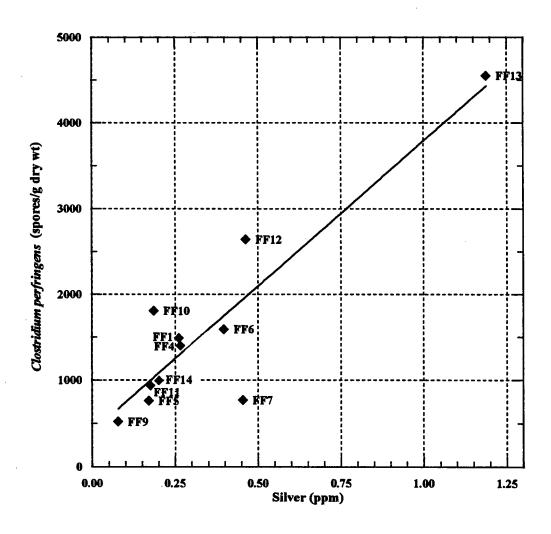


Figure 3.2.10 Linear regression of Clostridium perfringens spore counts on silver concentration yielding an R^2 =0.8.

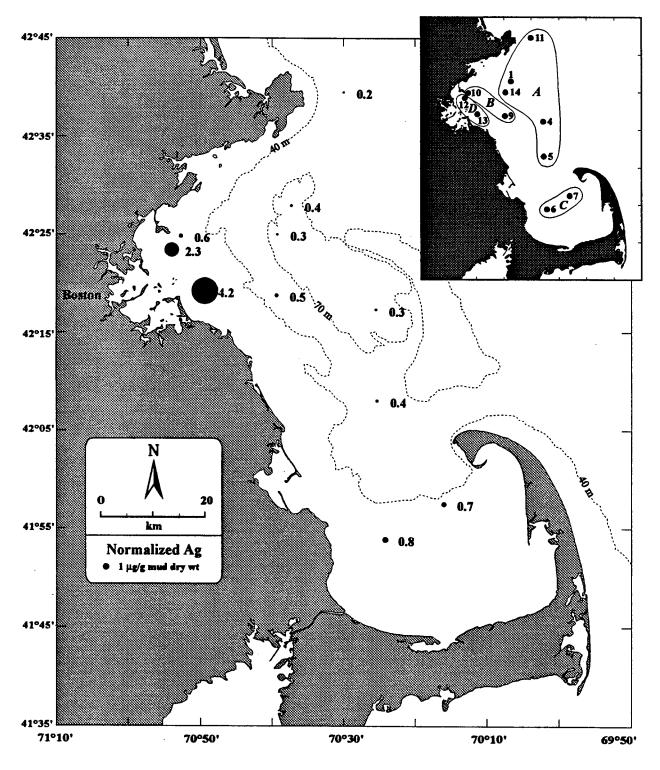


Figure 3.2.11 Geographic distribution of normalized silver concentration (μ g/g mud dry wt) at farfield stations. The inset is described in Figure 3.2.1.

3.2.2 Midfield Sediments

The surficial sediment texture at midfield distances from the diffuser is shown in Figures 3.2.12 through 3.2.15. The most obvious feature of these patterns is the high gravel content (37%) in samples collected at Station NF14 (Figure 3.2.12). This fraction is a factor of ten larger than the gravel fraction at any other nearfield or farfield station. At the time of collection, Campbell (1993) noted that samples from this station contained glass and tile fragments of anthropogenic origin. He speculated that barges may have dumped at this site in the past. Nevertheless, the fraction of finer grained particulates at this station was comparable to those of other stations at midfield distances (Figures 3.3.13 through 3.2.15). Moreover, TOC (Figure 3.2.16), C. perfringens spore counts (Figure 3.2.17), organic contaminants (Figures 3.2.18 and 3.2.19) and silver concentration (Figure 3.2.20) at Station NF14 were not anomalous compared to other stations at midfield distances from the diffuser. Finally, as will be subsequently shown, the biological community at Station NF14 was closely related to the five other stations within the modified Group C (indicated as C' in Figure 3.2.12).

Figures 3.2.14 and 3.2.15 show that the smallest fraction of fine-grained sediments was collected at three stations (NF2, NF4 and NF17). As will be discussed in Section 3.4.4, these stations support macroinfaunal community structures that differ from other stations at midfield distances from the diffuser. No other clear spatial patterns emerge from the pattern of sediment facies, and for reasons described below, the data were not contoured as was done for 1992 data by Blake *et al.* (1993).

The pattern of TOC is shown in Figure 3.2.16. Elevated TOC levels (>1.5%) at Stations NF12 and NF8 correspond to an elevated (≥50%) fraction of silt (Figure 3.2.14) and clay (>8%) at these stations (Figure 3.2.15). This is expected given the high correlation between TOC and mud fraction among all replicates (Table 3.2.1). The variability over this spatially limited region was unexpected in light of the interpretation of farfield data. The highest TOC level at stations at midfield distances from the diffuser (2.9%) exceeded the highest TOC level at any farfield station (Figure 3.2.5). A similar relationship obtained for the mud fractions between mid and farfield stations. Thus, small-scale (<10 km) variability in surficial sediments exceeded large scale (~100 km) trends and an interpretation of spatial patterns from a limited number of widely separated stations is questionable (viz. contouring using semivariogram analysis as suggested by Shea *et al.*, 1991). For example, consider how different the TOC pattern in the farfield (Figure 3.2.5) would appear if Stations FF10, FF12, and FF13 had been located where NF8, NF12, and NF14 are now located. By moving these farfield stations only a few kilometers, they would have exhibited high TOC levels (1.5 to 2.9%) comparable to farfield stations further offshore. This calls into question the result reported in Section 3.2.1 concerning a monotonic increase in TOC concentrations (and fine-grained sediments) with distance from Boston Harbor. Other sediment quality parameters also exhibit large amplitude variability over small spatial scales and make objective mapping difficult.

3.3 FARFIELD MACROINFAUNAL ASSEMBLAGES

Farfield statistics were computed to characterize the regional benthic community spanning Cape Cod and Massachusetts Bays (Figure 2.2.1). The most distant farfield stations were separated from the diffuser by more than 80 km.

3.3.1 Taxonomic Composition

A total of 226 taxa representing 13 major taxonomic groups was identified among the 39,717 organisms encountered in all farfield samples. Nearly all (36,884 or 93%) of the total number of organisms were classified into 186 species contained within the 226 taxa. Appendices A-3 and A-4 list identified taxa arranged phylogenetically for sieve-size fractions of 0.3 and 0.5 mm, respectively. The total number of organisms per replicate sample ranged from 173 individuals in Replicate 2 at Station FF4 to 2,745 in Replicate 3 at Station FF7 (Table 3.3.1). The coefficient of variation in mean density, defined as the ratio of the standard deviation to mean,

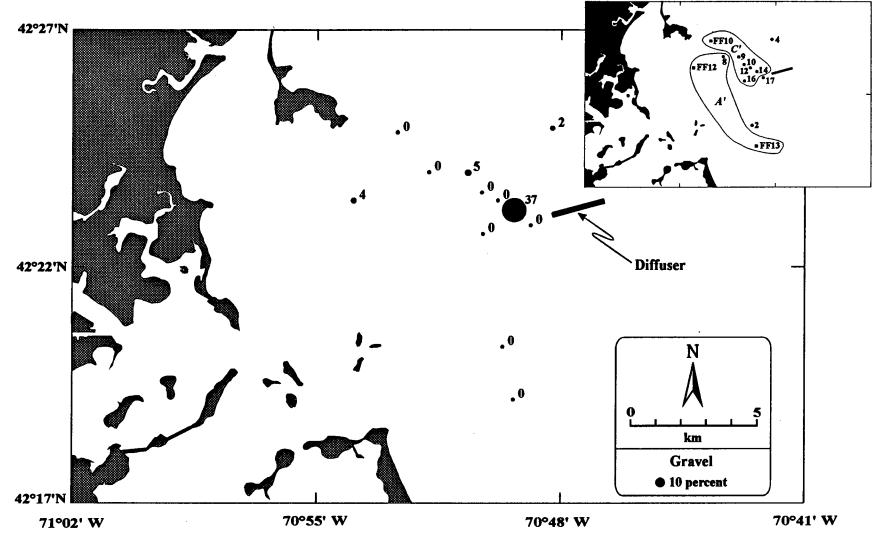


Figure 3.2.12 Geographic distribution of percent gravel at midfield distances (<8 km) from the diffuser. The diameter of the circles scales as a linear function of percent gravel. The inset shows midfield station groups determined from benthic infaunal community structure summarized in Table 4.3.1.

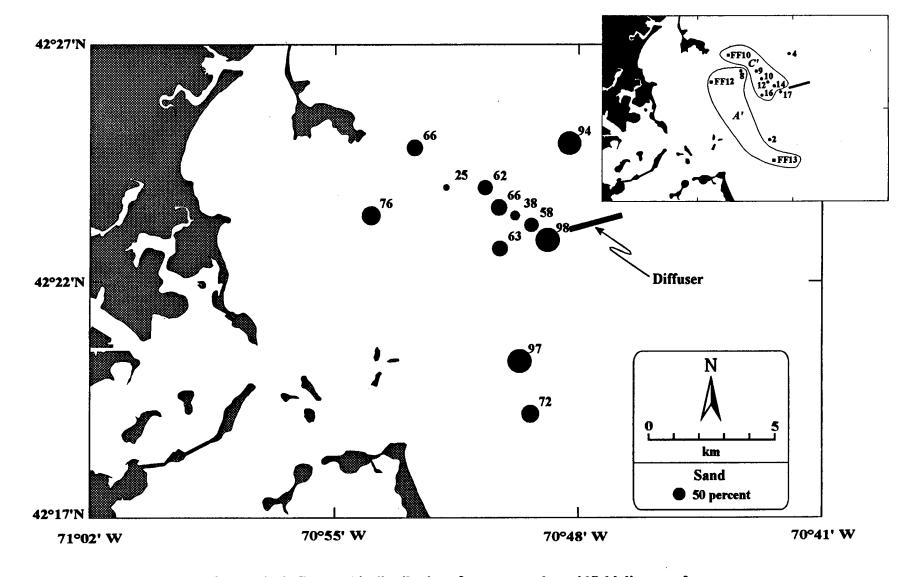


Figure 3.2.13 Geographic distribution of percent sand at midfield distances from the diffuser. The inset is described in Figure 3.2.12.

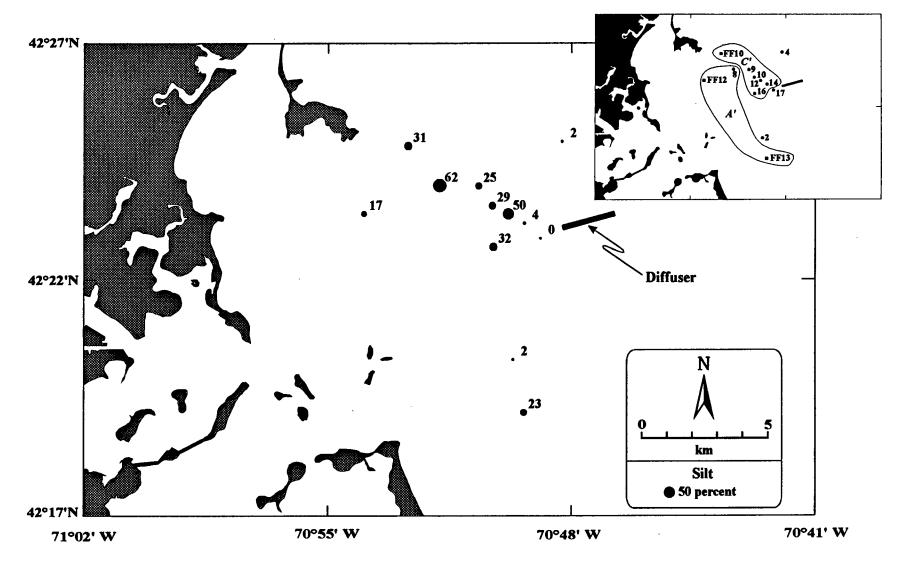


Figure 3.2.14 Geographic distribution of percent silt at midfield distances from the diffuser. The inset is described in Figure 3.2.12.

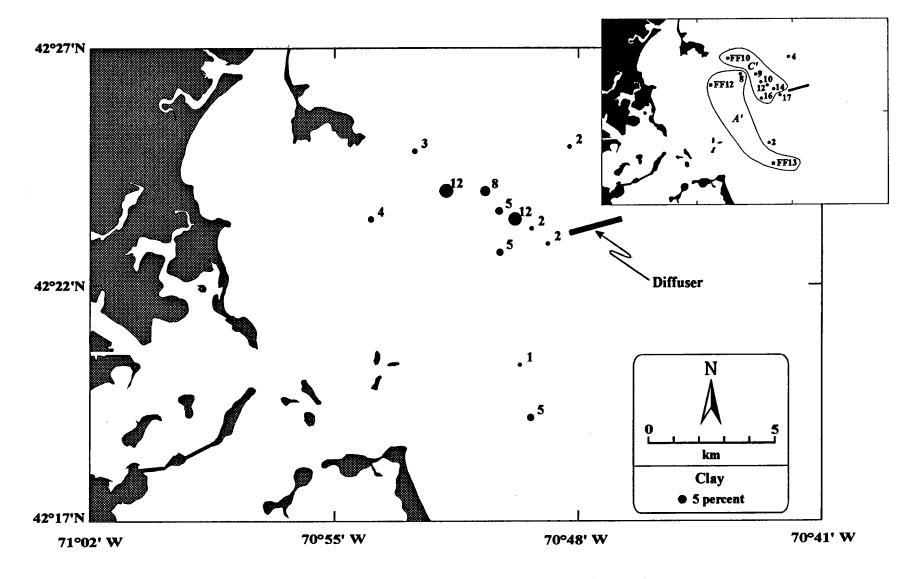


Figure 3.2.15 Geographic distribution of percent clay at midfield distances from the diffuser. The inset is described in Figure 3.2.12.

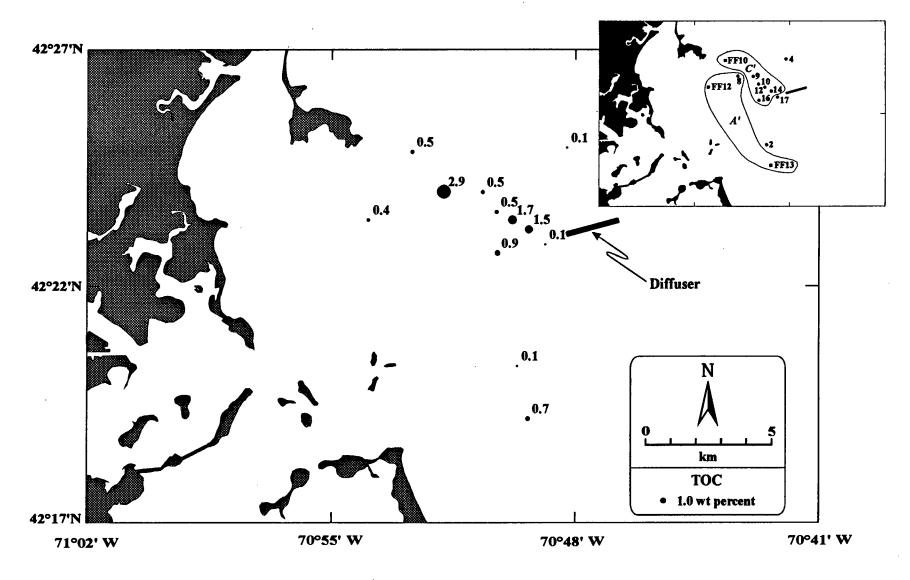


Figure 3.2.16 Geographic distribution of total organic carbon (wt %) at midfield distances from the diffuser. The inset is described in Figure 3.2.12.

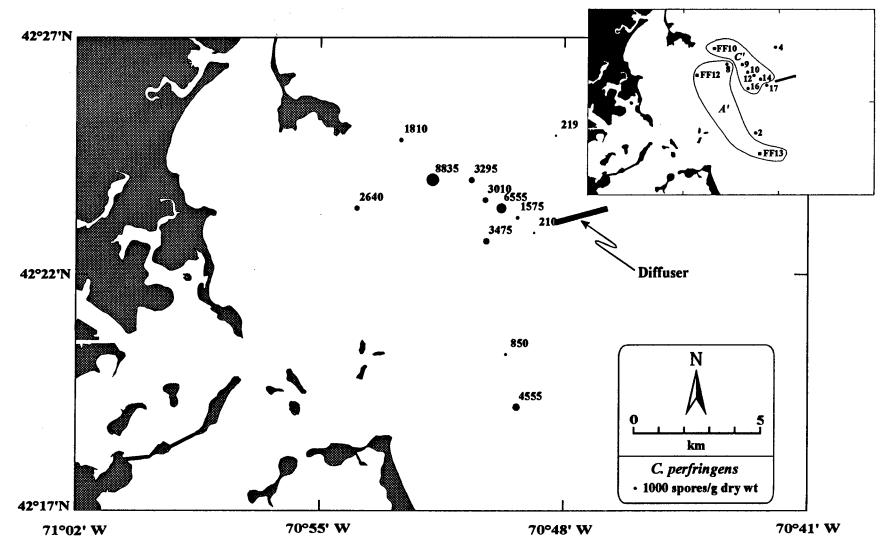


Figure 3.2.17 Geographic distribution of *Clostridium perfringens* spore counts (spores/g dry wt) at midfield distances from the diffuser. The inset is described in Figure 3.2.12.

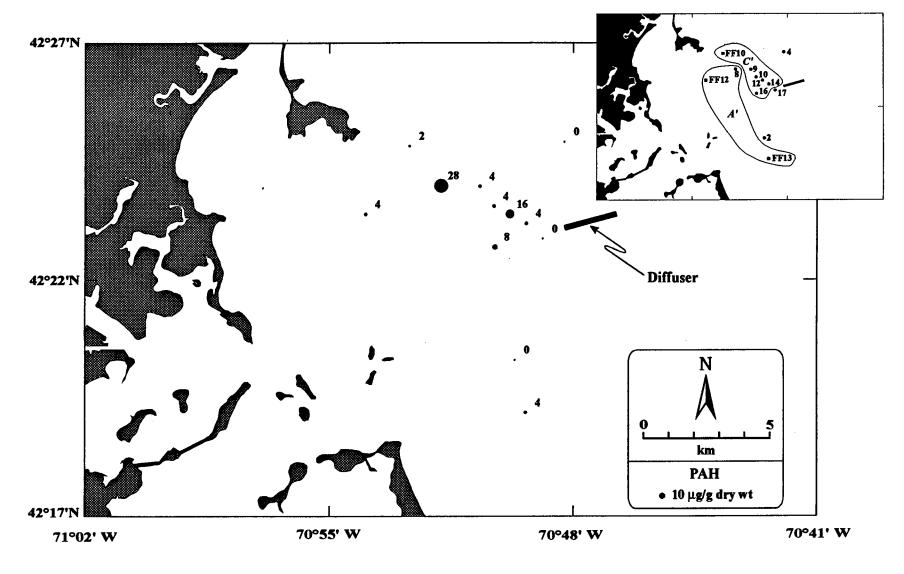


Figure 3.2.18 Geographic distribution of PAH ($\mu g/g$ dry wt) at midfield distances from the diffuser. The inset is described in Figure 3.2.12.

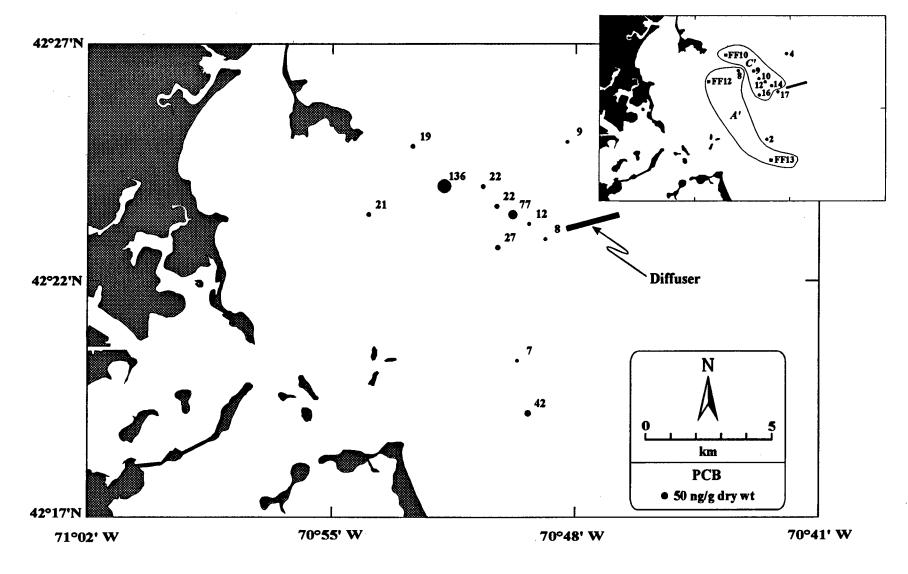


Figure 3.2.19 Geographic distribution of PCB concentration (ng/g dry wt) at midfield distances from the diffuser. The inset is described in Figure 3.2.12.

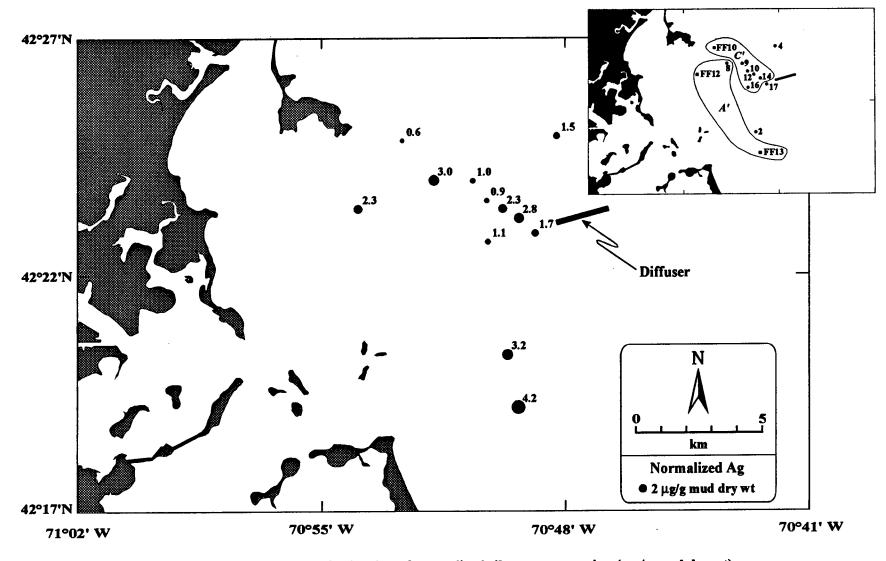


Figure 3.2.20 Geographic distribution of normalized silver concentration (mg/g mud dry wt) at midfield distances from the diffuser. The inset is described in Figure 3.2.12.

was generally less than 30%. A much higher coefficient of variation in mean density was observed at Stations FF4. The high coefficient of variation of 61% at Station FF4 was an artifact of the low mean density, because the standard deviation was comparable to other stations. As discussed in Section 2.3, the total of 936 organisms identified in Replicate 2 from Station FF7 was anomalously low compared to other replicates at this station and therefore, it is not included in the macroinfaunal analysis described below.

Infaunal abundance for each sieve-size fraction tracked variations in total station abundance, and the lowest and highest densities were observed at Stations FF4 and FF7, respectively (Figure 3.3.1). The density of organisms was consistently greater in the 0.5-mm fraction at each station and ranged from 53% of the total density at Station FF11 to nearly 83% at Station FF6.

3.3.2 Numerical Classification

The community structure among replicate samples from a given station was more consistent than the community structure between stations. This is evident from the numerical classification of replicate samples at farfield stations presented in Figures 3.3.2 and 3.3.3. Clustering using NNESS similarity (Figure 3.3.2) reveals that the highest similarity was among the replicate samples from each individual station. Replicate samples within individual stations had similarities that exceeded 0.9 at all stations, except Replicate 1 at Station FF4 which had a marginally lower similarity of 0.88 but still aggregated first with the other replicate samples at Station FF4. Clustering using a Bray-Curtis similarity (Figure 3.3.3) yields a similar result albeit not as robust as NNESS because the community structure in Replicate 1 at Station FF4 was a better match with the replicate agglomeration at Station FF1. Nevertheless, using a Bray-Curtis similarity value of 0.82 as a decision rule effectively separates replicate samples from station agglomerations. Stations FF6 and FF7 are an exception to the Bray-Curtis decision rule for separating stations from replicates. They had a relatively high Bray-Curtis similarity (0.84) causing these stations to cluster above the 0.82 decision rule.

Four geographically separate groups of stations were formed by the station clustering using pooled replicate samples. Because of high similarity among replicate samples at individual stations, the numerical classification of pooled abundance shown in Figure 3.3.4 delimited station groups similar to that shown in Figures 3.3.2 and 3.3.3. Using a NNESS similarity of 0.65 as a decision rule in Figure 3.3.4b produced four major clusters. These four clusters were geographically separate as shown in Figure 3.3.5. The weakest cluster was Group B, which included Stations FF9 and FF10 and had a NNESS similarity near 0.7. The lowest NNESS similarity among all other groups exceeded 0.8. Stations FF9 and FF10 did not form a cluster group in the dendrogram using Bray-Curtis similarity (Figure 3.3.4a).

Although stations cluster with respect to total abundance (Figure 3.3.6) to some degree, the clearest pattern emerges from polychaete family densities (Figure 3.3.7). The polychaete class constituted 82% of all organisms and 97% of annelids collected at all farfield stations. The annelid phylum was much more abundant than any other major taxonomic group. From Figure 3.3.7, characteristics of the station groups can be distinguished in terms of relative abundances of spionid, paraonid, cirratulid, and other polychaete families. Stations within Group A were characterized by a comparatively even distribution among the family divisions. Group C had low abundances in the major (spionid, paraonid and cirratulid) polychaete families compared to other polychaete families. Group B, consisting of Stations FF9 and FF10, had the highest densities of spionid polychaetes (Figure 3.3.8). Conversely, Group B had some of the lowest abundances of paraonid polychaetes (Figure 3.3.9). Group D, consisting of Stations FF12 and FF13, exhibited the opposite pattern with comparatively low spionid populations and high paraonid densities (Figures 3.3.7 through 3.3.9).

Table 3.3.1 Number of macroinfaunal organisms recovered from replicates at farfield stations. Station FF7 does not include Replicate 2 for reasons described in the text.

		Replicate			Standard	Coefficient
Station	1	2	3	Mean	Deviation	of Variation
FF1	543	730	638	637	94	15%
FF4	619	173	320	371	227	61%
FF5	920	926	990	945	39	4%
FF6	1234	2123	1878	1745	459	26%
FF7	2487		2745	2616	182	7%
FF9	1341	895	1197	1144	228	20%
FF10	1418	1415	2183	1672	443	26%
FF11	1085	1201	931	1072	135	13%
FF12	1322	837	1443	1201	321	27%
FF13	1494	945	1698	1379	389	28%
FF14	848	1172	1030	1017	162	16%

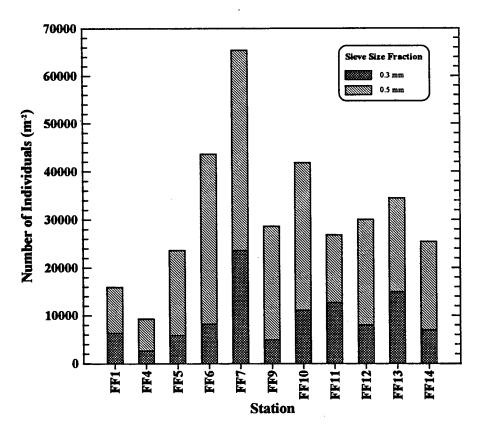


Figure 3.3.1 Density of organisms determined from the two sieve-size fractions at farfield stations. Station FF7 does not include Replicate 2.

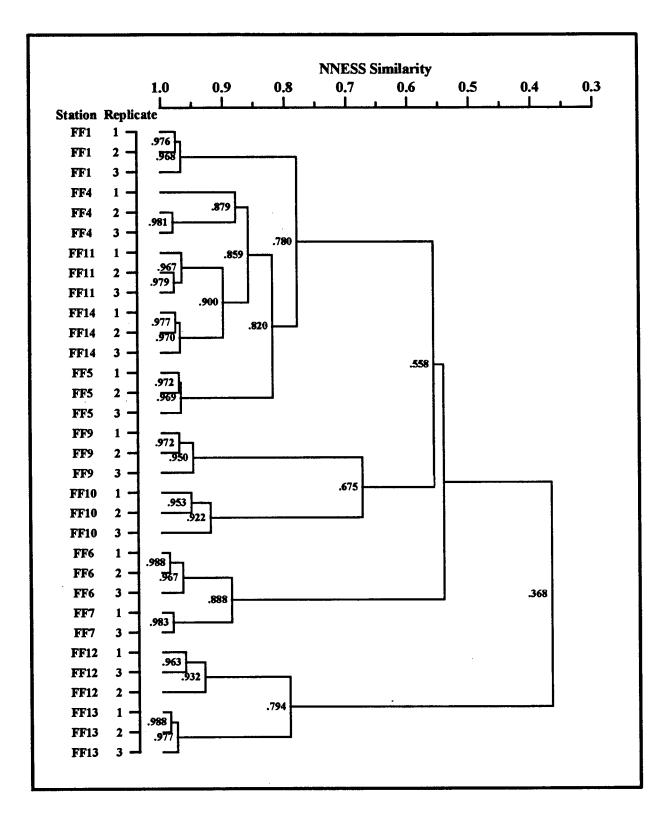


Figure 3.3.2 Dendrogram resulting from clustering (group average sorting) of NNESS similarity (m=200) among farfield replicates.

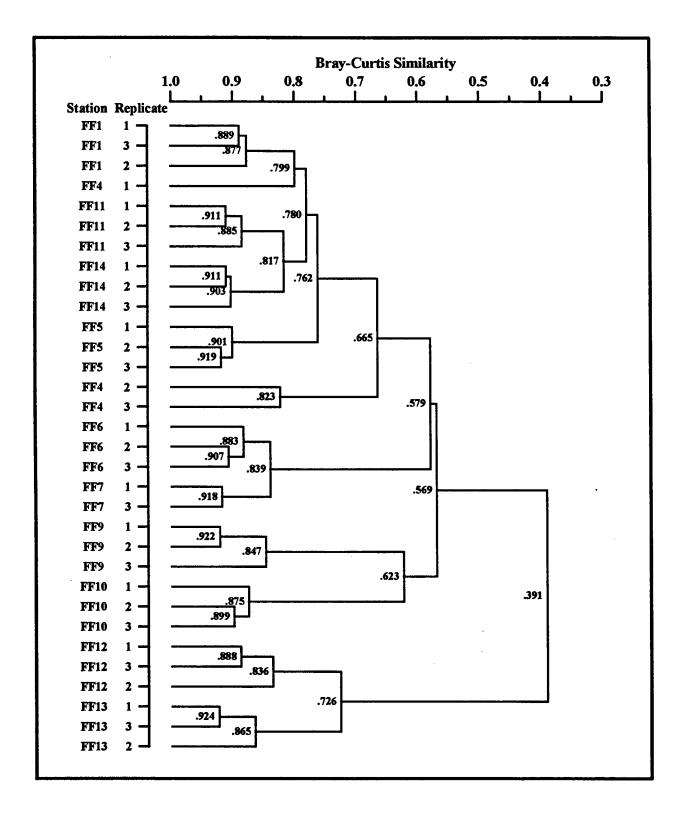


Figure 3.3.3 Dendrogram resulting from clustering (group average sorting) of Bray-Curtis similarity among farfield replicates.

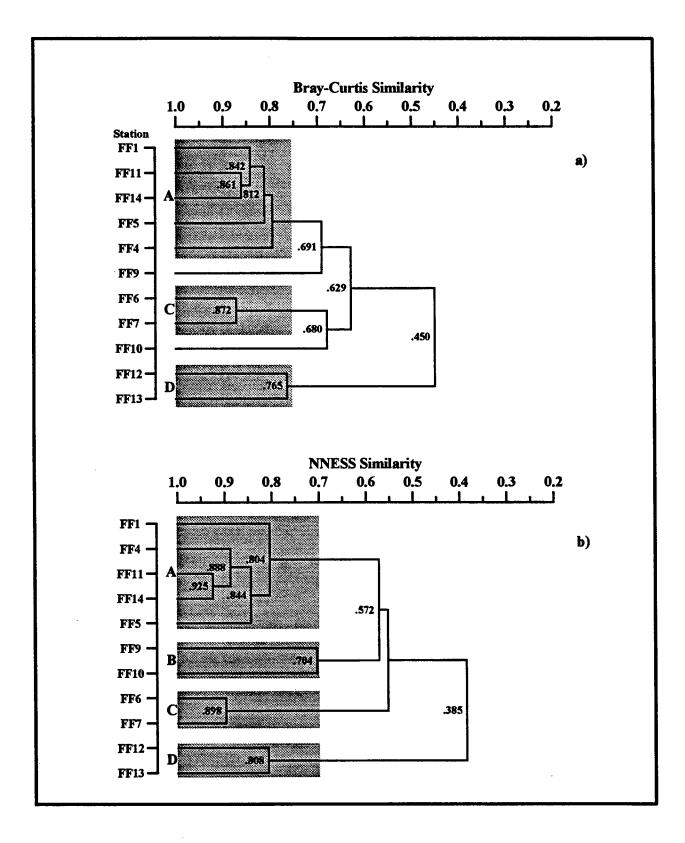


Figure 3.3.4 Dendrograms resulting from clustering (group average sorting) of pooled replicate abundance data at farfield stations using (a) Bray-Curtis and (b) NNESS (m=200) similarity measures.

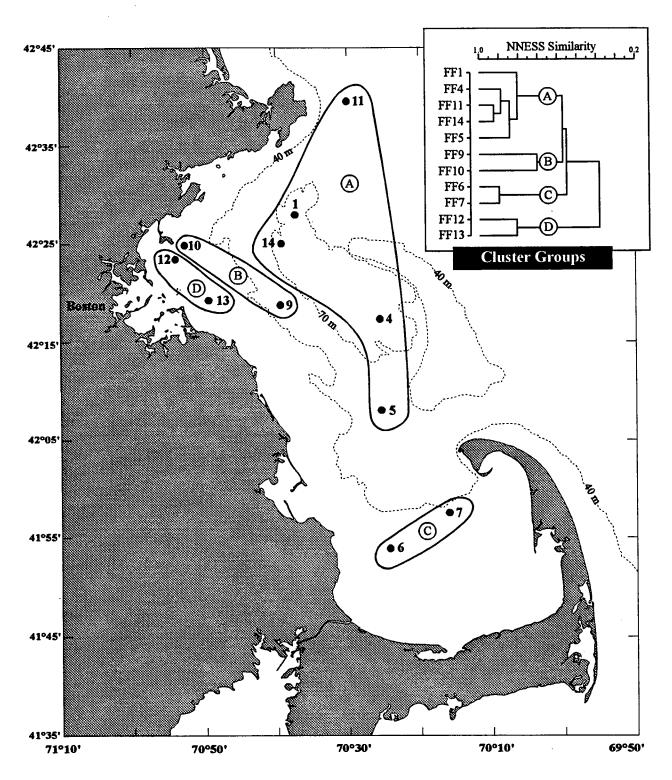


Figure 3.3.5 Geographic distribution of farfield cluster groups. The inset shows the dendrogram of Figure 3.3.4b.

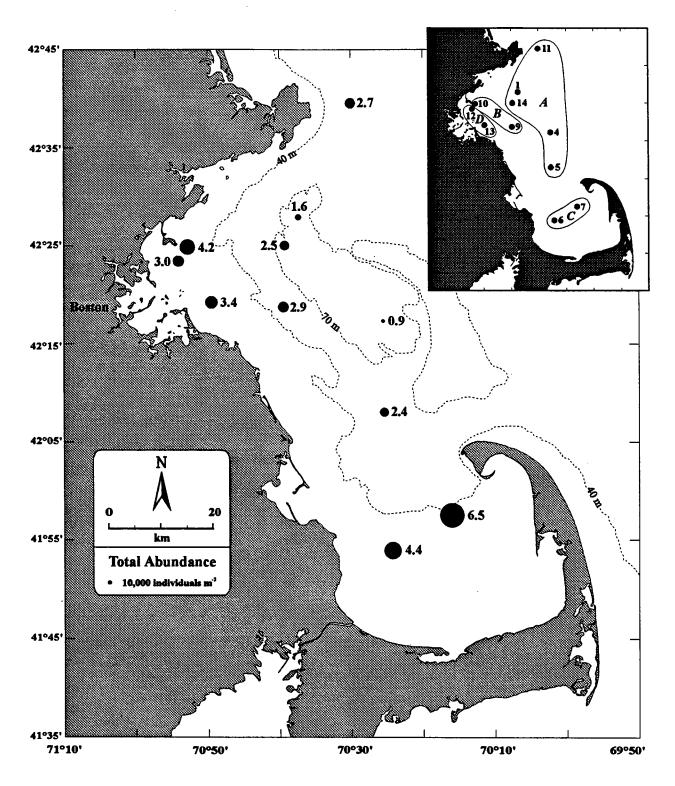


Figure 3.3.6 Geographic distribution of total infaunal density at farfield stations. The diameter of the circles scales as a linear function of infaunal density and the numbers represent 10,000 individuals m⁻². The inset shows the four farfield station groups shown in Figure 3.3.5 and summarized in Table 4.1.1.

Table 3.3.2 Density and diversity related community parameters for farfield stations.

Farfield Group	Station	Depth (m)	Density (m ⁻²)	Density ¹ (m ⁻²)	Number of Species	Richness d'	Diversity H'	Evenness J'	Dominance C'
-	FF5	61	23633	21425	77	9.7	2.69	0.62	0.148
	FF14	70	25417	24167	65	8.0	2.72	0.65	0.114
Α	FF1	84	15925	14692	84	11.1	3.19	0.72	0.063
	FF4	87	9267	8558	50	7.1	2.66	0.68	0.154
	FF11	87	26808	24883	69	8.5	2.75	0.65	0.099
	FF10	27	41800	36617	8 6	10.1	3.22	0.72	0.071
В	FF9	49	28608	26883	83	10.2	2.21	0.50	0.244
	FF6	33	43625	40442	89	10.4	2.93	0.65	0.103
С	FF7 ²	37	65400	63400	59	6.8	2.51	0.61	0.140
	FF12	22	30017	26742	56	6.8	2.07	0.51	0.246
D	FF13	19	34475	33358	60	7.1	2.27	0.55	0.174

¹ Abundance computed using only those taxa identified to species level.

² Parameters computed for Station FF7 do not include Replicate 2.

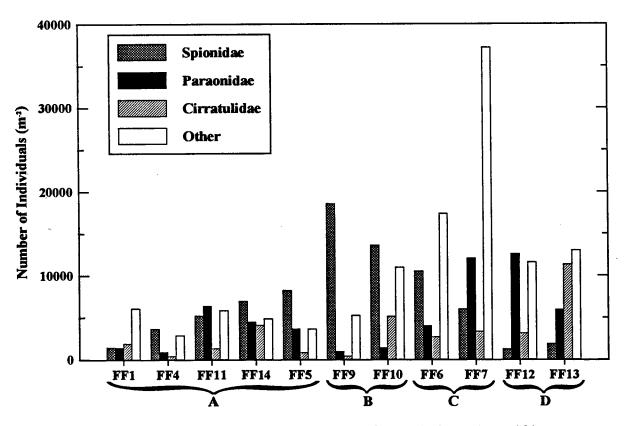


Figure 3.3.7 Abundance (number of individuals m²) of organisms within the major polychaete families at farfield stations.

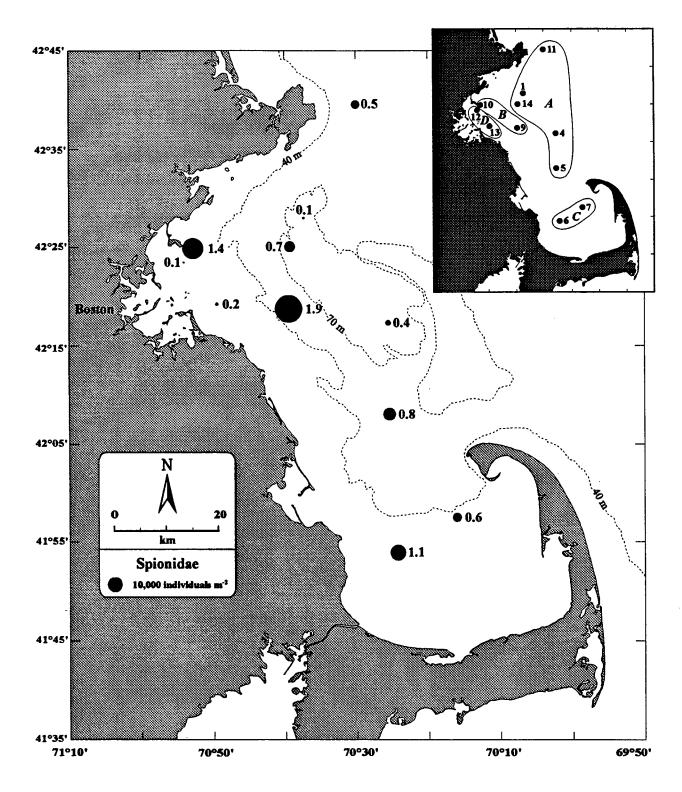


Figure 3.3.8 Geographic distribution of spionid polychaete abundance at farfield stations. The inset is described in Figure 3.3.6.

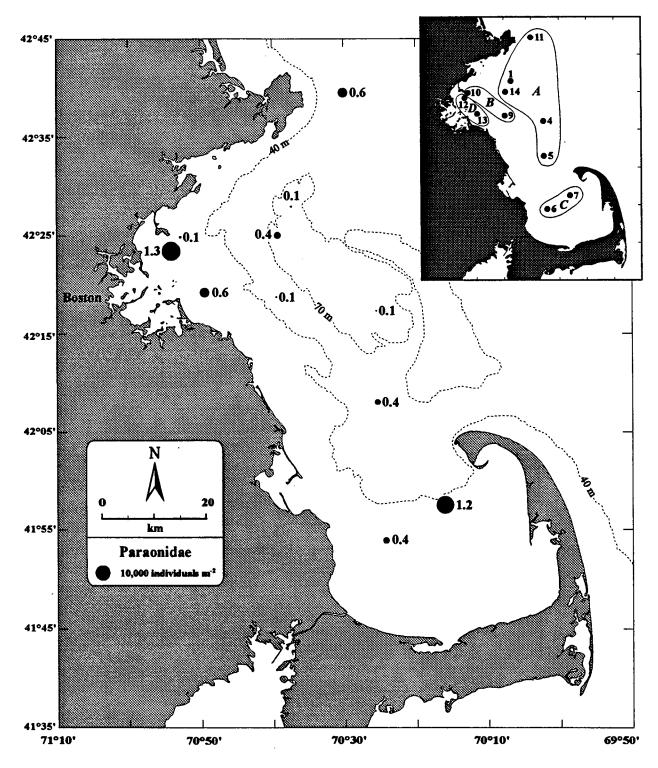


Figure 3.3.9 Geographic distribution of paraonid polychaete abundance at farfield stations. The inset is described in Figure 3.3.6.

3.3.3 Diversity and Related Community Characteristics

Table 3.3.2 lists organism density and diversity related parameters for farfield stations in the four cluster groups described in Section 3.3.2. For both total abundance and abundance of taxa identified to species level, the highest densities were observed at the two Group C stations (FF6 and FF7) and the lowest densities were observed at the five Group A stations.

Because of the wide variation in abundance among farfield stations, total number of species is not a good indicator of diversity. Instead, comparing rarefaction curves (Figure 3.3.10) at the smallest sample size ($n \approx 1000$ at Station FF4) yields diversity ranking more consistent with the Species Richness Index, Thus, although Station FF6 had the highest number of observed species, it also had a high number of individuals. This resulted in a reduced species richness as defined by $E(S_{1000})$ and d'. Nevertheless, the rarefaction curves indicate that stations differ in the functional relationship of the distribution of individuals within species. This introduces bias in diversity indices (H', J', C' and d') as discussed in Section 2.3.1. Although this bias makes it difficult to interpret these indices ecologically, general trends probably remain pertinent.

The diversity statistics in Table 3.3.2 do not exhibit a clear distinction among cluster groups. Stations with the greatest species richness were FF1, FF10, FF6, FF5, and FF9. Stations FF5 and particularly FF9 had anomalously low evenness and correspondingly high dominance indices. This resulted in a reduced diversity index for these stations and, consequently, the highest diversities were associated with the remaining Stations FF1, FF10, and FF6. The high dominance associated with Station FF9 was due to a relatively high density of spionid polychaetes in general (Figure 3.3.7) and the species *Spio limicola* (Table 3.3.3) in particular. A similarly high dominance index and corresponding low evenness were associated with Station FF12 (Table 3.3.2). These indices resulted from the high density of the paraonid polychaete *Aricidea catherinae*, which constituted more than 40% of the individuals collected at that station (Table 3.3.3). The high dominance at Station FF12, combined with its low richness, resulted in the lowest diversity index of any of the farfield stations.

3.3.4 Dominant Species

Dominant species and taxa are presented in Table 3.3.3. Here, dominance is defined as the ten most abundant species or taxa identified at a station. At all stations except Stations FF12 and FF13, the spionid polychaete S. limicola was a dominant species. Stations FF12 and FF13 constitute the shallow cluster Group D, where spionid polychaete density was low compared to paraonid density (Section 3.3.2). In six of the remaining nine farfield stations, S. limicola ranked first and had densities ranging between 6 and 38% of the total infauna collected. Only the capitellid Mediomastus californiensis was a dominant species at all farfield stations, with densities ranging between 3 and 19%. One cirratulid polychaete Tharyx acutus exhibited some depth-dependent dominance. It was not a dominant species at the five stations that form the deepest cluster Group A. It was more dominant at the shallowest stations within Group D, where it represented over 30% of the individuals collected at the shallowest Station FF13. The paraonid polychaete A. catherinae exhibited a similar depth dependence, ranging from high dominance at shallow stations and no dominance within the five deep Group A stations. The related paraonid polychaete A. quadrilobata and the cirratulid Chaetozone sp. A exhibited the reverse trend, with high dominance at deep Group A stations and no dominance at shallow Group D stations. In fact, Chaetozone sp. A was only dominant in the deep Group A stations.

Some other aspects of the ranked abundance of taxa were noteworthy. The oligochaete *Tubificoides apectinatus* had the greatest abundance at two of the five Group A stations (FF1 and FF11). It also ranked high (>22) at other Group A and D stations, but was relatively unimportant (rank>57) at stations within Groups B and C. The seven dominant taxa common to Group C stations in Cape Cod Bay were all polychaetes and included S.

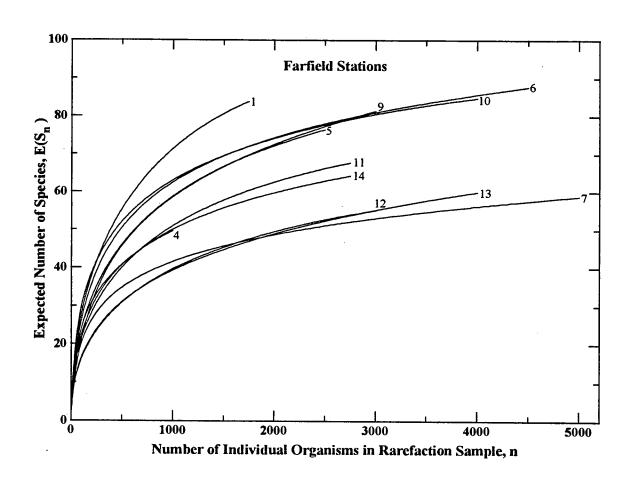


Figure 3.3.10 Hurlbert rarefaction plots for farfield stations.

Table 3.3.3 Dominant (top ten) macroinfaunal species and taxa identified at farfield stations.

Station	Overali Rank		Taxon	Abundance (m ⁻²)	Percent of Total Fauna	Percent of Identified Species
FF1 (G	roup A)					
	1	Oligochaeta	Tubificoides apectinatus	1475	9.3	10.0
	2	Polychaeta	Maldane glebifex	1450	9.1	9.9
	3	Polychaeta	Chaetozone sp.A	1433	9.0	9.8
	4	Polychaeta	Cossura longocirrata	1283	8.1	8.7
	5	Polychaeta	Anobothrus gracilis	1242	7.8	8.5
	6	Polychaeta	Aricidea quadrilobata	1167	7.3	7.9
	7	Polychaeta	Spio limicola	992	6.2	6.8
	8	Bivalvia	Thyasira gouldii	783	4.9	5.3
	9	Bivalvia	Yoldia sapotilla	483	3.0	3.3
	10	Polychaeta	Mediomastus californiensis	458	2.9	3.1
					67.6	73.3
FF4 (G	roup A)					
	1	Polychaeta	Spio limicola	3075	33.2	35.9
	2	Polychaeta	Mediomastus californiensis	667	7.2	7.8
	3	Polychaeta	Levinsenia gracilis	542	5.8	6.3
	4	Polychaeta	Scalibregma inflatum	525	5.7	6.1
	5	Polychaeta	Prionospio steenstrupi	517	5.6	6.0
	6	Polychaeta	Chaetozone sp.A	350	3.8	4.1
	7	Polychaeta	Aricidea quadrilobata	308	3.3	3.6
	8	Polychaeta	Cossura longocirrata	258	2.8	3.0
	9	Polychaeta	Maldane glebifex	258	2.8	3.0
	10	Nemertea	Micrura spp.	242	2.6	
	11	Bivalvia	Yoldia sapotilla	183		2.1
					72.8	78.1
FF5 (G	roup A)					
	1	Polychaeta	Spio limicola	7242	30.6	33.8
*	2	Polychaeta	Aricidea quadrilobata	2675	11.3	12.5
	3	Bivalvia	Thyasira gouldii	1583	6.7	7.4
	4	Polychaeta	Mediomastus californiensis	1300	5.5	6.1
	5	Polychaeta	Levinsenia gracilis	925	3.9	4.3
	6	Polychaeta	Prionospio steenstrupi	908	3.8	4.2
	7	Bivalvia	Nucula delphinodonta	775	3.3	3.6
	8	Polychaeta	Chaetozone sp.A	667	2.8	3.1
	9	Crustacea	Harpinia propinqua	658	2.8	3.1
	10	Nemertea	Nemertea spp.	600	2.5	
	11	Bivalvia	Bivalvia spp.	525	_	
	12	Polychaeta	Anobothrus gracilis	467	_	2.2
		•	3		73.3	80.3

Table 3.3.3 (continued) Dominant (top ten) macroinfaunal species and taxa identified at farfield stations.

Station	Overall Rank		Taxon	Abundance (m ⁻²)	Percent of Total Fauna	Percent of Identified Specie
FF6 (G	roup C)				······································	
`	1	Polychaeta	Spio limicola	9575	21.9	23.7
	2	Polychaeta	Mediomastus californiensis	6225	14.3	15.4
	3	Polychaeta	Cossura longocirrata	3150	7.2	7.8
	4	Polychaeta	Terebellides atlantis	2392	5.5	5.9
	5	Gastropoda	Onoba pelagica	2350	5.4	5.8
	6	Polychaeta	Aricidea quadrilobata	2158	4.9	5.3
	7	Polychaeta	Tharyx acutus	2142	4.9	5.3
	8	Polychaeta	Aricidea catherinae	1492	3.4	3.7
	9	Polychaeta	Ninoe nigripes	958	2.2	2.4
	10	Bivalvia	Nucula annulata	892	2.0	2.2
					71.8	77.5
FF7 (G	roup C)					
	1	Polychaeta	Cossura longocirrata	16688	25.5	26.3
	2	Polychaeta	Mediomastus californiensis	12175	18.6	19.2
	3	Polychaeta	Aricidea catherinae	8925	13.6	14.1
	4	Polychaeta	Spio limicola	5350	8.2	8.4
	5	Polychaeta	Tharyx acutus	3213	4.9	5.1
	6	Polychaeta	Aricidea quadrilobata	2050	3.1	3.2
	7	Polychaeta	Euchone incolor	1688	2.6	2.7
	8	Polychaeta	Ninoe nigripes	1588	2.4	2.5
	9	Oligochaeta	Tubificidae sp.2	1388	2.1	2.2
	10	Polychaeta	Syllides longocirrata	1163	1.8	1.8
		•	,		82.9	85.5
FF9 (G	roup B)					
	. 1	Polychaeta	Spio limicola	10958	38.3	40.8
	2	Polychaeta	Prionospio steenstrupi	7200	25.2	26.8
	3	Polychaeta	Mediomastus californiensis	1233	4.3	4.6
÷.	4	Polychaeta	Exogone verugera	883	3.1	3.3
	5	Bivalvia	Bivalvia spp.	833	2.9	
	6	Polychaeta	Levinsenia gracilis	792	2.8	2.9
	7	Polychaeta	Ampharete acutifrons	450	1.6	1.7
	8	Polychaeta	Polydora socialis	358	1.3	1.3
	9	Polychaeta	Exogone hebes	358	1.3	1.3
	10	Polychaeta	Ninoe nigripes	325	1.1	1.2
	11	Polychaeta	Scoloplos armiger	283	_	1.1
		•			81.8	85.0

Table 3.3.3 (continued) Dominant (top ten) macroinfaunal species and taxa identified at farfield stations.

Station	Overall Rank		Taxon	Abundance (m ⁻²)	Percent of Total Fauna	Percent of Identified Species
FF10 (C	roup B)		·			
	1	Polychaeta	Spio limicola	6775	16.2	18.5
	2	Polychaeta	Prionospio steenstrupi	4642	11.1	12.7
	3	Bivalvia	Nucula spp.	3517	8.4	
	4	Polychaeta	Mediomastus californiensis	2192	5.2	6.0
	5	Polychaeta	Ninoe nigripes	1925	4.6	5.3
	6	Polychaeta	Monticellina baptiste	1858	4.4	5.1
	7	Bivalvia	Nucula delphinodonta	1475	3.5	4.0
	8	Polychaeta	Leitoscoloplos acutus	1292	3.1	3.5
	9	Polychaeta	Tharyx acutus	1258	3.0	3.4
	10	Polychaeta	Aricidea catherinae	1192	2.9	3.3
	11	Bivalvia	Crenella decussata	1092	_	3.0
					62.5	64.7
FF11 (C	Froup A)					
	1	Oligochaeta	Tubificoides apectinatus	4592	17.1	18.5
	. 2	Polychaeta	Aricidea quadrilobata	3683	13.7	14.8
	3	Polychaeta	Spio limicola	3275	12.2	13.2
	4	Polychaeta	Levinsenia gracilis	2633	9.8	10.6
	5	Polychaeta	Prionospio steenstrupi	1892	7.1	7.6
	6	Polychaeta	Chaetozone sp.A	1208	4.5	4.9
	7	Polychaeta	Euchone incolor	958	3.6	3.9
	8	Polychaeta	Mediomastus californiensis	950	3.5	3.8
	9	Polychaeta	Leitoscoloplos acutus	883	3.3	3.6
	10	Polychaeta	Anobothrus gracilis	800	3.0	3.2
					77.9	83.9
FF12 (Group D)				-	
•	1	Polychaeta	Aricidea catherinae	12100	40.3	45.2
	2	Polychaeta	Mediomastus californiensis	3875	12.9	14.5
	3	Polychaeta	Tharyx acutus	2900	9.7	10.8
	4	Polychaeta	Lumbrineridae spp.	2725	9.1	
	5	Polychaeta	Ninoe nigripes	1375	4.6	5.1
	6	Polychaeta	Scoletoma hebes	1292	4.3	4.8
	7	Polychaeta	Leitoscoloplos acutus	1100	3.7	4.1
	8	Polychaeta	Prionospio steenstrupi	700	2.3	2.6
	· 9	Polychaeta	Levinsenia gracilis	467	1.6	1.7
	10	Polychaeta	Spiophanes bombyx	433	1.4	1.6
	11	Polychaeta	Owenia fusiformis	317		1.2
		-			89.8	91.8

Table 3.3.3 (continued) Dominant (top ten) macroinfaunal species and taxa identified at farfield stations.

Station	Overall Rank		Taxon	Abundance (m ⁻²)	Percent of Total Fauna	Percent of Identified Species	
FF13 (C	roup D)	·					
	1	Polychaeta	Tharyx acutus	11292	32.8	33.9	
	2	Polychaeta	Aricidea catherinae	5892	17.1	17.7	
	3	Polychaeta	Nephtys neotena	3150	9.1	9.4	
	4	Polychaeta	Mediomastus californiensis	3117	9.0	9.3	
	5	Polychaeta	Phyllodoce mucosa	2483	7.2	7.4	
	6	Polychaeta	Leitoscoloplos acutus	1642	4.8	4.9	
	7	Polychaeta	Prionospio steenstrupi	1425	4.1	4.3	
	8	Polychaeta	Capitella capitata	567	1.6	1.7	
	9	Polychaeta	Eteone longa	517	1.5	1.5	
	10	Polychaeta	Scoletoma hebes	508	1.5	1.5	
					88.7	91.7	
FF14 (C	roup A)	•					
	1	Polychaeta	Spio limicola	5992	23.6	24.8	
	2	Polychaeta	Chaetozone sp.A	3667	14.4	15.2	
	3	Polychaeta	Aricidea quadrilobata	2408	9.5	10.0	
	4	Polychaeta	Levinsenia gracilis	2058	8.1	8.5	
	5	Oligochaeta	Tubificoides apectinatus	1683	6.6	7.0	
	6	Polychaeta	Leitoscoloplos acutus	958	3.8	4.0	
	7	Polychaeta	Prionospio steenstrupi	917	3.6	3.8	
	8	Bivalvia	Thyasira gouldii	867	3.4	3.6	
	9	Polychaeta	Mediomastus californiensis	833	3.3	3.4	
	10	Polychaeta	Cossura longocirrata	683	2.7	2.8	
		-	_		79.0	83.0	

limicola, M. californiensis, Cossura Longocirrata, A. Quadrilobata, T. Acutus, A. Catherinae, and Ninoe Nigripes. Some of these species were also among the four dominant taxa common to middepth stations within Group B which were S. limicola, Prionospio Steenstrupi, M. californiensis, and Ninoe Nigripes. Six dominants were common to the shallow Group D stations. These included the polychaetes M. californiensis, T. Acutus, A. Catherinae, Scoletoma Hebes, Leitoscoloplos Acutus, and P. Steenstrupi.

3.3.5 Relationship Among Cluster Groups

Community ordination techniques were used to define underlying factors responsible for the patterns observed in the station groups. The four groups delineated by numerical classification analyses separated replicate samples geographically (Section 3.3.2). Application of ordination technique further confirmed consistent separation of replicate samples into their respective stations. Ordination distilled two factors that determine the four cluster groups. These two factors accounted for over 60% of the variance in the abundance data. The next (third) factor only explained an additional 12% of the abundance covariance. Thus, to a great degree, these two factors can be used to represent the complex relationships among the large number of species densities contained within replicate samples. These two factors relate to underlying, not-directly-observable constructs within the large set of abundance data.

Figure 3.3.11a shows that replicate samples tightly clustered within groups and that the four groups were separated along two orthogonal principal axes. Thus, the factor (1) that separates Group A from D was linearly independent from the factor (2) that separates Group B from C. Furthermore, these factors consistently distinguished among replicate samples contained within each group. No replicate sample from any station was misplaced in its relation to the other members of the group. This suggests that there were two principal influences that inherently separated the four groups identified in the numerical classifications. From the discussion in Section 3.3.2, Factor 1 is closely correlated with station depth, with decreasing depth corresponding to an increase in Factor 1. Conversely, Factor 2 is associated with another influence unrelated to depth but possibly related to the latteral separation between mid-depth stations.

The species responsible for the separation of clusters into the two factors are shown in Figure 3.3.11b. All of the dominant species discussed in Section 3.3.4 were included in the ordination and their location reflects the trends described in that section. Specifically, A. catherinae and T. acutus were primarily associated with shallow depths and they were also associated with a large Factor 1, exceeding 1.5, and with relatively low Factor 2 values. The ordination also indicated that the lumbrinerid polychaete Scoletoma hebes was associated with shallow stations. Conversely, A. quadrilobata and Chaetozone sp. A exhibited the opposite trend, with negative Factor 1 values indicative of deep stations. Figure 3.3.11b reveals other species associated with deep stations, including the annelids Spio limicola, Maldane glebifex, Levinsenia gracilis, and Tubificoides apectinatus as well as the bivalves Yoldia sapotilla and Thyasira gouldii. As described in Section 3.3.4, the capitellid M. californiensis was a dominant species at all farfield stations and its uniform distribution was reflected in small Factor 1 values.

The species responsible for separating Group B from C are also evident from differences in Factor 2 values in Figure 3.3.11b. Species that were comparatively abundant in Group C within Cape Cod Bay were the polychaetes Cossura longocirrata, Syllides longocirrata, and Terebellides atlantis. All three were dominant species at either Station FF6 or FF7 or both. They were not listed as dominant species at Group B stations in Table 3.3.3. Instead, Group B stations had relatively high abundances of the polychaetes Prionospio steenstrupi, Monticellina baptiste, and Exogone verugera compared the Group C stations. Again, abundances associated with these polychaetes were ranked among the top ten of taxa at Stations FF9 and FF10 while they were part of the dominant species at Group C stations listed in Table 3.3.3.

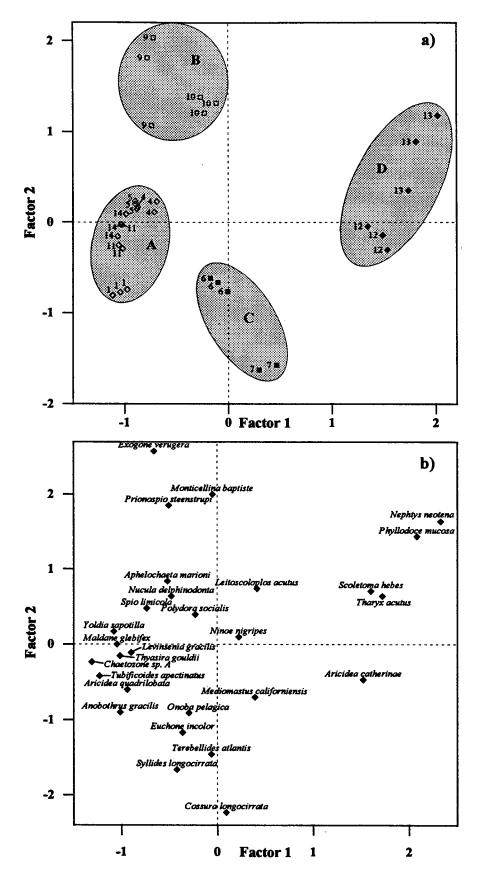


Figure 3.3.11 Results of correspondence analysis (reciprocal averaging) ordination showing the distribution of a) farfield replicate samples and b) species along the two principal factors.

3.3.6 Association with Abiotic Properties

This section examines abiotic properties that may be responsible for discriminating among the four farfield station groups. As described in Section 3.2.1, *C. perfringens* spore counts are included with abiotic properties because they correlate with truly abiotic variables and differ from the macro-infaunal biological parameters. Because of high correlation among abiotic variables, it is not always possible to isolate a single relevant abiotic property as the cause of infaunal distribution. Moreover, high correlations only indicate a possible linear association and no causality can be ascribed to relationships derived solely from a bivariate correlation. Because of the high (R>0.88) intercorrelation among some abiotic properties, particularly PAH, PCB, and silver in Table 3.2.1, only five of the seven variables were examined. Another reason to limit the number of bivariate analyses is that some coefficients in a large table would be expected to be statistically significant by chance alone even though there is no true association among the variables.

Table 3.3.4 Pearson correlation coefficients between logarithmically transformed abundance of indicator species and selected parameters at farfield stations. Lightly shaded coefficients are statistically significant at the 95% confidence level and dark shading delineates 99% confidence.

Farfield Group	Species	Depth	Mud	тос	C. perfringens	Silver
	Chaetozone Sp.A	(;);;	0.53	0.36	-0.58	-0.59
	Thyasira gouldii	0.56	0.51	0.36	() 84	(18.5)
	Levinsenia gracilis	0.53	0.40	0.27	-0.90	0.33
A	Aricidea quadrilobata	0.67	0.73	0.62	43.75	-0.59
	Spio limicola	0.38	0.34	0.24	-0.81	-0.69
	Maldane glebifex	0.66	0.38	0.24	-0.40	-0.61
	Tubificoides apectinatus	0.61	0.54	0.42	0.06	0.06
	Yoldia sapotilla	0.72	0.57	0.44	18.9	
	Prionospio steenstrupi	0.05	-0.49	-0.64	0.12	-0.19
В	Monticellina baptiste	-0.59	-0.45	-0.53	0.23	-0.05
	Exogone verugera	-0.14	-0.46	-0.42	-0.03	-0.21
	Syllides longocirrata	0.47	0355	0.85	-0.40	-0.22
С	Cossura longocirrata	0.45	0.69	0.73	-0.61	-0.33
	Terebellides atlantis	-0.00	0.35	0.41	-0.33	-0.05
	Tharyx acutus	0.87	-0.44	-0.34	0.60	0.66
D	Scoletoma hebes	-0.72	-0.64	-0.62	0.78	0.54
	Aricidea catherinae	40.83	-0.38	-0.27	0.57	0.62

Pearson correlation coefficients in Table 3.3.4 are computed for logarithmically transformed abundance of the species that are most indicative of four farfield groups as determined by the ordination analysis described in Section 3.3.5. Figure 3.3.11 shows that Groups A and D were distinguished by one factor that accounts for most of the variability in community structure. Groups B and C were distinguished by a separate, linearly independent (uncorrelated) factor. Species indicative of these factors are shown in Table 3.3.4. As suggested previously, the first factor is related to depth. Five of the eight species indicative of Group A had a statistically-significant positive correlation with depth at the 95% confidence level. The other three species were also positively correlated with depth and two of these (*T. gouldii* and *L. gracilis*) were statistically significant at the 90% level.

The five stations within Group A were the deepest stations. At all farfield stations, these eight indicator species increased in abundance with increasing depth. Because depth was negatively correlated with *C. perfringens* spore counts and silver concentration (Table 3.2.1), indicator species were generally negatively correlated with these concentrations. A similar negative correlation would be expected between Group A indicator species and PAH and PCB concentrations.

The three indicator species for the shallow Group D exhibited the opposite trend. Abundances of all of these species strongly decreased with depth and increased with increasing *C. perfringens* spore counts, silver concentration, and probably organic contaminants. It is unclear which, if any, of these abiotic and spore-count variables was responsible for the distribution of the eleven species indicative of Groups A and D. It is likely that another related factor, possibly unmeasured or untested, represents the actual mechanism controlling the distribution of both infaunal and abiotic variables. An example of a plausible untested factor is distance from the Boston Harbor contaminant source. It is noteworthy that the correlation of these depth-related species with mud fraction and TOC content (Table 3.3.4) was comparatively low. This lack of correlation with sediment type has been described for *A. catherinae*, *S. limicola*, *T. acutus*, and *T. apectinatus* in previous studies in the region (Shea *et al.*, 1991). All of these species were indicative of either Group A or D.

In contrast, the factor that separates Groups B and C appears to be related to sediment type. Species indicative of the two stations in Cape Cod Bay (Group C) all exhibited positive correlation with the mud fraction and TOC content. With the exception of C. perfringens spore counts, no statistically significant correlations existed between these species and the other abiotic variables associated with Factor 1 (e.g., depth) that separates Groups A and D. Although the correlation between the abundance of Group B indicator species and mud fraction and TOC content was not statistically significant at the 95% confidence level, the correlation was consistently negative and relatively high compared to correlations with other abiotic variables. Moreover, prior studies in the region (Shea et al., 1991) determined a strong relationship between sediment type and all three of the Group B indicator species. As before, the actual mechanism controlling the distribution of Group B and C indicator species and the two abiotic variables is not clear. Again, it is possible that a related influence, such as kinetic energy within the benthic boundary layer, could be responsible for the distribution of these species.

3.3.7 Interannual Variability

All eleven farfield stations analyzed here were also occupied in August 1992 and the infaunal community structure at that time was described by Blake et al. (1993). To lend qualitative insight into interannual changes in community structure, this section compares the results from these two consecutive years. The gross geographic distribution of sediment properties at farfield sites was consistent between the two years. Infaunal community structure generally exhibited a similar consistency. In both years, the same five deep stations were affiliated with farfield Group A (Figure 3.3.5). Also, the pair of stations (FF6 and FF7) within Cape Cod Bay clustered together as Group C in both years. In the 1993 sample, the pair of shallow stations (FF12 and FF13) associated with farfield Group D were autonomous from the slightly deeper pair of Group B stations (FF10 and FF9). However, the similarity among the station pairs was comparatively low (Figure 3.3.4) and clustering performed by Blake et al. (1993) did not distinguish among these four stations in the data collected in 1992.

Without reanalysis of the 1992 data, it is not clear whether the differences in clustering farfield Groups B and D were due to actual temporal changes in the taxonomic composition at these stations or whether they were artifacts of slightly different numerical classifications. Nevertheless, community ordination of the 1992 infaunal data suggests that the community structure at Station FF12 was more closely associated with Group B stations (FF9 and FF10) than with Station FF13 in Group D (Figure 3.3.11a). In 1992, Station FF13 was distinguished by a high abundance of *Polydora cornuta*. Changes in its relative ranking and abundance in 1993 are the likely cause of the differences in clustering in 1993. To further explore the significance of this difference, a null

hypothesis test was performed on mean P. cornuta abundance assuming unequal variances and a log-normal distribution. The decrease in abundance was marginally significant at the 90% confidence level (α =0.099)

Differences in ranking of species abundance can lend further insight into the degree of interannual change in community structure. For the most part, ranking of prevalent species was consistent between the two years. There were only eight instances where a species whose abundance ranked in the highest ten in 1992 changed rank by more than sixteen in 1993. At Stations FF4 and FF5, the relative ranking of *Polydora socialis* dropped from 10 to 46 and from 7 to 42, respectively. This change in ranking was due to a decrease in abundance from 316 to 8 m⁻² at Station FF4 and from 575 to 41 m⁻² at FF5. At Station FF6, the ranking of *Tubificidae sp. 2* dropped from fifth in 1992 with an abundance of 816 m⁻² to a rank of 49 with an abundance of 83 m⁻² in 1993. At Station FF7, the abundance of *Prionospio steenstrupi* decreased from 800 m⁻² with a rank of 9 in 1992 to 12 m⁻² with a rank of 49 in 1993. At Station FF11, the abundance of tenth-ranked *Parougia caeca* dropped from 308 m⁻² in 1992 to 42 m⁻² in 1993 when its rank was 29. At Station FF12, the abundance of tenth-ranked *Polydora quadrilobata* dropped from 675 m⁻² in 1992 to 17 m⁻² in 1993 when its rank was 40.

Finally, two of the largest changes in abundance occurred at Station FF13. Eighth-ranked Aphelochaeta monilaris had an abundance of 575 m⁻² in 1992 but was not observed in the 1993 samples from this station. As mentioned, a dramatic change occurred for Polydora cornuta which had the second highest abundance at Station FF13 in 1992. In 1993, the abundance of P. cornuta dropped to 25 m⁻² with a rank of 37. The community ordination performed by Blake et al. (1993) lists P. cornuta as the indicator species for the separation of Station FF13 from the community structure at other farfield stations. This is the only station where P. cornuta was collected in both years and the drop in its abundance in 1993 caused the community structure at Station FF13 to be similar to that of Station FF12. P. cornuta was one of the most common species observed within Boston Harbor in 1993 (Kropp and Diaz, 1994). It would appear that, because Station FF13 is adjacent to the mouth of the Harbor, the influence of the Harbor on community structure is reflected in the abundance of P. cornuta. Without its influence (viz. in 1993) Station FF13 is closely affiliated with other shallow stations within Massachusetts Bay. With strong Harbor influence in 1992, the community structure at Station FF13 was unlike other farfield stations and was comparable to traditional stations within Boston Harbor.

Other aspects of the infaunal communities in 1992 and 1993 were comparable. Total abundance was higher for shallow stations in both years. Also, the range in densities in 1993 (9,000 to 65,000 m⁻²) was comparable to that of 1992 (6,000 to 70,000 m⁻²) except at Station FF10 which had a much higher density (99,000 m⁻²) in 1992. Several species accounted for the elevated abundance at this station in 1992. In both years, the highest numbers of individuals and species were members of the annelid phylum. The distribution of spionid and paraonid polychaetes was similar across years. In 1992, as in 1993, the highest spionid densities were at Stations FF9 and FF10 within farfield Group B. Similarly, the highest paraonid polychaete densities were observed at Station FF12 in both years. Rarefaction curves and community indices were largely comparable across years. The highest diversity index was found at Stations FF1 and FF10 in both years. Station FF1 also had the highest evenness in both years.

3.4 MIDFIELD MACROINFAUNAL ASSEMBLAGES

Midfield macroinfaunal statistics were computed using three farfield and nine nearfield stations to characterize the local benthic community within 8 km of the diffuser (Figure 2.1.2). The midfield stations most distant from the diffuser were a factor of 10 closer than those of the farfield analyses.

3.4.1 Taxonomic Composition

A total of 196 taxa representing 11 major taxonomic groups was identified among the 35,741 organisms encountered in samples collected at nearfield stations. Nearly all (33,968 or 95%) of the total number of organisms were classified into 165 species contained within the 196 taxa. Appendices A-1 and A-2 list identified taxa arranged phylogenetically for sieve-size fractions of 0.3 and 0.5 mm, respectively. The number of organisms per replicate sample ranged from 148 individuals (Replicate 1 at Station NF17) to 5,025 (Replicate 1 at Station NF8) (Table 3.4.1). Station NF2 exhibited wide variability (large coefficient of variation) in replicate sample densities resulting from a large standard deviation compared to other stations. The Station NF17 mean had a large coefficient of variation due to a low mean value compared to other nearfield stations. Infaunal abundance for each sieve-size fraction tracked variations in total station abundance, and the lowest and highest densities were observed at Stations NF17 and NF8, respectively (Figure 3.4.1). The density of organisms was consistently greater in the 0.5-mm fraction and ranged from 59% of the total station density at Station NF8 to 82% at Station NF12.

3.4.2 Numerical Classification

In contrast to the community structure among farfield stations, the greatest similarities were not always among replicate samples from the same midfield station. Numerical classification of replicate samples at midfield distances from the diffuser is presented in Figures 3.4.2 and 3.4.3. Numerical classification was unable to clearly distinguish between replicate samples among Stations NF9, NF10, and NF16. This indicates that the structure of the macroinfaunal community at these stations is indistinguishable compared to differences in community structure at other stations. These three stations are in close proximity (Figure 2.1.2) with a maximum spatial separation of 2.5 km. At other stations, clustering using NNESS or Bray-Curtis similarity revealed the highest similarity was generally among the replicate samples from each individual station. The three replicate samples within these individual stations had NNESS similarities as high as 0.975 at Station NF8 and were above 0.9 at all stations except Replicate 2 at Station NF4. Not surprisingly, numerical classification using Bray-Curtis similarity (Figure 3.4.3) clustered this replicate with Station NF14 replicate samples.

Three distinct cluster groups of stations were evident from pooled replicate clustering. Because of high similarity among replicate samples at individual stations, the numerical classification of pooled abundance shown in Figure 3.4.4 delimited station groups similar to the groupings shown in Figures 3.4.2 and 3.4.3. Using a NNESS similarity of 0.85 as a decision rule in Figure 3.4.4b produced three major clusters and three isolated stations. These three clusters are not completely distinct geographically, since as shown in Figure 3.4.5, Station NF12 of Group B splits Stations NF14 and NF16 from the other stations in Group C. When a less restrictive NNESS similarity (between 0.67 and 0.77) is used as a decision rule in Figure 3.4.4b, the three isolated stations coalesce and three modified cluster groups are formed. This three modified groups are delineated by dashed lines in Figure 3.4.5. Group A, consisting only of farfield Stations FF12 and FF13, remains unchanged. The numerical classification of farfield stations, described in Section 3.3.2, also classified these stations together. Stations NF2 and NF17 form a new Group D, while Groups B and C coalesce to form a new Group E which contains Station NF4.

Stations NF4 and NF17 had relatively low similarity with other stations and they were distinguished by the lowest organism densities (<22,000 individuals m⁻²) of any of the stations at midfield distances from the diffuser (Figure 3.4.6 and Table 3.4.2). Station NF2 also had low abundance. Group D was formed from Stations NF2 and NF17 when decision rules were relaxed.

A pattern consistent with numerical classification also emerged from polychaete family densities (Figure 3.4.7). Except at outlier Stations NF2 and NF17, the annelid phylum was, by far, the most abundant major taxonomic group. From Figure 3.4.7, characteristics of the numerical classifications can be distinguished in terms of relative

Table 3.4.1 Number of macroinfaunal organisms recovered from replicates at nearfield stations.

		Replicate		_	Standard	Coefficient
Station	1	2	3	Mean	Deviation	of Variation
NF2	716	1817	523	1019	698	69%
NF4	757	571	1220	849	334	39%
NF8	5025	3506	2882	3804	1102	29%
NF9	964	1447	1045	1152	259	22%
NF10	1303	904	1753	1320	425	32%
NF12	1354	1356	2380	1697	592	35%
NF14	1133	621	895	883	256	29%
NF16	632	1046	1217	965	301	31%
NF17	148	164	362	225	119	53%

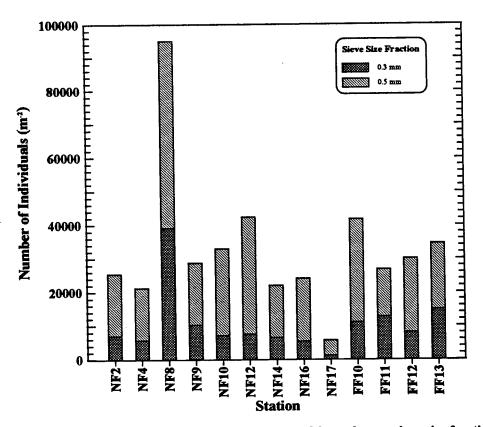


Figure 3.4.1 Density of organisms determined from the two sieve-size fractions collected from stations at midfield distances from the diffuser.

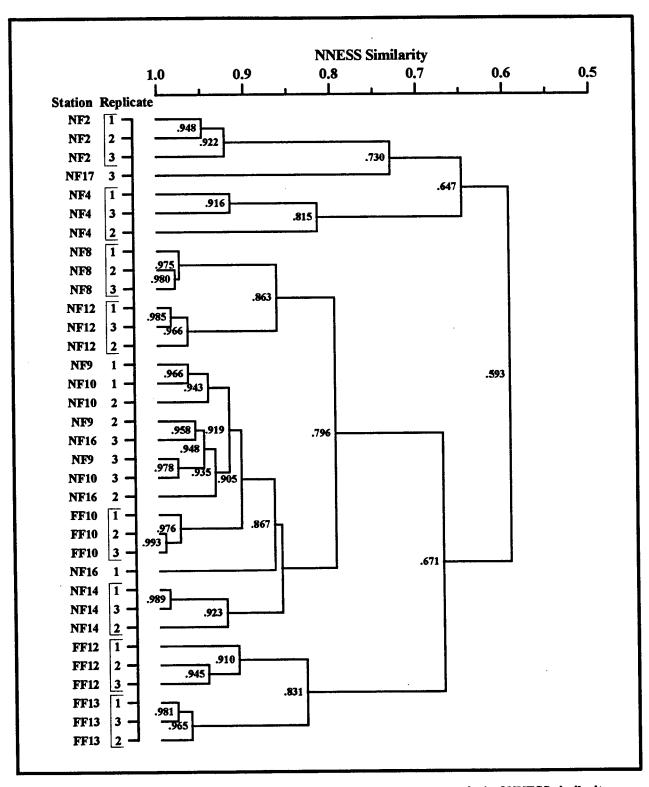


Figure 3.4.2 Dendrogram resulting from clustering (group average sorting) of NNESS similarity (m=200) among replicates collected at midfield distances. Replicates 1 and 2 from Station NF17 were necessarily excluded because they have fewer than 200 individuals. Stations which exhibit the highest similarities among all three replicates are enclosed by brackets.

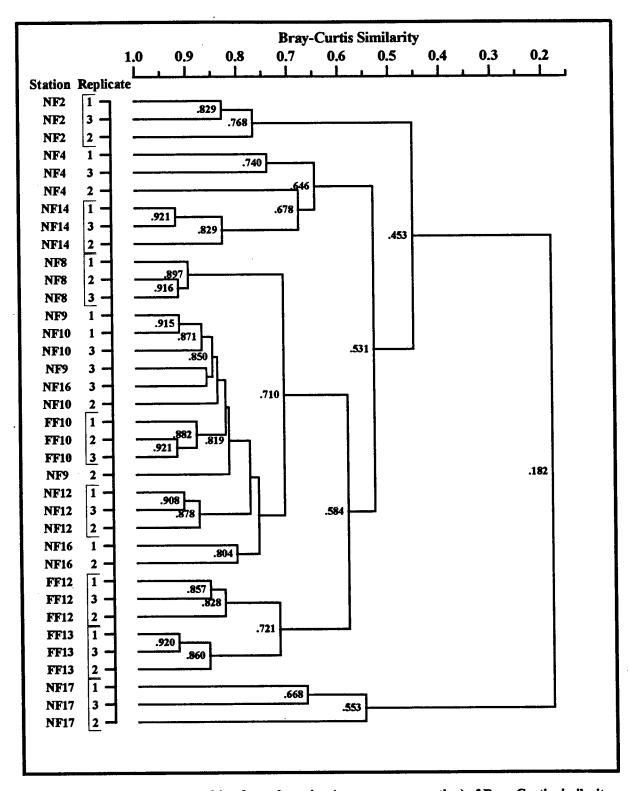


Figure 3.4.3 Dendrogram resulting from clustering (group average sorting) of Bray-Curtis similarity among replicates collected at midfield distances. Stations which exhibit the highest similarities among all three replicates are enclosed by brackets.

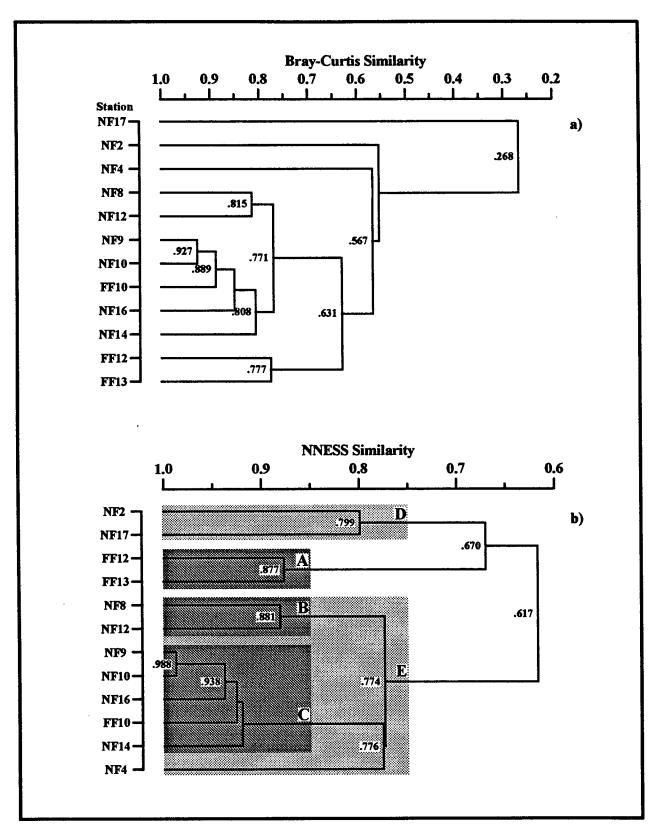


Figure 3.4.4 Dendrograms resulting from clustering (group average sorting) of pooled replicate abundance data at midfield distances (<8km) from the diffuser using
(a) Bray-Curtis and (b) NNESS (m=200) similarity measures.

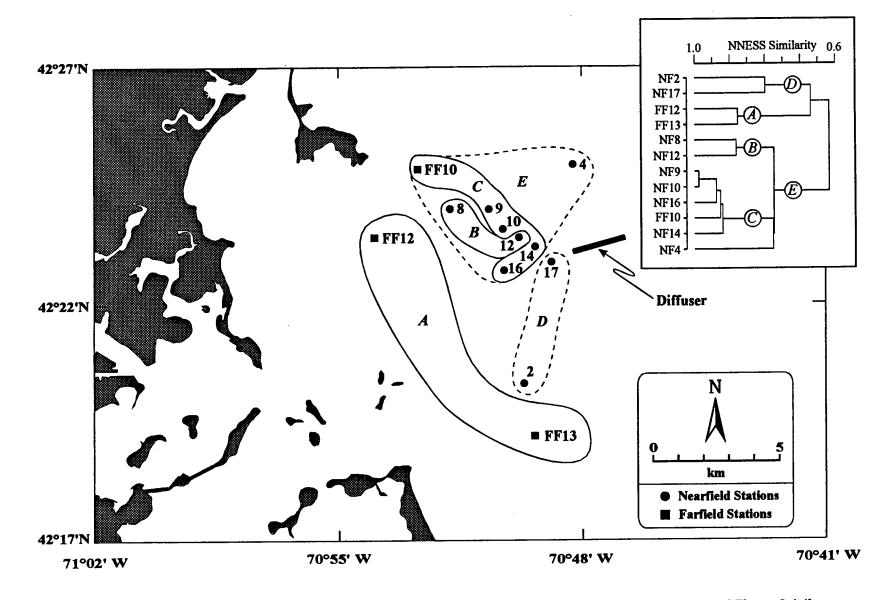


Figure 3.4.5 Geographic distribution of midfield cluster groups. The inset shows the dendrogram of Figure 3.4.4b.

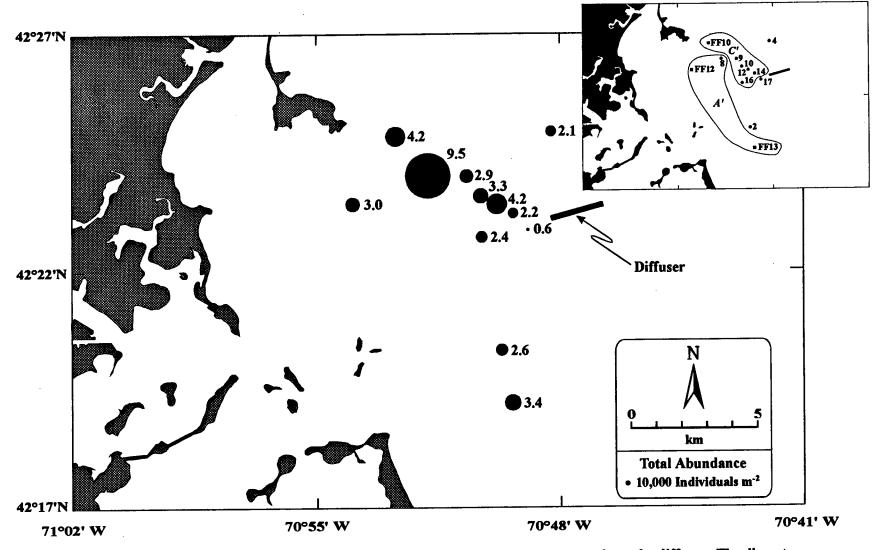


Figure 3.4.6 Geographic distribution of total infaunal density at midfield distances from the diffuser. The diameter of the circles scales as a linear function of infaunal density and the numbers represent 10,000 individuals m⁻². The inset shows midfield station groups determined from the benthic infaunal community structure summarized in Table 4.3.1.

Table 3.4.2 Density and diversity related community parameters for stations located at midfield distances (<8 km) from the diffuser.

Midfield Group	Station	Depth (m)	Density (m ⁻²)	Density ¹ (m ⁻²)	Number of Species	Richness d'	Diversity H'	Evenness J'	Dominance C'
	FF13	19	34475	33358	60	7.1	2.27	0.55	0.174
A	FF12	22	30017	26742	56	6.8	2.07	0.51	0.246
,	NF8	29	95108	92383	63	6.7	1.72	0.41	0.317
В	NF12	34	42417	40758	64	7.4	2.38	0.57	0.157
	FF10	27	41800	36617	86	10.1	3.22	0.72	0.071
	NF9	29	28800	27400	75	9.1	2.92	0.68	0.109
	NF16	29	24125	22650	79	9.9	2.86	0.66	0.111
С	NF10	32	33000	31425	76	9.1	2.59	0.60	0.140
	NF14	33	22075	20650	66	8.3	2.92	0.70	0.080
	NF4	35	21233	19700	85	10.8	3.07	0.69	0.077
7	NF2	26	25467	23108	61	7.6	1.80	0.44	0.419
D	NF17	29	5617	4992	35	5.3	2.30	0.65	0.235

¹ Abundance computed using only those taxa identified to species level.

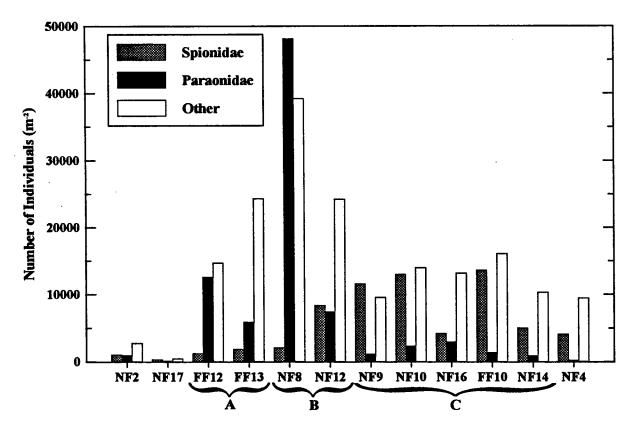


Figure 3.4.7 Abundance (number of individuals m²) of organisms within the major polychaete families at midfield distances from the diffuser.

abundances of spionid, paraonid, and other polychaete families. Group A, consisting of Stations FF12 and FF13, exhibited a pattern of relatively low spionid populations and high paraonid densities (Figures 3.4.7 through 3.4.9). Group B stations were also characterized by high paraonid densities. Stations within Group C exhibited an opposite trend with generally low paraonid population densities. In contrast to the farfield, there was no clear relationship between water depth and cluster group in the nearfield (Table 3.4.2). The depth range spanned by nearfield stations was much smaller (26 to 35 m).

3.4.3 Diversity and Related Community Characteristics

Table 3.4.2 lists organism density and diversity related parameters for stations at midfield distances from the diffuser organized by the cluster groups described in Section 3.4.2. For both total abundance and abundance of taxa identified to species level, the highest densities were generally observed at the two Group B stations (NF8 and NF12) and the lowest densities were at the two Group D stations (NF2 and NF17).

Although there was a wide variation in abundance among stations at midfield distances from the diffuser, total number of species tracked the ranking of diversity and richness indices. This is because the rarefaction curves (Figure 3.4.10) had similar curvature at sample sizes beyond the smallest sample size $(n \approx 500)$ at Station NF17. Thus, comparing $E(S_n)$ rarefaction curves at the smallest sample size yields diversity ranking consistent with the Species Richness Index (d') and the nearfield stations contained within Group C (NF4, NF16, NF9 and NF14) all exhibit elevated $E(S_n)$. Thus, the one clear distinction among diversity statistics for cluster groups was that stations contained within the largest cluster Group C (and including Station NF4) all had the highest diversity index, number of species, evenness index, and richness.

As in the case of farfield analyses, differences in the distribution of individuals among species did introduce some bias in diversity indices (H', J', C') and (H', J', C') and (H', J', C') are Station NF2. Although its rarefaction curve lies above that of Group B Stations NF8 and NF12, it exhibited a relatively low diversity index. This is a consequence of the anomalously high dominance index, the highest of all nearfield or farfield stations. The high dominance at Station NF2 was due to the comparatively high density of a single species of bivalve, namely *Hiatella arctica*. This bivalve comprised 64% of the individuals identified to species level at that station (Table 3.4.3).

3.4.4 Dominant Taxa and the Relationship Among Cluster Groups

Dominant species and taxa at nearfield stations are presented in Table 3.4.3. Again, dominant species were defined as the ten most abundant species or taxa identified at a station. Community ordination techniques were also used to define underlying factors responsible for the patterns observed in the abundance distribution among taxa, particularly the dominant species at individual stations. A community ordination performed on pooled station data is shown in Figure 3.4.11. As indicated by the numerical classification described in Section 3.4.2, Stations NF2 and NF17 represent outliers. Ordination shown in Figure 3.4.11a confirms the departure of their macroinfaunal community structure from other stations at midfield distances from the diffuser. Ordination also shows that they differ from one another in terms of the first two principal components of midfield abundance. These first two factors accounted for over 60% of the variance in the abundance data. The next (third) factor only explained an additional 13% of the abundance covariance. Although Stations NF2 and NF17 clustered at a relatively low NNESS similarity in Figure 3.4.4b and were designated Group D, the midfield ordination strongly discriminates between the community structure at these stations and suggests that the numerical classification computed from Bray-Curtis similarity in Figure 3.4.4a is a more appropriate portrayal of their unclustered relationship.

The species primarily responsible for discriminating between Stations NF2 and NF17 are shown in Figure 3.4.11b. At Station NF2, a single species of bivalve, *H. arctica*, was responsible for large Factor 2 levels.

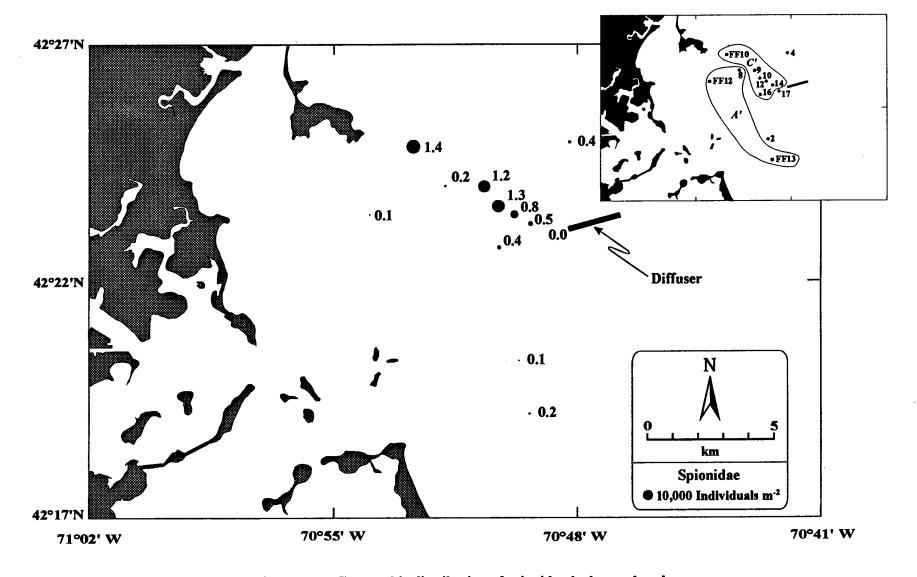


Figure 3.4.8 Geographic distribution of spionid polychaete abundance at midfield distances from the diffuser. The inset is described in Figure 3.4.6.

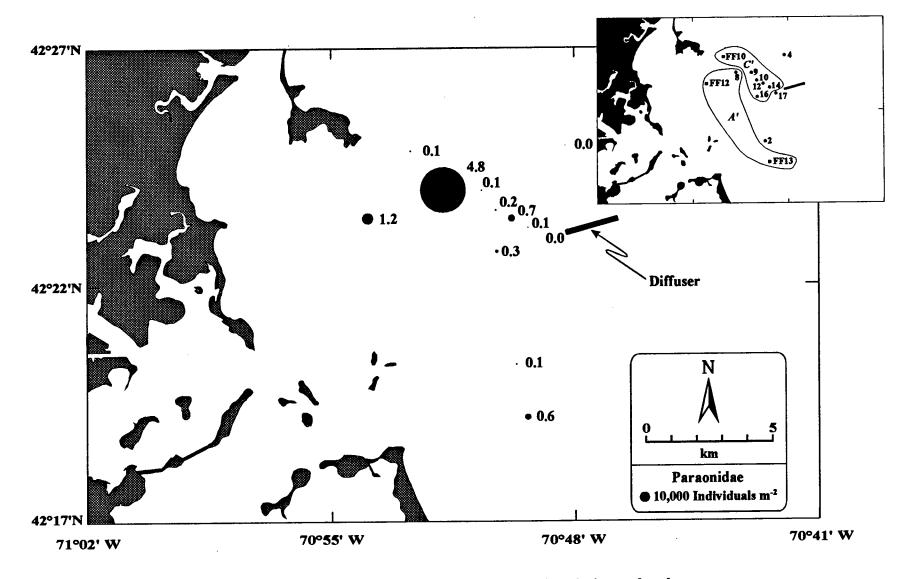


Figure 3.4.9 Geographic distribution of paraonid polychaete abundance at midfield distances from the diffuser. The inset is described in Figure 3.4.6.

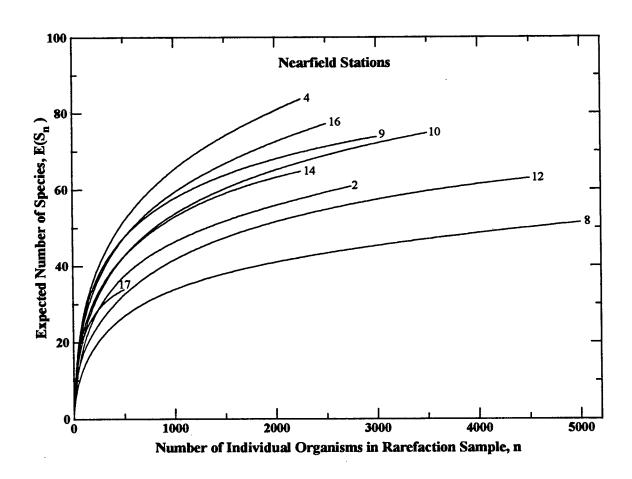


Figure 3.4.10 Hurlbert rarefaction plots for nearfield stations.

Table 3.4.3 Dominant (top ten) macroinfaunal species and taxa identified at nearfield stations.

Station	Overall Rank		Taxon	Abundance (m ⁻²)	Percent of Total Fauna	Percent of Identified Species
NF2 (G	roup D)	<u>-</u>		······································		
•	1	Bivalvia	Hiatella arctica	14800	58.1	64.0
	2	Bivalvia	Bivalvia spp.	2050	8.0	
	3	Echinodermata	Ophiura robusta	1267	5.0	5.5
	4	Polychaeta	Aricidea catherinae	900	3.5	3.9
	5	Polychaeta	Phyllodoce mucosa	683	2.7	3.0
	6	Polychaeta	Tharyx acutus	567	2.2	2.5
	7	Bivalvia	Mytilus edulis	483	1.9	2.1
	8	Bivalvia	Cerastoderma pinnulatum	475	1.9	2.1
	9	Crustacea	Amphipoda sp. l	400	1.6	1.7
	10	Polychaeta	Spio thulini	367	1.4	1.6
	11	Polychaeta	Mediomastus californiensis	333		1.4
		•			86.4	87.7
NF4 (G	roup E)		· · · · · · · · · · · · · · · · · · ·		- 10: 11 5 1	
	1	Polychaeta	Exogone hebes	3008	14.2	15.3
	2	Polychaeta	Exogone verugera	2517	11.9	. 12.8
	3	Crustacea	Unciola inermis	2292	10.8	11.6
	4	Polychaeta	Spio limicola	2017	9.5	10.2
	5	Polychaeta	Polydora quadrilobata	1042	4.9	5.3
	6	Bivalvia	Bivalvia spp.	1033	4.9	
	6	Polychaeta	Euchone elegans	1033	4.9	5.2
	8	Polychaeta	Polydora socialis	800	3.8	4.1
	9	Crustacea	Ptilanthura tenuis	742	3.5	3.8
	10	Crustacea	Corophium crassicorne	700	3.3	3.6
	11	Polychaeta	Euclymene collaris	525	-	2.7
					71.5	74.5
NF8 (G	roup B)					
•	1	Polychaeta	Aricidea catherinae	46542	48.9	50.4
۵,	2	Polychaeta	Tharyx acutus	20650	21.7	22.4
	3	Polychaeta	Mediomastus californiensis	9400	9.9	10.2
	4	Polychaeta	Monticellina baptiste	3192	3.4	3.5
	5	Oligochaeta	Tubificoides apectinatus	1883	2.0	2.0
	6	Nemertea	Micrura spp.	1550	1.6	
	7	Polychaeta	Leitoscoloplos acutus	1533	1.6	1.7
	8	Polychaeta	Levinsenia gracilis	1500	1.6	1.6
	9	Polychaeta	Prionospio steenstrupi	992	1.0	1.1
	10	Polychaeta	Spio limicola	883	0.9	1.0
	11	Polychaeta	Monticellina dorsobranchialis	567	•	0.6
		-			92.7	94.3

Table 3.4.3 (continued) Dominant (top ten) macroinfaunal species and taxa identified at nearfield stations.

Station	Overall Rank		Taxon	Abundance (m ⁻²)	Percent of Total Fauna	Percent of Identified Species
NF9 (G	roup C)					
,	1	Polychaeta	Spio limicola	7408	25.7	27.0
	2	Polychaeta	Prionospio steenstrupi	3650	12.7	13.3
	3	Polychaeta	Mediomastus californiensis	1875	6.5	6.8
	4	Bivalvia	Nucula delphinodonta	1417	4.9	5.2
	5	Bivalvia	Hiatella arctica	1192	4.1	4.3
	6	Bivalvia	Crenella decussata	1125	3.9	4.1
	7	Polychaeta	Maldane glebifex	975	3.4	3.6
	8	Polychaeta	Ninoe nigripes	917	3.2	3.3
	9	Polychaeta	Monticellina baptiste	800	2.8	2.9
	10	Polychaeta	Aphelochaeta marioni	792	2.7	2.9
					70.0	73.5
NF10 (Group C)					
	1	Polychaeta	Spio limicola	8608	26.1	27.4
	2	Polychaeta	Mediomastus californiensis	5967	18.1	19.0
	3	Polychaeta	Prionospio steenstrupi	4117	12.5	13.1
	4	Polychaeta	Aricidea catherinae	2008	6.1	6.4
	5	Polychaeta	Leitoscoloplos acutus	1325	4.0	4.2
	6	Polychaeta	Monticellina baptiste	1233	3.7	3.9
	7	Polychaeta	Maldane glebifex	1117	3.4	3.6
	8	Polychaeta	Ninoe nigripes	950	2.9	3.0
	9	Bivalvia	Nucula delphinodonta	700	2.1	2.2
	10	Bivalvia	Crenella decussata	533	1.6	1.7
					80.5	84.5
NF12 (Group B)					
	1	Polychaeta	Mediomastus californiensis	13008	30.7	31.9
	2	Polychaeta	Aricidea catherinae	6167	14.5	15.1
	3	Polychaeta	Spio limicola	4750	11.2	11.7
	4	Polychaeta	Prionospio steenstrupi	3583	8.4	8.8
	5	Polychaeta	Ninoe nigripes	2458	5.8	6.0
	6	Polychaeta	Monticellina baptiste	2092	4.9	5.1
	7	Polychaeta	Leitoscoloplos acutus	1608	3.8	3.9
	8	Polychaeta	Tharyx acutus	1258	3.0	3.1
	9	Polychaeta	Levinsenia gracilis	1183	2.8	2.9
	10	Polychaeta	Exogone verugera	758	1.8	1.9
					86.9	90.5

Table 3.4.3 (continued) Dominant (top ten) macroinfaunal species and taxa identified at nearfield stations.

Station	Overall Rank		Taxon	Abundance (m ⁻²)	Percent of Total Fauna	Percent of Identified Specie
NF14 (C	Group C)					
•	1	Polychaeta	Exogone hebes	3250	14.7	15.7
	2	Polychaeta	Spio limicola	2408	10.9	11.7
	3	Polychaeta	Mediomastus californiensis	2125	9.6	10.3
	4	Bivalvia	Hiatella arctica	1817	8.2	8.8
	5	Bivalvia	Crenella decussata	1592	7.2	7.7
	6	Polychaeta	Polydora socialis	1425	6.5	6.9
	7	Polychaeta	Exogone verugera	1342	6.1	6.5
	8	Polychaeta	Ninoe nigripes	1075	4.9	5.2
	9	Polychaeta	Prionospio steenstrupi	925	4.2	4.5
	10	Polychaeta	Aricidea catherinae	775	3.5	3.8
		•			75.8	81.0
NF16 (0	Group C)					
	1	Polychaeta	Mediomastus californiensis	6150	25.5	27.2
	2	Polychaeta	Spio limicola	2200	9.1	9.7
	3	Polychaeta	Aricidea catherinae	1883	7.8	8.3
	4	Polychaeta	Prionospio steenstrupi	1842	7.6	8.1
	5	Polychaeta	Ninoe nigripes	1508	6.3	6.7
	6	Polychaeta	Tharyx acutus	1125	4.7	5.0
	7	Polychaeta	Levinsenia gracilis	1033	4.3	4.6
	8	Bivalvia	Crenella decussata	783	3.2	3.5
	9	Polychaeta	Leitoscoloplos acutus	758	3.1	3.3
	10	Polychaeta	Monticellina baptiste	567	2.3	2.5
			·		74.0	78.8
NF17 (Group D)					
	1	Crustacea	Corophium crassicorne	2317	41.2	46.4
•	2	Crustacea	Chiridotea tuftsi	400	7.1	8.0
	3	Crustacea	Pseudunciola obliquua	350	6.2	7.0
	4	Bivalvia	Bivalvia spp.	342	6.1	_
	5	Polychaeta	Spiophanes bombyx	183	3.3	3.7
	5	Crustacea	Cirolana polita	183	3.3	3.7
	7	Crustacea	Rhepoxynius hudsoni	158	2.8	3.2
	8	Bivalvia	Cerastoderma pinnulatum	142	2.5	2.8
	9	Crustacea	Amphipoda spp.	133	2.4	_
	10	Crustacea	Hippomedon satus	125	2.2	2.5
	11	Polychaeta	Exogone hebes	117	_	2.3
	11	Polychaeta	Aricidea catherinae	117	_	2.3
					77.2	82.0

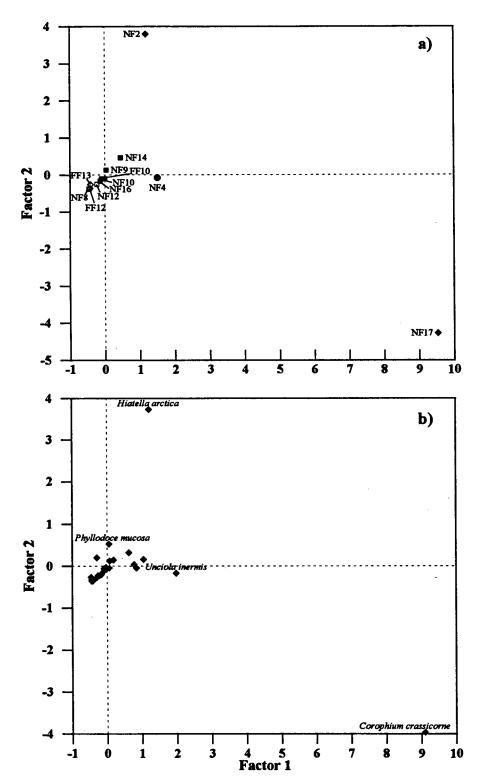


Figure 3.4.11 Results of correspondence analysis (reciprocal averaging) ordination showing the distribution of (a) stations at midfield distances (<8 km) from the diffuser and (b) species along the two principal factors.

Table 3.4.3 shows that this species was highly dominant, comprising 58% of the organisms collected at this station. Its elevated abundance resulted in the highest dominance index at any station (Table 3.4.2). Station NF17 was similarly differentiated by a single species, namely the crustacean Corophium crassicorne. Again, this species was ranked first in overall station abundance (Table 3.4.3), with 46% of species identified at Station NF17. Note, however, that the absolute density of C. crassicorne was low (2,317 individuals m⁻²) as was overall abundance at Station NF17. Station NF17 does not lie along an orthogonal axis and, thus, in addition to its relatively high crustacean abundance associated with large Factor 1 values, it had a comparatively low bivalve abundance (Factor 2). For example, only three H. arctica organisms were collected in all replicate samples and sieve fractions at Station NF17 compared to over 1700 collected at Station NF2 (Appendix A-1 and A-2).

Station NF4 also had a comparatively high crustacean abundance and was separated from other stations at midfield distances by a Factor 1 value exceeding 1.0 (Figure 3.4.11a). In contrast to Station NF17, high crustacean abundance at Station NF4 was due to an elevated density of the crustacean *Unciola inermis* (Figure 3.4.11b). *U. inermis* was ranked a close third in abundance at Station NF4 (Table 3.4.3), behind two polychaetes from the genus *Exogone*. However, these two members of the *Exogone* genus were also abundant at other stations and one or both polychaetes were dominant (ranked in the top ten) at Stations NF12, NF14 and NF17. Factor analysis separated Station NF4 from the other stations at midfield distances by virtue of high crustacean abundance (Factor 1) and average bivalve abundance (Factor 2).

To gain insight into underlying factors associated with abundance data at non-outlier stations, another correspondence analysis was performed on data from stations in Groups A, B, and C. This ordination was performed on the nine stations aggregated near the origin in Figure 3.4.11a. Also, to gain a sense of the inherent spread in the station data, the analysis was applied to replicate samples rather than on pooled station data. The ordination shown in Figure 3.4.12 was highly discriminatory, with the first two factors accounting for over 73% of the covariance and the third highest only accounting for 8.2%. The first factor accounts for over half the variance and projection of replicate sample data onto the Factor 1 axis in Figure 3.4.12a reveals aggregations that differ from the numerical classifications. Two groups emerge rather than the three primary cluster groups shown in Figure 3.4.5. Specifically, Group B, containing Stations NF8 and NF12, is split in a manner more geographically consistent. At Factor 1 values near -1.0 in the ordination analysis, Group A Stations FF12 and FF13 are adjacent to NF8. Similarly, positive Factor 1 values include Station NF12 with Group C. With this alternative grouping, Station NF12 no longer bifurcates Group C in Figure 3.4.5.

The correspondence analysis shown in Figure 3.4.12 exhibits a characteristic arch along the Factor 2 axis. This indicates that a nonlinear relationship exists in the data which often makes the ecological interpretation using the purely linear ordination analyses difficult. Specifically, it suggests that there is a nonlinear species-abundance response to a relatively broad environmental gradient and that samples that are collected at opposite ends of the gradient have few species in common. Stations FF12 (Table 3.3.3) and NF14 (Table 3.4.3) only have three dominant taxa in common. Adding a third (linearly-orthogonal) axis to the plot, as was done by Blake *et al.* (1993), would explain only a small (8.2%) amount of additional variability in the data, would make the plot difficult to read, and would not fully resolve the nonlinearity. While there are community ordination methods to handle nonlinear trends in the data, such as polynomial ordination (Phillips, 1978) and nonmetric multi-dimensional scaling (Hill and Gauch, 1980), these techniques were not applied here. Correspondence analysis is somewhat more robust with nonlinear data sets than other ordination techniques such as principal component analysis. Also, the interpretation of the data, presented below, is generally consistent with that of numerical classifications.

The three species primarily responsible for Factor 1 ordination of Stations FF12, FF13, and NF8 near values of -1.0 are shown in Figure 3.4.12b. The polychaete *Aricidea catherinae* was the most dominant species at both Stations FF12 and NF8 where it accounted for over 40% of the individuals collected (Table 3.3.3 and 3.4.3). At

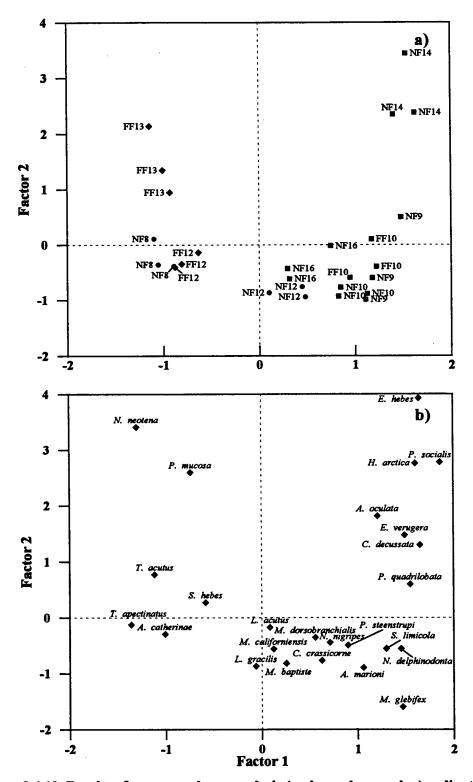


Figure 3.4.12 Results of correspondence analysis (reciprocal averaging) ordination showing the distribution of (a) replicates collected at midfield distances from the diffuser and (b) species along the two principal factors. Outlier Stations NF2, NF4, and NF17 are not included.

Station FF13 it ranked second in abundance. The polychaetes Scoletoma hebes and Tharyx acutus were also in the top ten dominants at these stations, except at Station NF8 where the rank of S. hebes was low (near 30) but higher than its rank at any other nearfield station. These are the same species that characterized the farfield group containing Stations FF12 and FF13 as described in Section 3.3.5. Now, however, it appears that the nearfield Station NF8 had a community structure similar to these farfield stations. In addition to these species, the oligochaete Tubificoides apectinatus also characterized these stations (Figure 3.4.12b). Although it was ranked with dominant taxa only at Station NF8 (Table 3.4.3), it had a high ranking at Stations FF12 and FF13 (sixteenth and eighteenth, respectively).

Adjacent to the positive Factor 1 values in Figure 3.4.12b were two polychaetes (*Prionospio steenstrupi* and *Spio limicola*) and one bivalve (*Nucula delphinodonta*) that had the greatest association with Group C stations and with Station NF12. The two polychaetes were ranked in the top four taxa with highest abundance at these stations except at Station NF14 where *P. steenstrupi* ranked tenth. All three species generally had higher rankings at these stations than at other stations.

The second ordination factor in Figure 3.4.12a differentiated Station FF13 from Group A and Station NF14 from Group C stations. Separation of Station NF14 is consistent with both dendrograms in Figure 3.4.4 which show that the lowest similarity existed between this station and the other Group C stations. Two polychaetes (*Polydora socialis* and *Exogone hebes*) and one bivalve (*Hiatella arctica*) were primarily responsible for differentiating Station NF14 (Figure 3.4.12b). These three species ranked in the top six taxa at this station, well above other stations in the group, except Station NF9 which also exhibited an elevated abundance of *H. arctica* (Table 3.4.3).

Differentiation of Station FF13 from Stations FF12 and NF8 was due to an elevated abundance of the polychaetes *Nephtys neotena* and *Phyllodoce mucosa* (Figure 3.4.12a). Station FF13 was the only location among those analyzed in this ordination where the abundance of these taxa ranked in the top ten.

3.4.5 Association with Abiotic Properties

In contrast to farfield stations, there was no clear relationship between abiotic properties at midfield distances (<8km) from the diffuser and the community structure at midfield stations. Correlations between selected abiotic parameters and midfield indicator species are presented in Table 3.4.4. Even though six of the ten midfield indicator species were also farfield indicator species, most of the correlations were weak and inconsistent within the midfield groups. One would expect overlap in the indicator species because the midfield analysis incorporates three of the farfield stations. In particular, farfield Group D consisted of Stations FF12 and FF13 which constitute most of the midfield Group A modified to include Station NF8. It is not surprising that all three of the species indicative of farfield Group D were also included in midfield Group A. However, while all three of these species were strongly correlated with depth in the farfield (Table 3.3.4), the midfield correlation was much weaker. This is a consequence of the limited midfield depth range which was eight times smaller than in the farfield. Another reason is the comparatively weak discrimination between stations within midfield Groups A' and B' as shown in Figure 3.4.12a. In contrast, Stations NF2, NF4, and NF17 were highly isolated from other stations at midfield distances from the diffuser (Figure 3.4.11a). However, for these stations correlations between abiotic variables and indicator species were of little use because of the limited degrees of freedom. For example, U. inermis only occurred at Stations NF4 and NF17. Similarly, C. crassicorne only occurred at four of the twelve stations at midfield distances from the diffuser. High abundances of these two indicator species (U. inermis and C. crassicorne) were observed in only one replicate from Stations NF4 and NF17, respectively (Appendices A-1 and A-2). Examination of field logs indicates that there were no obvious visual anomalies (e.g., decaying organisms) associated with these replicate grab samples.

Table 3.4.4 Pearson correlation coefficients between logarithmically transformed abundance of indicator species and selected parameters at midfield distances. Lightly shaded coefficients are statistically significant at the 95% confidence level and dark shading delineates 99% confidence.

Nearfield Group	Species	Depth	Mud	TOC	C. perfringens	Silver
NF2	Hiatella arctica	-0.09	-0.49	-0.28	-0.43	-0.45
NF4	Unciola inermis	0.41	-0.47	-0.38	-0.48	-0.33
NF17	Corophium crassicorne	0.23	-0.60	-0.51	-0.60	-0.47
	Aricidea catherinae	-0.36	(())	0.70	323	
Modified	Tharyx acutus	-0.57		0.53	973	
A	Scoletoma hebes	-0.64	0.54	0.20	0.50	0.43
	Tubificoides apectinatus	-0.51	0.15	0.34	0.38	0.47
	Prionospio steenstrupi	-0.06	0.61	0.36	0.52	0.32
Modified B	Spio limicola	0.53	0.45	0.33	0.29	0.11
D D	Nucula delphinodonta	0.46	0.50	0.28	0.27	0.04

3.4.6 Interannual Variability

All of the nine nearfield stations analyzed herein were occupied in 1992 (Blake et al., 1993). As in the case of the farfield analyses, comparison of results for the two consecutive years can lend insight into interannual changes in the benthic environment at midfield distances from the diffuser. Two aspects make the interpretation of temporal changes in the midfield more difficult than in the farfield. First, the comparatively limited range in abiotic parameters made interpretation of midfield infaunal structure difficult. Stations at midfield distances (<8 km) from the diffuser did not always form clearly delineated groups as they did in the farfield. Secondly, in 1992, only one grab sample was collected at each station and, as a result, greater scatter in the results can be expected. Consequently, it may be difficult to detect temporal change in light of inherent uncertainty in the synoptic data.

This is further supported with 1993 infauna data which indicates substantial within station (i.e., replicate) spatial variability. This was especially noticeable at stations NF9, NF10, NF16, and NF17. This result is consistent to those of earlier studies which served as the basis for redesigning the sampling program from non-replication to a replication in the nearfield in 1993. Without estimates for the scale of spatial variation at these sampling locations, it would be extremely difficult to determine if site-specific changes over time were due to effluent discharges or from sampling in slightly different locations.

The numerical classification of nearfield stations was generally comparable for the two years. The highest similarity was between Stations NF9 and NF10, and the lowest similarities were computed for Stations NF2, NF4, and NF17. In both years, the infaunal community at Station NF2 differed from all other stations and was not affiliated with any station group. Ordination analysis of the 1993 data indicated that the elevated abundance of *Hiatella arctica* was responsible for setting this station apart. In 1992, *H. arctica* was also abundant at this station where it ranked fourth. Two of the species, having among the ten highest abundances in 1992 at Station NF2, substantially decreased in abundance during 1993. *Asabellides oculata* and *Spio limicola*, respectively, dropped from the second and eighth highest abundance in 1992 to rankings of 48 and 34 in 1993. At Stations NF4 and NF17, rankings of the top nine species in 1992 did not drop by more than 18 and the overall community structure was comparable across years. Numerical classification of the 1992 data (Blake *et al.*, 1993) did not yield a high similarity between these stations and other nearfield groups although the two stations were

identified as weakly affiliated with one another. The 1993 data did not cluster Stations NF4 and NF17 together by virtue of differences in the respective abundance of *Unciola inermis* and *Corophium crassicorne*. These species were also identified as indicator species for these stations in the ordination of 1992 data.

Perhaps the biggest difference in dendrograms computed for the two years of data was in the affiliation of Station NF16. In 1993, the community structure at Station NF16 was closely associated with Station NF10 and other members of midfield Group C. In 1992, this station was associated with Station NF8. Without reanalysis of a combined data set from 1992 and 1993, the cause for the differences at this station remains unclear. The only major differences in top ten species ranked by abundance in 1992 occurred at Station NF9 where the rank of Ampharete acutifrons dropped from 4 in 1992 to 34 in 1993 and Polydora quadrilobata dropped from 6 to 60. Neither of these species were highly indicative of cluster groups. Another large change occurred in the abundance of A. acutifrons at Station NF14, where its rank dropped from 6 to 46.

Without replication in the 1992 data set, it is difficult to quantitatively test the degree to which these temporal changes are statistically significant. One approach is to assume that the statistics are temporally stationary and that inter-replicate variability computed from the 1993 data can be applied to the 1992 data set using a pooled-variance t-test. Testing total infaunal abundance at nearfield stations indicated that there were no statistically significant differences between years at the 95% confidence level, assuming a log-normal probability distribution. Even the three-fold increase in total abundance at Station NF8, from 31,550 m⁻² in 1992 to 95,108 m⁻² in 1993, was only marginally significant at the 90% level (α =0.081). Similarly, the substantial decrease in total abundance at Station NF9, from 57,375 m⁻² in 1992 to 28,800 m⁻² in 1993, was not quite significant at the 90% level (α =0.105). With one exception, few other infaunal community indices at nearfield stations exhibited a consistent pattern between years. The one exception is Station NF8, which had the lowest diversity and evenness indices of all stations sampled in both years. Similarly, its rarefaction curve fell below that of other stations during each year of sampling. Station NF8 also had the lowest sand and gravel content of any midfield station sampled during both years.

At some of the near field stations, large changes in community structure could be a consequence of the substantial change in surficial sediments. The upcoming report on 1994 data will address interannual variability over three years (1992 through 1994) and quantify relationships between infaunal community structure and environmental variables. In the interim, some anecdotal observations are noteworthy. For example, the largest grain-size differences between 1992 and 1993 occurred at Station NF2 where there were also large changes in dominant taxa. Only three taxa were dominates common to both years of infaunal data at this station. As described above, a number of species, including A. oculata and S. limicola, had among the ten highest abundances in 1992, but substantially decreased in abundance during 1993. Perhaps more dramatic was the virtual absence of 1993 dominants Ophiura robusta, Amphipoda sp. 1, and Spio thulini in the 1992 data. Coincident with these changes in community structure was a 74% drop in the mud fraction of sediments collected in 1993 as shown in Table 3.4.5. The silt and clay fraction constituted 77.2% of the 1992 sediment sample whereas 1993 samples averaged only 3.1%. At all stations except three (FF10, FF13, and NF17) the mud content decreased in 1993 samples, although the change was not as dramatic as those that occurred at Stations NF2 and NF16. Other changes in the fine sediment fractions at midfield stations were small, and less than 15%. At Station NF16 the mud fraction dropped by 40% and this could account for the change in its affiliation with Station NF8 in 1992 to midfield Group C in 1993. However, the ranking of dominant species was much more consistent between years at Station NF16 as compared to Station NF2. At Station NF16, eight of the top ten most abundant taxa were the common to both years and none of the dominants were absent in either year.

Table 3.4.5 Comparison of the mean mud fraction (percent silt and clay) in grab samples collected at stations sampled in both 1992 and 1993. Stations are ranked by the greatest change between years.

Station	1992	1993	Difference
NF2	77	3	74
NF16	77	37	40
FF5	63	45	18
FF6	63	48	15
FF1	87	72	15
FF14	80	67 .	13
FF7	79	67	12
NF9	44	33	11
NF12	71	62	9
NF14	13	5	8
NF8	82	75	7
FF12	28	21	7
NF10	40	34	6
FF11	78	72	6
FF4	84	78	6
FF9	19	15	4
FF10	31	33	-2
FF13	26	28	-2
NF17	1	2	-1
NF4	4	3	1

4.0 FINDINGS AND CONCLUSIONS

4.1 FARFIELD FINDINGS

- The coarsest sediments were located near the mouth of Boston Harbor and grain size fractions were consistent with those of previous studies (e.g., Blake et al., 1993). TOC content was well correlated to mud fractions and coarse sediments near Boston Harbor contained less than 1% TOC. C. perfringens spores were not strongly associated with fine grain size, and the highest counts at farfield stations were located near the mouth of Boston Harbor at Stations FF10, FF12, and FF13. Total PAH was somewhat elevated (>5 μg/g) at the northernmost stations FF1 and FF11 compared to concentration ranges determined by Windsor and Hites (1979). Another organic contaminant, PCB, did not exhibit a clear spatial pattern and mean concentrations were comparable to those reported by other investigators (e.g., Boehm et al., 1984). Silver concentration correlated with C. perfringens spore counts and was highest at stations near Boston Harbor.
- The anomalously high gravel content observed at Station NF14 was probably related to the high content of
 glass and tile fragments of anthropogenic origin. However, this station does not appear to be anomalous in
 other aspects of sediment quality or in macroinfaunal community structure.
- The farfield samples contained 39,717 organisms in 226 taxa. A total of 36,884 individuals, or 93%, was classified into 186 species. The density of organisms in the 0.5-mm sieve fraction exceeded that of the 0.3-mm fraction at all stations. Replicate 2 at farfield Station FF7 was not included in the macroinfaunal analyses because of anomalously low abundance in the 0.5-mm fraction.
- Numerical classification revealed that the community structure at individual stations was distinctly different compared to inherent variability within replicates. The highest similarities among replicate samples were for replicates collected at the associated individual station.
- Farfield stations consistently separate into four distinct groups by virtue of numerical classification (Figure 3.3.4) and ordination (Figure 3.3.11a).
- These four groups are geographically separate (Figure 3.3.5). Group A consists of five stations (FF1, FF4, FF5, FF11, and FF14) with the greatest water depths (>60 m) located furthest offshore over the Stellwagen Basin. Group D includes two stations (FF12 and FF13) with the shallowest water depths (≤22 m) adjacent to the entrance to Boston Harbor. Group C contains two mid-depth (27 to 49 m) stations (FF6 and FF7) positioned within Cape Cod Bay to the south. Group B consists of two mid-depth stations (FF10 and FF9) within Massachusetts Bay between Groups A and D.

Table 4.1.1 Summary of community structure among farfield station clusters.

Farfield Group	Stations	Depth Range (m)	Indicative and I	Dominant Species
A	FF1 FF4 FF5 FF11 FF14	>60	Chaetozone sp.A T. gouldii L. gracilis A. quadrilobata	S. limicola M. glebifex T. apectinatus Y. sapotilla
В	FF9 FF10	27 to 49	P. steenstrupi M. baptiste	E. Verruga
С	FF6 FF7	33 to 37	S. longocirrata, C. longocirrata	T. atlantis
D	FF12 FF13	≤22	T. acutus S. hebes	A. catherinae

• A limited number of dominant indicative species determine polychaete family abundance and differentiate the four station groups (Table 4.1.1). Elevated abundance of these indicator species is evident from the first two principal factors in an ordination analysis (Figure 3.3.11).

The broad range of polychaete families that characterize Group A stations consists of the dominants Chaetozone sp.A (Cirratulid), A. quadrilobata (Paraonid), Spio limicola (Spionid), Maldane glebifex (Maldanid), and Levinsenia gracilis (Paraonid) (Table 3.3.3). Other non-polychaete species that dominate the abundance at Group A stations include the oligochaete Tubificoides apectinatus and the bivalves Yoldia sapotilla and Thyasira gouldii.

The high density of spionid polychaetes characterizing Group B stations consists mostly of *Prionospio steenstrupi*. Other non-paraonid polychaetes are also highly indicative of this group, specifically, the cirratulid *Monticellina baptiste* and the syllid *Exogone verugera*.

Polychaetes indicative of Group C stations include Cossura longocirrata, Syllides longocirrata, and Terebellides atlantis, none of which are members of the spionid, paraonid, or cirratulid family.

The high paraonid density associated with Group D stations was due to a high abundance of *Aricidea catherinae*. Other non-spionid polychaetes are also highly indicative of this group, specifically, the cirratulid *Tharyx acutus* and the lumbrinerid *Scoletoma hebes*.

4.2 FARFIELD CONCLUSIONS

• The first principal factor in the farfield ordination analysis is related to, or covaries with water depth. Species indicative of farfield Groups A and D correlate strongly with depth, C. perfringens spore counts, and silver concentration. Because C. perfringens spore counts and silver concentration correlate with total PAH and PCB concentrations, species affiliated with Groups A and D probably also correlate with organic contaminants. The second principal factor that differentiates farfield stations in Group B from C is related to grain size and TOC content.

• The geographic distribution of sediment properties and infaunal community parameters was largely consistent between 1992 and 1993. The greatest temporal disparity in community structure occurred at Station FF13. In 1992, this station was not clearly affiliated with other farfield stations, whereas in 1993 it clustered with Station FF12. The primary difference was the high density of Polydora cornuta at Station FF13 in 1992. P. cornuta was one of the most common species in Boston Harbor in 1993, yet Station FF13 was the only location within Massachusetts Bay where it was collected in either year. Thus, the affinity of Station FF13 with other farfield stations was determined by the abundance of P. cornuta. In 1992, Boston Harbor appeared to have a greater influence on the infaunal assemblage at Station FF13 as reflected by the increased P. cornuta abundance. In 1993, the declining influence of the Harbor at this station was reflected by the higher similarity in community structure between Stations FF12 and FF13.

4.3 NEARFIELD FINDINGS

- The nearfield samples contained 35,741 organisms in 196 taxa. A total of 33,968 individuals, or 95%, was classified into 165 species. The density of organisms in the 0.5-mm sieve fraction exceeded that of the 0.3-mm fraction at all stations.
- The annelid phylum contained the majority (53%) of the organisms identified at all stations combined and 51% (88) of the species. However, annelids were not the most dominant major taxonomic group at Stations NF2 and NF17 where bivalves and crustaceans respectively dominated.
- Numerical classification revealed that the community structure at individual stations was not always distinct compared to inherent variability within replicates. Generally, the highest similarities among replicate samples were for replicates collected at the associated individual station. However, numerical classification was unable to distinguish between replicate samples from Stations NF9, NF10, and NF16. These stations are in close proximity (≤2.5 km) and their community structure exhibited the highest overall NNESS similarity (Figure 3.4.4b).
- Stations at midfield distances from the diffuser separate into three distinct groups by virtue of numerical classification (Figure 3.4.5). The three groups are not geographically distinct because Group B (with low similarity) bifurcates Group C. Also, the three Stations NF2, NF4 and NF17 show marginal associations under NNESS agglomeration, but are independent of the major clusters using Bray-Curtis similarity measures (Figure 3.4.4). Ordination (Figure 3.4.11a) confirms the autonomy of Stations NF2, NF4, and NF17, and reanalysis without these stations (Figure 3.4.12a) resolves the geographic aberration by combining Station NF8 with Group A and Station NF12 with Group C.
- These two modified groups and three independent stations are geographically distinct. The modified Group A combines two farfield stations (FF12 and FF13), which constituted their own group in the farfield analysis, along with Station NF8. The modified Group C consists of the six Stations FF10, NF9, NF10, NF12, NF14, and NF16. The community structure associated with the remaining three stations at midfield distances from the diffuser was distinct and did not compare among one another or with either of the modified groups.

Table 4.3.1 Summary of community structure among stations at midfield distances from the diffuser.

Midfield Group	Stations	Characteristics	Indicative and Dominant Species
	NF2	High bivalve abundance High dominance index	H. arctica
	NF4	High crustacean abundance	U. inermis
	NF17	Low total abundance High crustacean abundance Low bivalve abundance	C. crassicorne
Modified A	NF8, FF12, FF13	Low Spionid High Paraonid	A. catherinae T. acutus S. hebes T. apectinatus
Modified C	NF9, NF10, NF12, NF14, NF16, FF10	High diversity, number of species, evenness and richness	P. steenstrupi S. limicola N. delphinodonta

 Table 4.3.1 summarizes the characteristics of community structure that distinguish the two modified cluster groups and three independent stations.

Independent Station NF2 was unique in its high bivalve abundance consisting largely (64%) of a single species *Hiatella arctica*. Its relative abundance was so large (Table 3.4.3) that the associated dominance index was 35% higher than at any nearfield or farfield station. The density of this bivalve at Station NF2 was responsible for establishing the Factor 2 ordination in Figure 3.4.11, which is responsible for much of the covariance in midfield abundance data.

Independent Station NF4 was characterized by a high crustacean abundance due to the density of *Unciola inermis* (Table 3.4.3). Factor 1 of the correspondence analysis of Figure 3.4.11 is associated with elevated crustacean abundance and Station NF4 was separated from the majority of stations by Factor 1 values exceeding 1.0.

Independent Station NF17 differs from the other independent stations in that is has high Factor 1 values (dense crustaceans) and low Factor 2 values (sparse bivalve) (Figure 3.4.11a). A single species of crustacean, namely *Corophium crassicorne*, was partially responsible for its unique community structure (Table 3.4.3). Although the absolute abundance of this species was low (2,317 m⁻²), the overall abundance at Station NF17 was much lower than at any other station (Figure 3.4.6). The other unique feature of the community structure at Station NF17 was its comparatively low abundance of bivalves, particularly *H. arctica*, that separated Station NF2 along the Factor 2 axis.

Modified Group A stations, consisting of NF8, FF12, and FF13, were distinguished by a high abundance of the polychaetes described in the farfield analysis, namely *Aricidea catherinae*, *Tharyx acutus*, and the lumbrinerid *Scoletoma hebes*. In addition, another annelid, the oligochaete *Tubificoides apectinatus*,

was abundant at these stations compared to other stations at midfield distances from the diffuser (Figure 3.4.12b).

Modified Group C stations generally had the highest diversity index, number of species, evenness index, and richness index (Table 3.4.2). This reflects the relatively uniform distribution of abundance among species. Nevertheless, certain species are particularly well associated with this group (Figure 3.4.12b). These include the two polychaetes *Prionospio steenstrupi* and *Spio limicola* and the bivalve *Nucula delphinodonta*.

4.4 NEARFIELD CONCLUSIONS

- There was no clear association between species indicative of midfield groups and abiotic variables. Although
 six of the ten indicator species for midfield groups were identical to those in the farfield, the limited depth
 range prevented significant correlations.
- Temporal changes in the midfield infaunal community structure were assessed by comparing 1992 and 1993 data. The lack of replication of nearfield infaunal data in 1992 measurably decreases the ability to resolve statistically significant changes over time. The numerical classification among nearfield stations was similar between years, with the lowest similarities between Stations NF2, NF4, and NF17. The only major difference in classification was for Station NF16. In 1992, this station was affiliated with Station NF8 whereas in 1993, this station was part of midfield Group C. Station NF8 was anomalous in both years in that it had the lowest diversity and evenness indices, and a rarefaction well below that of other nearfield stations. It also had the lowest sand and gravel content. The anomalous nature of the infaunal community at Station NF8 was consistent across years despite a three-fold increase in total abundance. However, that large increase was only marginally significant at the 90% confidence level.

5.0 LITERATURE CITED

- Battelle. 1987. Marine Ecology and Water Quality Field Studies for Outfall Siting for the Deer Island Secondary Treatment Facilities Plan: Concentrations of Polynuclear Aromatic Hydrocarbons and Metals in Surface Sediments at Selected Sites in Massachusetts Bay.
- Battelle Ocean Sciences. 1992. Generic Field Manual for NOAA Status and Trends Program: Mussel Watch (Year 8). Department of Commerce contract No. 50-DGNC-0-00048. 29 pp + 7 Appendices.
- Blake, J.A., E.M. Baptiste, R.E. Ruff, B. Hilbig, B. Brown, R. Etter, and P. Nimeskern. 1987. Soft Bottom Benthos of Massachusetts Bay. Marine Ecology and Water Quality field Studies for Outfall Siting. Deer Island Secondary Treatment Facilities Plan. Report to Camp Dresser and McKee, Inc., for Massachusetts Water Resources Authority, Boston, MA. 109 pp + 2 Appendices.
- Blake, J.A., R.E. Ruff, and N.J. Maciolek. 1988. Soft-Bottom Benthos from Stations B2 and D2 Collected in February 1988. Marine Ecology and Water Quality Field Studies for Outfall Siting. Deer Island Secondary Treatment Facilities Plan. Draft supplemental report to Camp Dresser and McKee, Inc., for Massachusetts Water Resources Authority, Boston, MA. 24 pp. + 1 Appendix.
- Blake, J.A., D.C. Rhoads, and B. Hilbig. 1993. Massachusetts bay outfall monitoring program: soft bottom benthic biology and sedimentology, 1992 baseline conditions in Massachusetts and Cape Cod Bays. MWRA Enviro. Quality Dept. Tech. Rpt. Series No. 93-10. Massachusetts Water Resources Authority, Boston, MA. 108 pp. + 4 Appendices.
- Boehm, P.D., W. Steinhauer, and J. Brown. 1984. Organic Pollutant Biogeochemistry Studies Northeast U.S. Marine Environment. Part 1: The state of organic pollutant (PCB, PAH, coprostanol) contamination of the Boston Harbor Massachusetts Bay Cape Cod Bay system: Sediments and biota. Final report from Battelle Ocean Sciences to the National Oceanic and Atmospheric Administration.
- Boesch, D.F. 1977. Application of numerical classification in ecological investigations of water pollution. Virginia Institute of Marine Science, Gloucester Point, VA. Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency. EPB-600/3-77-033. March. 114 pp.
- Bothner, M.H., C.M. Parmenter, D.C. Twichell, C.F. Polloni, and H.J. Knebel. 1992. A geologic map of the sea floor in western Massachusetts Bay, constructed from digital sidescan sonar images, photography, and sediment samples. U.S. Geological Survey Digital Data Series DDS-3, 1 CD-ROM.
- Bothner, M.H., M. Buchholtz ten Brink, C.M. Parmenter, W.M. d'Angelo and M.W. Doughten. 1993. The distribution of silver and other metals in sediments from Massachusetts and Cape Cod Bays An interim compilation. U.S. Geological Survey Open File Report 93-725. 33 pp.
- Campbell, J.F. 1993. Nearfield/Farfield Survey S9303 Report for Soft-bottom Benthic Monitoring: 1993-1994, Task 11.1 and 11.2. Massachusetts Water Resources Authority, Environmental Quality Department.
- Clifford, H.T. and W. Stephenson. 1975. An Introduction to Numerical Classification. Academic Press, New York, NY. 229 pp.
- Emerson, D.J. and V.J. Cabelli. 1982. Extraction of *Clostridium perfringens* spores from bottom sediment samples. *Applied and Environmental Microbiology* 44:1144-1149.

- Folk, R.L. 1974. Petrology of Sedimentary Rocks. Hemphill Publishing Company, Austin, TX. 184 pp.
- Gilbert, T.R., A.M. Clay, and C.A. Karp. 1976. Distribution of Polluted Materials in Massachusetts Bay. Report prepared for the Commonwealth of Massachusetts, Division of Water Pollution Control. iv + 173 pp.
- Grassle, J.F. and W. Smith. 1976. A similarity measure sensitive to the contribution of rare species and its use in investigation of variation in marine benthic communities. *Oecologia* 25:13-22.
- Green, R.H. 1979. Sampling Design and Statistical Methods for Environmental Biologists. Wiley-Interscience, John Wiley and Sons, New York, NY. 257 pp.
- Hill, M.O. and H.G. Gauch. 1980. Detrended correspondence analysis, an improved ordination technique. *Vegitatio* 42:47-58.
- Hill, R.T., I.T. Knight, M.S. Anikis, and R.R. Colwell. 1993. Benthic distributions of sewage sludge indicated by Clostridium perfringens at a deep-ocean dumpsite. Applied and Environmental Microbiology 59:44-51.
- Hurlbert, S.H. 1971. The nonconcept of species diversity: A critique and alternative parameters. *Ecology* 52:577-586.
- Keay, K., M. Mickelson, and D. Shea. 1993. Loading to and distribution of the sewage indicator *Clostridium* perfringens in the sediments of Boston Harbor and the Massachusetts Bays. GSA Abstracts with Programs 25:6(A-127).
- Kropp, R. and C. Peven. 1993. Combined work/quality assurance plan for soft-bottom benthic monitoring: 1993-1994. MWRA Enviro. Quality Dept. Misc. Rpt. No. ms-12. Massachusetts Water Resources Authority, Boston, MA. 64 pp.
- Kropp, R.K and R.J. Diaz. 1995. 1993 annual soft-bottom benthic monitoring report: Boston Harbor studies. MWRA Enviro. Quality Dept. Tech. Rpt. Series No. 94-10. 77 pp + 3 Appendices.
- Ludwig, J.A. and J.F. Reynolds. 1988. Statistical Ecology: A Primer on Methods and Computing. John Wiley & Sons, Inc. 329 pp.
- Margalef, R. 1951. Diversidad de especies en las communidades naturales. *Publ. Inst. Biol. Aplic. Barcelona* 9:5-27.
- MWRA. 1991. Massachusetts Water Resources Authority Effluent Outfall Monitoring Plan, Phase I: Baseline Studies. MWRA Environmental Quality Department, Boston, MA. 95 pp.
- Pect, R.K. 1974. The measurement of species diversity. Annual Review of Ecology and Systematics 5:285-307.
- Phillips, D.L. 1978. Polynomial ordination: Field and computer simulation testing of a new method. *Vegitatio* 37:129-140.
- Pielou, E.C. 1977. Mathematical Ecology. John Wiley and Sons, New York, NY, 384 pp.
- Sanders, H.L. 1968. Marine benthic diversity: A comparative study. Am. Nat. 102:243-282.

- Shannon, C.H. and W. Weaver. 1949. *The Mathematical Theory of Communication*. Univ. of Illinois Press, Urbana, IL. 127 pp.
- Shea, D., D. Lewis, B. Buxton, D. Rhoads, and J. Blake. 1991. The sedimentary environment of Massachusetts Bay: physical, chemical, and biological characteristics. MWRA Enviro. Quality Dept. Tech. Rpt. Series No. 91-6. Massachusetts Water Resources Authority, Boston, MA. 139 pp.
- Shea, D. 1993. Annual review of toxic contaminants discharged by MWRA: 1993. MWRA Enviro. Quality Dept. Tech. Rpt. Series No. 93-18. Massachusetts Water Resources Authority, Boston, MA. 68 pp. + Appendices.
- Sneath, P.H.A. and R.R. Sokal. 1973. Numerical Taxonomy. The Principles and Practice of Numerical Classification. W.H. Freeman and Co., San Francisco, CA. 573 pp.
- Swartz, R.C. 1978. Techniques for sampling and analyzing the marine macrobenthos. U.S. Department of Commerce National Technical Information Service. PB-35-281 631, Corvallis Environmental Research Laboratory, Corvallis, OR.
- Trueblood, D.D., E.D. Gallagher, and D.M. Gould. 1994. Three stages of seasonal succession on the Savin Hill Cove mudflat, Boston Harbor. *Limnol. Oceanogr.* 39(6):1440-1454.
- Washington, H.G. 1984. Review: Diversity, biotic and similarity indices. Water Res. 418:653-694.
- Whittaker, R.H. 1965. Dominance and diversity in land plant communities. Science 147:250-260.
- Windsor, J.G., Jr., and R.A. Hites. 1979. Polycyclic aromatic hydrocarbons in Gulf of Maine sediment and Nova Scotia soils. *Geochim. Cosmochim. Acta.* 43:27-33.
- Young, D.K. and D.C. Rhoads. 1971. Animal-sediment Relations in Cape Cod Bay, Massachusetts I. A Transect Study. Mar. Biol. 11:242-254.

APPENDIX A-1: NEARFIELD ABUNDANCE (0.3-mm FRACTION)

Survey	Survey 9303 0.3 mm	Ĺ	NF2	L	7	1	₹.	١.	L	NF9	┢	臣.	L		254	-	Þ.	Ĺ.,	L	NF46	_	Æ.	
1	Тахоп	1	7	6	7	+	╬	7	-	7	╡	1 2	2	-	7	+	╪	2	1	1	7	7	1
CNIDAKIA		1	\dagger	╀	Į	H	\vdash	\sqcup	Д	П	Н	H	Ц		H	Н	Н	Ц	Ц		H	Ц	
	ACTINIARIA SP.6		ᅥᅱ	Н		Ш	\coprod	Н	Ц			Ц		_	H	H	\dashv	Ľ		_1	,	+	
NEMERTEA	- 13 C - 13 L -	1	┿	+	2	e .	3/	+	8	5	=		<u> </u>	=	2	7 "	+	7	1	4-		1	I
	NEMERIEA SP.2 NEMERIEA SP.3	F	\dagger	+	T	1	+	\perp	$oxed{\Gamma}$	\dagger	+	\mathbb{H}	Ц	•	+	Ħ	Н	\coprod			Н	Н	
PALEONEMERTEA		Ц	H	H	П	${\sf H}$		Ц			+	\mathbb{H}			\dagger	\dagger	+	+		1	\dagger	4	
TUBULANIDAE	CARINOMELLA LACTEA	\downarrow	\dagger	+	1	+	-	1	7	t	╁	+	1		\dagger	\dagger	+	\downarrow			+	╀	
LINEIDAE	MICRURA	П	H	H	7	H	4	5		7	Н	Н	8	7	8	۵	Н	Н			흔	Ц	
MONOSTYLIFERA	OF THE STORY OF THE STORY		\dagger	4		+	- 4	45		-	+	- -	_	7	+	┢	+	+	Ţ	ς:	╁	4	
ANNELIDA	AMITHITORUS ANGULATUS	I	\dagger	╀	1	+	-	+		+	+	-		_	,	,	Н	Ц	П	1	Н	Ц	Ш
POLYCHAETA			H	Н	Ц	Н	H	H	Ц	H	Н	Н	Ц		H	Н	Н	Н			+	4	
	GATTYANA CIRROSA	1	†	+	7	+	+	+	Ţ	ŀ	╬	_L	Т	1	†	+	-		1	ľ	15	╀	Ţ
- 1	PHOLOE MINUTA	7	•	+	•	+	- L	1,	?	7	•) (- 0	ŗ	╪	╅	1	1	,	9	7	1	1
	PHYLLONGA PHYLLODOCE	F	+	+	1	+	<u> </u>	1	Ţ	+	+			1	t	+	╁	Ļ	1		H	L	Ц
	PHYLLODOCE ARENAE	6	6	-	Į	\vdash	\perp	\sqcup	Ц	2	Н	Н	Ц		Н	Н	Н	Ц	Ц		Н	Н	Ц
1 1	PHYLLODOCE MACULATA	Ц	6	Ш		Н	H	H			H	Ш			†	1	+	╣,		ľ	╁	4	
	PHYLLODOCE MUCOSA	9	8	~ -	4	-	0	+	9	=	7	` •	1	Ι	╡	\dagger	╗	7	5	1	†	+	
- 1	MICROPHTHALMUS SCZELKOWII	ľ	:	1 73	+	-	7 4	~	F.	6	┢	╬	1	6	┝	9	13	2	F	9	2	╀	3
	EXOCONE I ONGICIARUS	1	1	╀	1	_	1	_	1	1	╁	-	╚	┖	H		H				Н	Ц	Ц
	EXOGONE VERUGERA		t	67	7 13	58	-	H	8	15	8	8	3	_	7	X	4	5	-		₽	Н	
	SPHAEROSYLLIS LONGICAUDA	Ц	Н	Н		H	-	4		7	7	-	4		1	+	+	4	\downarrow		+	4	1
	SYLLIDES LONGOCIRRATA		\forall	+		+	+	+	1	\dagger	\dagger	+	1	1	\dagger	†	+	7		1	\dagger	4	1
	TYPOSYLLIS	1	\dagger	+	1	+	+	\downarrow	I	t	$^{+}$	+	1	I	t	t	┾	+	1	I	t	Ļ	l
SYLLIDAE	I YPOSYLLIS SP. 1	1	\dagger	+	1	+	+	+	I	†	+	1		I	t	t	╁	╀			t	╀	
NEWEIDAE	NEREIS GRAY!	İ	\dagger	+	L	+	-			-	\vdash	Н	Ц		H	Н	Н	H			Н	Ц	Ц
			F	Н			\prod	Ц	Ц	+	+		4		†	1	+	4	1		†	7	1
	AGLAOPHAMUS CIRCINATA		+	7	9	7	+	+	Ţ	\dagger	+	+	1	Ţ	\dagger	\dagger	┽	1	\downarrow	I	╁	4	
	NEPHI YS	1	\dagger	+	1	+	+	,	Ţ	T	+	╀	1	Ī	t	┢	╀	-	Į	I	t	╄	L
NEDLITYDAE	MEPHITS INCIDA	T	-	+	1	+	6	+		-	┝	<u> ``</u>	3	2	t	10	┝	2	-	•	F	Ľ	L
SPHAERODORIDAE	SPHAERODOROPSIS MINUTA		t	╀		H	+	\vdash	\Box		F	Н	Ц		H	Н	Н	H			Н	Ц	Ц
LUMBRINERIDAE				Н		Н	2	H		F	13	12 (8 2	F	1	8	\dashv	Ц	2	•	+	4	_
LUMBRINERIDAE	NINOE NIGRIPES		H	\dashv		+	4	4	7	†	ᅱ	+	1		+	7	+	┩	1		†	4	\perp
LUMBRINERIDAE	SCOLETON	1	1	+	1	+	4	-		†	+	١,		$oldsymbol{ol}}}}}}}}}}}}}}}}}}$	†	†	╬	+	ļ	Ī	+	+	╧
DORVILLEIDAE	PAROUGIA	1	†	+	1	+	3 2		4 6	╬	9	- 0	13	9 60	┝	1	+	10	12	6	┝	Ļ	L
CADINIDAC	LETTOSCOLOPIOS ACITUS	Ī	ŀ	+	<u></u>	+	1	L		1	2		1_		1	H	-	L		L	H	Н	Ц
ORBINIDAE	SCOLOPLOS	۳	\dagger	\vdash		\vdash	15	L		П	Н	Ľ	٦	-	Н	Н	Н	Н	Ц	7	H	Н	Ц
ORBINIIDAE	SCOLOPLOS ARMIGER		_	H		H							1	_	1	1	╣		_	_	†	ľ	1
PARAONIDAE	ARICIDEA CATHERINAE	1	8	<u> </u>	1	8 1431	31 1085	35 510	27	=	<u> </u>	15 14	-	R	7	<u> </u>	+	" 	2	2	*	1	L
PAKAUNIDAE	ARICIDEA GUADRILOBATA	İ	┢	+	ļ	+	9	2 15	44	T	4	╀	1	2	4	8	┝	ا ا		17		Ļ	L
APISTOBRANCHIDAE	APISTOBRANCHUS TULLBERGI	L	\dagger	\vdash		\vdash	-	ш		H	၈	Н	П	-	۳	7	Н		Ц	7	H	Н	Ц
POLYNOIDAE	POLYDORA CORNUTA		H	Н		Н	Ц	$ \downarrow $			+	4	\perp		1	+	+	4	1		†	4	\perp
SPIONIDAE	POLYDORA QUADRILOBATA	1	\dagger	+	_	+	+	+	Ţ	†	+	+	1	1	\dagger	\dagger	+	+	1	1	+	4	↓
	POLYDORA SOCIALIS	ľ	╡	+	0 0	+	- 18	<u> </u>	Ş	- 2	9	70 53	440	Ī	1	12	55	38 18	7	۶	33	\downarrow	L
	PRIONOSPIO STEENSTRUP	7	╡	+		+	8	•	3	•				_	+	3	_	_	_		3	F	Ľ
SPICKLONDAE	SPIO FILEGRAS	I	\dagger	+	I	+	+	1	F	7	┢	╀	Ļ		T	Ħ	H	\vdash	L		F	Н	Ц
	SPIOLIMICOLA		t	F	9 37	-	3	H	1 22	8	28	31 21	=	Ξ	7	4	8	1 10	3		15	4	
	SPIO THULINI		6	80		F	H	Ц	Ц		H	Н	\perp		1	1	+	=	_		†	+	\perp
	SPIOPHANES BOMBYX	7	+	\dashv	7	+	+	4	\int	†	+	+	4	I	†	\dagger	\dagger	+	\downarrow	1	\dagger	+	\perp
	TECCHOCHAETA ANII TISETOSA	I	+	+	1	+	+	+	I	†	+	╀	Ļ	I	t	t	\dagger	╀			t	╀	L
Š	APHELOCHAETA MARIONI		┢	+	I	+	+	\downarrow	7	-	=	2	Ľ	7	7	4	Н	3	Ц		Н	Н	Ц
CIRRATULIDAE	APHELOCHAETA MONILARIS	Ц	H	Н	Ц	H	H	H			H	Н	Ц		\forall	+	+	+	4		+	\downarrow	1
1	CHAETOZONE SETOSA		1	\dashv	3	+	+	4	7		\dashv	+	-		1	-	1	4	4		1	┨.	

Survey	Survey 9303 0.3 mm	L	Z Z	H	¥.		[E	H	1	<u>ا</u>	L	NF10	r	ľ	<u>F</u> 12	H		Į.	L	NF16	_	N=1	L	_
		7	7	6	-	2	키	집	~	┙	~	_		7		ᅰ	6	=	7	<u>ج</u>	ᆜ	<u> </u>	7	_	
CIRRATULIDAE	MONTICELLINA BAPTISTE]	1	1	+	1	8	2		힏	8 8	24	27	ह्र	=		8	7		9	9	4	+	4	_
CIRRATULIDAE	MONTICELLINA DORSOBRANCHIALIS]	7	†	┙		4		1	_	_	_		†	- 1	_L	-	+	4	4	_	7	+	1	_
CIRRATULIDAE	THARYX ACUTUS	7	F	†	-	- -	6	25	8	5	14 23	2	2	₹	<u> </u>	함	3	7		٩	7	†	+	1	_
COSSURIDAE	COSSUMA LONGOCIAMATA	I	T	\dagger	+	1	t	T	\dagger	+	+	ľ	Ī	Ť	十	+	t	╁	4	\downarrow	I	Ť	+	1	_
SCALIBBEGMIDAE	SCALIBBECHA INELATITA	I	T	t	+	ļ	ŀ	t	t	╀	1	1	I	Ť	t	╁	+	╀	╀	Ļ		t	╀	╀	_
OPHELIDAE	OPHELINA ACUMINATA		T	t	+	I	t	T	t	╀	Ļ	L		T	t	+	+	H	╄	Ļ	2	t	╀	L	_
CAPITELLIDAE	CAPITELLA CAPITATA	က	Γ	┢	Ľ	١	2	T	=	~	Ľ	┺		7		H	F	~		_	3	-	L	L	_
CAPITELLIDAE	MEDIOMASTUS CALIFORNIENSIS	3	3	8	H	9	ह	7	9	15 2	22	5 12	·	23	3	8	92		23	3 19	21	\$	Н		_ ,
MALDANIDAE	EUCLYMENINAE			Н	Н	Ŧ	H			Н					Н	\dashv	\dashv	\exists	\dashv			T	4	4	,
AMPHARETIDAE	AMPHARETE ACUTIFRONS			H	H		H	П	\dashv	\dashv		Ц		T	H	\dashv	\dashv	\exists	_	_		1	\dashv	Ц	-
AMPHARETIDAE	ASABELLIDES OCULATA			\forall	\dashv			1	+	\dashv	4	\prod			ᅱ	1	\dashv	+	4	4		1	4	_	,
SABELLIDAE	CHONE DUNERI			+	+		7	7	+	┙	-[\downarrow	1	1	†	+	+	+	4	4	-	1	+	4	_
SABELLIDAE	EUCHONE INCOLOR		7	\dagger	+	1	†	†	+	7	- -		_	1	+	\dagger	┿	+	4	4	I	†	+	1	-
IUBIFICINA		I	Ť	\dagger	+	‡	†	†	\dagger	+	4	1	Ī	T	\dagger	\dagger	\dagger	+	+	\downarrow	Ī	†	+	1	_
TIBLECITAE	ENCHTIKAEIDAE SP.3	1	7	+	+	Ţ	†	†	\dagger	╪	4	\downarrow	ŀ	,	\dagger	\dagger	+	╀	4	1	Ι	t	Ŧ	Ļ	_
TIBLECIDAE	TURIFICIONE SP 2	ŗ	7	+	e		74	۳	4	╀	=		1	1	†	\dagger	╁	╀	13	ļ.	15	T	╀	Ļ	_
TUBIFICIDAE	TUBIFICOIDES APECTINATUS	-	2	2	\vdash		78	\$	x	\vdash	Ľ	Ĺ			T	\vdash	H	H	Ľ	L	2	Γ	L	L	_
GASTROPODA			2	H	-				۲	H	2	Ĺ		П	H	Н	H		Н	Ц	L	F	Н	Ц	_
BIVALVIA		42	102	15	38	8	٥	7	H	8	13 13	7		4	7	9	6	31 2	22 15	5 12	25	14	3 11	18	
NUCULOIDEA				Н	Н					_		_			1	\dashv	+	1	4	4		1	4	_	_
NUCULIDAE	NUCULA DELPHINODONTA		T	H	7		1	1		5	29	3 27	2	٥	\dagger	₹	-	\dashv	4	_	₹	지	4	4	_
MYTILOIDA			1	+	4	1	1	+	+	4	_		_1	1	+	+	\dashv		_		- 1	1	4	4	<u> </u>
MYTILIDAE	CRENELLA DECUSSATA		1	+	4]	1	1	1	4	88 29	18	2	ᅙ	\dashv	ᅯ	7	2 88	27 12	8	F	2	4	4	_
MYTILIDAE	MYTILUS EDULIS	7	8	뒤	4	1	+	+	\dagger	+		\downarrow		7	+	+	+	+	4	7	7	1	+	1	_
VENEROIDA			1	+	+	1	+	†	\dagger	+	4	\downarrow		1	+	+	+	+	+	4		†	+	\downarrow	_
ASTARTIDAE	ASTARTE UNDATA	1	1	\dagger	+	1	†	†	†	+	- -	\prod		ľ	\dagger	╪	+	+	+	1	I	†	+	1	,
LAKUIDAE	CERAS I CUERMA MINIOLA I UM	1	T	\dagger	+	Ţ	\dagger	\dagger	\dagger	7	_	\downarrow		1	\dagger	╬	╀	╀	╀	1	I	t	+	l	-
HIATELLIDAE	HIATELLA ARCTICA	8	279	~	ē	=	-	t	t	1117	7 14	Ĺ	F	ĸ	\dagger	+	F	88	62 23		8	4	╀	L	-
CRUSTACEA					H			Н	H	Н	Ц	Ц		П	Н	Н	Н	Н	Н	Ц		Н	Н	Ц	,
CUMACEA			П	Н	Н		H	H	H	Н	Ц	Ц		П	+	+	+	\dashv	4	Ц			-	4	_
DIASTYLIDAE	LEPTOSTYLIS LONGIMANA		ᅱ	+	+	2	+	+	+	+	1	1		1	\dagger	+	+	+	+	\downarrow		†	4	1	_
ANTHURIDEA	OH 17 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	1	1	\dagger	-	1	†	\dagger	+	+	1	\downarrow		†	\dagger	+	+	+	+	1		Ť	4	1	_
ASELLOTA	FILANIHURA IENUIS		T	+	╬	1	\dagger	†	+	+	1	$oxed{\bot}$	I	Ť	t	+	+	+	╀	ļ		t	+	\perp	+
PARAMUNIDAE	PLEUROGONIUM INERME		T	t			T	\dagger	t	+	1	F	İ	┢	1	+	╁	╀	╀	L		Ť	┞	L	-
PARAMUNNIDAE	PLEUROGONIUM RUBICUNDUM		П	Н	H		H	H	H	H	Ц	Ц		П	H	7	Н	П	Н	Ц		6	Н	Ц	٠.,
AMPHIPODA			寸	+	+	7	+	\dagger	~	+	7			7	+	+	+	•	~	4		†	-	1	
GAMMARIDEA		1	1	\dagger	 	1	†	\dagger	\dagger	+	4	\downarrow	1	†	+	+	+	+	1	₡		†	+	1	_
ARGISSIDAE	ARGISSA HAMA IIPES	1	ľ	\dagger	- -	•	\dagger	†	\dagger	+	1	I	1	†	\dagger	+	+	+	\downarrow	1	ŀ	╪	ļ	,	7.0
COROTHIDAE	PSETIDIACION A ORI IOTITA	Ī	1	t	1		t	t	\dagger	╀	1	I	İ	Ť	t	+	+	╀	Ļ	ļ	I	t	٩	_	
COROPHIIDAE	UNCIOLA	Γ	T	H	\vdash	F	T	T	\vdash	\vdash	L			T	┢	-	H	H	Ļ			T	H	L	_
ISAEIDAE	PHOTIS P		•	H	4	9	-	T	-	F	=	Ξ	7	F	-	\vdash	F	9	2	3	-	F	H	Ц	_
OEDICEROTIDAE			П	H	F		H	H	Н	Н	Ц			П	Н	H	Н	H	Ц				Н	Ц	_
PHOXOCEPHALIDAE	HARPINIA		1	+	4		1	+	+	4	_	\prod		1	+	+	┪	┥	4	4		7	+	4	_
PLEUSTIDAE	- ŀ	1	1	+	4	=	1	†	+	+	_[1	†	\dagger	+	+	+	4	4		†	+	1	_
PLEUSTIDAE	STENOPLEUSTES INERMIS		†	\dagger	- (‡	+	†	†	+	7	4 (İ	7	┿	+	+	+	7	_		Ť	+	1	_
SIENOI HOIDAE	ŀ		†	+	-		\dagger	t	+	+	1	1	İ	Ť	†	+	+	╬	1	1		t	╀	\downarrow	_
SIL CICCLOSES	SIPUNCULA		T	+	╀	İ	t	T	\dagger	+	Ľ	\prod	İ	T	t	+	╁	╀	╀	Ļ	L	十	\vdash	L	_
PHORONIDA		I	T	H	L	Ĺ	t	t	╁	\vdash	L			T	t	┢	┝	┞	L	L		<u> </u>	L	L	_
PHORONIDAE	PHORONIS ARCHITECTA		П	Н	Н	П	H	H	H	H	Ц		F	肻	H	H	Н	Н	Н	Ц		Н	Н	Ц	_
ECHINODERMATA		1	1	+	-[\dagger	+	+	+	┙		j	†	\dagger	+	+	۱,	4			†	+	\downarrow	-
OPHIUROIDEA		1	†	\dagger	7	1	\dagger	†	+	+	5	1	1	┪	\dagger	+	╪	╀	-	1	Ι	†	+	↓	_
CHILOPHIURINA OBLIGI EBROARE	COMITIDA DODITOTA	卞	1	╬	+	1	†	\dagger	\dagger	+	1	Ţ	İ	†	\dagger	+	+	+	\downarrow	\downarrow		t	+	1	-
OPHIOLEPIDIONE	OFFICIAL ROBOSTA	1	1	=	-	1	1	1	1	-	4	1		1	1	\mathbf{I}	┨	┨	-	1	1	1	1	1	-

APPENDIX A-2: NEARFIELD ABUNDANCE (0.5-mm FRACTION)

### GEONGS MERCHAN ### ECONOSIA MERCHAN ##	Surve	Survey 9303 0.5 mm		NF2	L	₽_	Ι.	[E -	-		١.		NF10			VF12	r	₹,	NF14	 -	NF16		Ľ		٦
CERMANINGONES MERICANA S 2 1 1 1 1 2 2 1 1 1		Taxon		╅	┸			†	╅	╬			T	L		1	1	1	†	╅	, •	L	L	1	扌	'n
CERRANTICECESS AMERICANA	HYDROZOA			t	+			-	\vdash	+	L	L	L	L				T	T	H	Н	L	Ц		H	
Chimology Selections State	CERIANTHARIA			Н	Н	Ц		H	H	H	igert	\coprod	Ц	Ц			П	H	H	Н	Н	Ц	Ш		H	
EXTREMENDES SELECTORS EXTRINAVOLATION EXTREMENDES SELECTORS EXTRINAVOLATION EXTREMENDES SELECTORS EXTRINAVOLATION EXTRI	CERIANTHIDAE	CERIANTHEOPSIS AMERICANA	1	+	+	\downarrow	j	\dagger	+	+	4		1	ľ		1	1	\dagger	ť	+	+		1	·	t	T
Figure 1981 Effect ANS Figure 1981 Effect ANS Figure 1981 Effect ANS Figure 1981 Effect ANS Figure 1981 Effect ANS Figure 1981 Effect ANS Figure 1982 Effect ANS Effect ANS Figure 1982 Effect ANS Figure	ACTINIARIA	ACTINIARIA SP.2	•	7	+	$oxed{L}$	1	\dagger	+	+	+	L			$oxed{I}$		T	T	1	+	╁	\downarrow			t	Ţ
TURBELLAKIA SP.1	EDWARDSIIDAE	EDWARDSIA ELEGANS	3	4	H			ቨ	7	Н	$oxed{\parallel}$	\coprod	Ц	7			П	H	Ħ	-	7	Ц	Ц	F	H	7
CHERTELLAND STATE MICHIGAL ANGULATUS	PLATYHELMINTHES		1	+	+	\downarrow	1	\dagger	+	+	+	\downarrow	_[`	\perp	Ī	Ī	1	\dagger	Ť	+	+	1	1	1	\dagger	T
MEMERITEA SP2. Commonwealth Activity Commonwealt	NEMERTEA	IUMBELLARIA SP.1		\dagger	╁			+	┢	+	+	+	1			•	T	6	T		+	\perp	°		H	
Charles Confederate Conf		NEMERTEA SP.2		H	╫	\prod		H	H	H	H	\coprod	Ц	Ц	\prod	F	П	H	Ħ	Н	H	Ц	Ш		H	П
NEGLIAR Conference Confer	PALEONEMERTEA TIJBIJI ANIDAE	CARINOMELLALACTEA	1	+	+		ŀ	+	1~	- 2	+	\downarrow	\downarrow			I	┍	\dagger	Ť	+	+	-		T	+	
INVERDISE CONTINUES AND CO	HETERONEMERTEA			Н	H	Ц		H	il	H		\prod_{i}	\coprod	Ц			H	H	Ħ	Н	Н	Ц	Ц		\dagger	П
CHANGING PROCESSES PROCE	LINEIDAE	CEREBRATULUS LACTEUS	ļ	+	+	L		6	1	7 3		1	_	1	┸	7 7		9	7	-	-	10	-	Ţ	\dagger	Τ
AMPHIPORIDE	MONOSTYLIFERA	MICHOLIN	1	\dagger	╁			3		H			L		Ш		11	Ħ	H	Н	Ш	ш			П	П
CONTINUED CONT	П	AMPHIPORUS ANGULATUS		H	H	\coprod		4	7	+	-	-			•	2	7	+	Ť	+	+	1	7	İ	†	
Colone C	ANNELIDA		1	+	+	\int	Ţ	\dagger	\dagger	+	+	\downarrow	ļ		I		T	\dagger	Ť	\dagger	+	1	L	İ	t	
ABARCHONGE MINUTAL CREASA	POLYNOIDAE	ENIPO TORELLI		+	H			H	7	Н	H	\sqcup	Ц	Ц		7	П	F	П	Н	Н		Ц		H	П
HARNONINEE HARNONINEE	POLYNOIDAE	GATTYANA CIRROSA	F	4	뉘			H	H	H	\dashv		Ц		7	F	ᅱ	7	┪	e	ام	2			†	1
PHYLLOOGE AREWAYS ETCOME, UNION ETCOME CANGEN PHYLLOOGE AREWAYS PHY	POLYNOIDAE	HARMOTHOINAE	ļ	+			j	\dagger	+	┿	\perp	<u>_</u>	<u> </u>	\perp	٢	Ţ	f	f	T	"	L		ſ	I	╡	-
FULL OLOGICAL MAINTENS FULL OLOGICAL MAINT	DLW I ODOCIDAE	ETECNE LONGA	•	+		1		+	+	+	\perp	1-	1		1	7	1	1	t	+	L	7			t	
PHYLLODOCE AREWIE PHYL	PHYLODOCIDAE	EULALIA VIRIDIS	1	t	╀			+	+	╀	H	L	L	L			Γ	Ħ	Ħ	Н	Н	Ц	Ц		H	П
### PHYLLODOCE MACINAR ### PHYLODOCE MACINAR ### PHYLLODOCE MACINAR ### PHYLLODOCE MACINAR ### PHYLODOCE MACINAR ### PH	PHYLLODOCIDAE	PHYLLODOCE	2	Н	Н	Ц	6	Н	Н	Н	Ц	Ц	Ц			-	П	П	1	\dashv	4				1	T
HANTLOOCE MACULATA HANTLOOCE MAC	PHYLLODOCIDAE	PHYLLODOCE ARENAE	2	Ш	L.I			+	\dagger	+	4	-	_				1	1	†	+	+	1		1	\dagger	Ţ
Thirticology Color	PHYLLODOCIDAE	PHYLLODOCE MACULATA	7		1.	1	•	╬	\dagger	+	1	1			۴	Ţ	T	T	1	-	╪	-	ľ	ŀ	t	T
EXOCONE HEBES STATES ST	PHYLLODOCIDAE	MYLLODOCE MUCOSA	0	⊥_	Ш		1	+	\dagger	+	\perp		L		r	1	T	t	↟	1	╬	-	1		t	
EXOCONE LONGICIPALIS 1 10 3 1 1 1 2 14 16 5 2 17 3 19 1 1 1 6 2 1 <td>SYLIDAE</td> <td>EXOGONE HERES</td> <td></td> <td>+</td> <td>100</td> <td>⊥.</td> <td></td> <td>\dagger</td> <td>2</td> <td>6</td> <td>6</td> <td>Ĺ</td> <td>۲</td> <td></td> <td>•</td> <td>٣</td> <td>T</td> <td>-</td> <td>2</td> <td>_</td> <td>154</td> <td>L</td> <td>2</td> <td>0</td> <td>H</td> <td>2</td>	SYLIDAE	EXOGONE HERES		+	100	⊥.		\dagger	2	6	6	Ĺ	۲		•	٣	T	-	2	_	154	L	2	0	H	2
EXCICIONE VERNUEGERA 1 53 11 100 3 2 8 17 3 19 1 12 22 14 16 65 28 28 28 28 28 28 28 2	SYLLIDAE	EXOGONE LONGICIRRUS		Н	Н	L		H	H	Н	Ц	Ц	Ц				П	H			Н	Ц			\forall	
SPHAEROSYLLIS LONGICAUDA	SYLLIDAE	EXOGONE VERUGERA	F	\forall	2			+	6	7	Ц	┙	_	7	12	R	=	<u></u>			<u></u>	7	= '	1	+	T
NEPATION GRAFING 1	SYLLIDAE	SPHAEROSYLLIS LONGICAUDA	\dagger	+	+	\int	Ť	\dagger	\dagger	+	\downarrow	\downarrow	\downarrow		I		T	T	6	+	┝	\downarrow		Ĺ	t	Т
AGIAOPHAMUS CIRCINATA 1	NEREIDAE	NEREIS GRAY!		+	Н			Н	Н	H	H	Ц	Ц				П	П	П	Н	Н	Ц			Н	
AGLACHAMUS CIRCUMATA 1 10 23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NEPHTYIDAE			7	Н			H	H	H	Н	\dashv	\sqcup				1	1	1	+	+	4		ľ	┯	٩
NEPHTYS CAECA NEPHTYS CAECA NEPHTYS CALLATA 6 9 7 2 1 5 13 2 NEPHTYS CALLATA 1 2 2 2 2 12 5 13 2 NEPHTYS CALLATA 1 2 2 2 2 12 5 13 2 12 5 13 2 12 5 13 2 12 5 13 2 12 5 13 2 13 2 14	NEPHTYIDAE	AGLAOPHAMUS CIRCINATA	=	+	7		R	†	†	+	\downarrow	4	\downarrow			1	†	T	✝	+	+	1		٩	+	?
WEPHTYS CILIATA NEPHTYS CILIATA 6 9 7 2 12 5 13 2 NEPHTYS INCISA 1 6 9 7 2 2 12 5 13 2 SPHATYS INCISA 1 1 1 1 1 2 12 5 13 2 12 5 13 2 12 5 13 2 13 2 13 2 13 2 14 13 14 </td <td>NEPHIYOAE</td> <td>NEPHITS NEPHITS CAECA</td> <td></td> <td>+</td> <td>╁</td> <td>\prod</td> <td>Ī</td> <td>+</td> <td>+</td> <td>+</td> <td>\downarrow</td> <td>\downarrow</td> <td>\downarrow</td> <td></td> <td></td> <td>I</td> <td>T</td> <td>T</td> <td>†</td> <td>\dagger</td> <td>╀</td> <td>\downarrow</td> <td>L</td> <td>F</td> <td>╁</td> <td>Π</td>	NEPHIYOAE	NEPHITS NEPHITS CAECA		+	╁	\prod	Ī	+	+	+	\downarrow	\downarrow	\downarrow			I	T	T	†	\dagger	╀	\downarrow	L	F	╁	Π
NEPHTYS INCISA	NEPHTYIDAE	NEPHTYS CILIATA		+	H			\vdash	H	Н	Н	Ц	Ц	Ц			П	П	Н	7	Н	Ш	Ц		H	П
NINCE NICTEMA NICTEMA NICTEMA NICTEMA NICTEMA NICTEMA CAPATIVA NICTEMA CAPATIVA NINCE NICTEMA FRAGILIS NINCE NICTEMA FRAGILIS NINCE NICTEMA FRAGILIS NINCE NICTEMA FRAGILIS NINCE NICTEMA FRAGILIS NINCE NICTEMA FRAGILIS NINCE NICTEMA FRAGILIS NINCE NICTEMA FRAGILIS NINCE NICTEMA FRAGILIS NICTEMA PARTICIPA CAPATIVA NINCE NICTEMA PARTICIPA CAPATIVA NICTEMA PARTICIPA CAPATIVA NICTEMA PARTICIPA CAPATIVA NICTEMA PARTICIPA CAPATIVA NICTEMA PARTICIPA CAPATIVA NICTEMA PARTICIPA CAPATIVA NICTEMA PARTICIPA CAPATIVA NICTEMA PARTICIPA CAPATIVA NICTEMA PARTICIPA CAPATIVA NICTEMA PARTICIPA CAPATIVA NICTEMA PARTICIPA CAPATIVA NICTEMA PARTICIPA CAPATIVA NICTEMA PARTICIPA CAPATIVA PART	NEPHTYIDAE	NEPHTYS INCISA		Н	Н			8	8	7	\dashv	4		7		7	2	5	†	+	7	9		1	†	T
SCOLETOMA PRAGILS SCOLETOMA FRAGILS SCOLETOMA FRAGILS SCOLETOMA HEBES SCOLETOMA FRAGILS SCOLETOMA FRAGILS SCOLETOMA FRAGILS SCOLETOMA FRAGILS SCOLETOMA FRAGILS SCOLETOMA FRAGILS SCOLETOMA FRAGILS SCOLETOMA FRAGILS SCOLETOMA FRAGILS SCOLETOMA FRAGILS SCOLETOMA FRAGILS SCOLETOMA FRAGILS SCOLOTOR SPAGILS SCOLOTOR	NEPHTYIDAE	NEPHTYS NEOTENA	1	+	╬	\perp	Ī	\dagger	+	+	+	\downarrow	\downarrow				ľ	†	†	+	╀	\downarrow		Ì	t	T
GONINDA MACULATA 1 1 1 1 1 1 1 1 2 4 1 2 4 1 3 4 1 3 4 1 1 3 4 1 1 3 4 1 1 3 4 1 1 3 4 1 1 3 4 1 1 3 4 1 1 3 4 1 1 3 4 1 1 3 4 1 1 3 4 1 1 4 3 4 1 1 1 3 4 1 1 1 3 4 1 1 1 1 1 3 4 1	SPHAERODORIDAE	SPHAERODOROPSIS MINUTA	<u> </u>	+	+	\prod	Ť	\dagger	\dagger	+	\downarrow	1	\downarrow				1	†	T	+	┿	\downarrow		İ	t	П
SCOLETOMA FRAGILIS	GONIADIDAE	GONIADA MACULATA		Н	H	Ц		H	H	╒	H	\prod	Ц				П		П	Н	Н	Ц	Ц		H	
MINDE MIGRIES VINDE MIGRIES VINDE MIGRIES VINDE MIGRIES VINDE MIGRIES VINDE MIGRIES VINDE MIGRIES VINDE MIGRIES VINDE MIGRIES VINDE MIGRIES VINDE MINISTRICT VINDE MINISTR	LUMBRINERIDAE			H	H					Ц	_1	_	4	\perp]		1	†	_		┸	1	1	t	Ţ
SCOLE FUNAL TRANSILS. 1 7 5 1 1 2 1	LUMBRINERIDAE	NINOE NIGRIPES	\dagger	+	+		1	2	₽	4	1	_		\perp	L	8	_	3	8 ~	┸	1	\$ T	1		t	1
DRILOWEREIS FILUM 1 7 3 14 3 1 1 3 4 15 15 15 15 15 15 16 17 3 14 3 14 3 14 3 14 3 15 14 3 15 15 16 17 1	LUMBRINERIDAE	SCOLETOMA HERES	\dagger	+	+	I	Ī	+	1	15	L				-	-	T	╒	1	H	╀	ြ	3		H	
PAROUGIA CAECA 1 7 3 14 3 1 1 3 4 19 17 3 14 3 1 1 3 4 19 17 1	ARABELLIDAE	DRILONEREIS FILUM		Н	H			Н	Ш	Н	Ц	Ц	Ц				П	H	П	Н	Н	Ц	Ц		\forall	
LETTOSCOLOPLOS 4 3 1 69 76 37 19 25 33 45 70 68 74 51 10 1 LETTOSCOLOPLOS SPB 1 <td>DORVILLEIDAE</td> <td>PAROUGIA CAECA</td> <td></td> <td>H</td> <td>H</td> <td></td> <td></td> <td>7</td> <td></td> <td>2</td> <td>60</td> <td>4</td> <td></td> <td>٦</td> <td>ြ</td> <td>77</td> <td>뤼</td> <td>2</td> <td>1</td> <td>┽</td> <td>+</td> <td>2</td> <td>2</td> <td>1</td> <td>+</td> <td>T</td>	DORVILLEIDAE	PAROUGIA CAECA		H	H			7		2	60	4		٦	ြ	77	뤼	2	1	┽	+	2	2	1	+	T
Control College Colleg	ORBINIDAE	LETTOSCOLOPLOS	1	┿	+	Ţ	j	-	1	Л.	L	1	1		5	8	17	1	Ş	+	-	18 20	£		t	Т
SCOLOPIOS 6 4 6 6 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1	ORBINIDAE	LETTOSCOLOPLOS SP.B		╀	+		Ī	+		1	L		L	L	-	1	Γ	+		\vdash	+		Ш		Н	
SCOLOPLOS ARMIGER 1 4 5 4 1 4 5 4 1 4 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 1 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 3 1 6 2 1 APISTORARIA CHUS TULI BERGI 1 1 2 3 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>ORBINIDAE</td> <td>SCOLOPLOS</td> <td></td> <td>Н</td> <td>Н</td> <td></td> <td></td> <td>H</td> <td>Н</td> <td>-</td> <td>$oxed{H}$</td> <td>Ц</td> <td>Ш</td> <td>Ц</td> <td></td> <td></td> <td>П</td> <td>П</td> <td>Ħ</td> <td>H</td> <td>Н</td> <td>Ц</td> <td></td> <td></td> <td>+</td> <td></td>	ORBINIDAE	SCOLOPLOS		Н	Н			H	Н	-	$oxed{H}$	Ц	Ш	Ц			П	П	Ħ	H	Н	Ц			+	
ARICIDEA CATHERINAE 8 3 18 14 691 1055 833 22 19 3 53 2 111 1.24 140 302 20 7 ARICIDEA QUADRILOBATA 1 1 2 3 1 1 1 1 3 2 1 1 1 1 1 1 1 1 1 1	ORBINIDAE	SCOLOPLOS ARMIGER				\int					_		ᆚ		ŀ	7	ज	- {	2	=	و در و		-		ᡮ	7
LEVINSENIA GRACIUS APRINSENIA GRACIUS APRINSENIA GRACIUS APRINSENIA GRACIUS LAONICE LAONICE	PARAONIDAE	ARICIDEA CATHERINAE	•	_			1				┸		Ш.	1	=	77	3,	<u>ş</u> -	₹	+		5 T	┸		*	-
APISTOBRANCHUS TULLBERGI	PARAONIDAE	LEVINSENIA GRACILIS		╁	+	\prod	F	- 2				┸		Ŀ	6	32	乍	ន	7	-	3	40 45	22		Н	П
SPIONIDAE LAONICE 11	APISTOBRANCHIDAL	APISTOBRANCHUS TULLBER		Н	Н	П		F	Ш	ш	Ш	Ш	Ц	Ц			П	Н	П	Н		Ц	3		+	Т
	SPIONIDAE	LAONICE		\dashv	\dashv			\dashv	\dashv	\dashv	\dashv	4	1				7	1	=	-	\dashv	4			1	7

PAYMENTE MAY CONTRICTORY OF CONTRICTORY 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	POLYDORA CAULLERY 1 2 6 13 15 14 15 1	2 4 5 84 38 119 104 74 114 18 2 6 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Processory Streets Figure Processor	POLYDONA CONNUTA 1 2 96 13 15 15 15 15 15 15 15	2 4 36 119 104 74 114 18 2 6 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
POLYCOOME SECURISES POLYCOOME SECURISES	POLYDON SOCIALS 1 1 2 3 1 1 1 1 1 1 1 1 1	30 11 2 1 4 1
PRODOCONO STEREMENTALY PRODOCONO STEREMENTALY PRODOCONO STEREMENTALY PRODOCONO STEREMENTALY PRODOCONO STEREMENTALY PRODOCONO STEREMENTALY PRODOCONO STEREMENTALY PRODOCONO STEREMENTALY PRODOCONO STEREMENTALY PRODOCONO STEREMENTALY PRODOCONO STEREMENTALY PRODOCONO STEREMENTALY PRODOCONO STEREMENTALY PRODOCONO STEREMENTALY PRODOCONO STEREMENTALY PRODOCONO STEREMENTALY PRODOCONO STEREMENTALY PRODOCONO STEREMENTALY PRODUCED STEREMENTALY PRODUCED STEREMENTALY PRODUCED STEREMENTALY PRODUCED STEREMENTALY PRODUCED STEREMENTALY PRODUCED STEREMENTALY PRODOCONO STEREMENTALY PRODUCED STEREMENTALY PRO	PROVICEPO SIEENSTRUPY 9 13 4 9 13 9 9 9 9 9 9 9 9 9	69 45 94 36 119 104 74 114 16 2 6 36 114 1
PROGNERS RESALVES SPONDLANDARY	PYGCSPOP ELGGANS 3 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	400 240 323 220 427 188 204 136 232 10 28 65 81 100 1 1 2 1 2 1 2 1 1 1
SECONDECENSIONS SECONDECENSION	SPIO SPIO	400 240 323 220 427 188 204 138 232 10 28 65 81 100 1 1 2 1 2 1 1 1 1 1 1 2 1 1 1 1 2 1
Sepontaciones Sepontacione	SPO FUNCOLAR 3 7 5 5 3 5 5 5 5 5 5 5	2 4 2 4 2 1
SECONDARIES INCOMESSALE 1 1 2 3 1 3 3 3 4 4 5 5 5 5 5 5 5 5	SPOCHALIME 1 4 8 21 168	400 240 322 2 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1
SUMMORE SUMMOR	SPOURDLE SPI	16 25 34 6 7 5 28 13 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SUSPENSION SOURCE SUSPENSION SUSPENSIO	SPOCHAMES SYNT 3 3 3 1 1 1 1 1 1 1 1	16 12 15 34 6 7 5 28 13 2 2 1 2 6 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1
Differ Counter Name (Control May 1875) Con	STREALLOSPIO BENEDICT 3 3 1 1 1 1 1 1 1	16 25 34 6 7 5 28 13 2 2 1 2 6 16 25 34 6 7 5 28 13 2 2 1 7 9 16 12 15 5 39 25 18 76 1 2 4 15 30 17 1 2 1 1 2 1 1 1 2 1 1 1 1 2 23 10 12 7 11 33 15 44 2 1 1 15 42 58 24 15 78 103 211 357 328 406 731 80 25 111 117 312 258 1 3 55 11 36 2 1 5 5 7 7 7 1 1 3 5 7 3 5 8 406 731 80 25 111 117 312 258
Dec. Processor Number Content Dec. D	STREELLOS ARCUE TENT APPELOCHAETA MARION APPELOCHAETA MARION APPELOCHAETA MONILARIS 1 1 2 14 9 20 APPELOCHAETA MARION APPELOCHAETA SP. A 1 1 1 1 1 1 1 1 1	16 25 34 6 7 5 28 13 2 2 1 2 6 16 25 34 6 7 5 28 13 2 2 1 7 9 16 12 15 5 39 25 18 76 1 2 1 4 7 5 8 23 10 12 7 11 33 15 44 1 15 42 58 23 10 12 7 11 33 15 44 1 15 42 58 23 10 12 7 11 33 15 44 1 15 42 58 24 1 3 1 35 326 406 731 90 25 111 117 312 259 4 1 3 65 11 36 2 1 6 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
DOE STREET COLVERS	NE STREEUCCHAETA MULTISETOSA 1 4 1 2 14 9 20	16 25 34 6 7 5 28 13 2 2 1 2 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
December Comparison 1	APPELOCHAETA MULTISETOSA	16 25 34 6 7 5 28 13 2 2 1 7 9 16 12 15 5 39 25 16 76 1 2 1 4 2 1 5 1 7 4 2 1 4 15 30 1 5 1 7 4 2 1 4 15 30 23 10 12 7 11 33 15 44 15 30 1 1 2 1 4 1 1 4 1 1 23 1 1 4 2 1 4 1 1 1 1 13 1 1 4 2 1 1 1 1 1 1 1 4 2 1 1 1 1 1 1 3 1 1 4 2 6 4 1 3 4 1 3 4 1 1 1 1 3 4 4 2 4 1 1 1
Configuration Configuratio	APHELOCHAETA MOULANIS 1 2 14 9 20	16 25 34 6 7 5 28 13 2 2 1 7 9 9 18 12 15 5 39 25 18 76 1 2 1 4 7 5 8 23 10 12 7 11 33 15 44 2 1 1 15 42 58 23 10 12 7 11 33 15 44 2 1 1 15 42 58 24 1 2 1 4 7 5 8 25 1 7 1 35 15 406 731 90 25 11 117 312 258 26 1 3 1 35 2 1 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5
AMERICONACTA DIAGRAMS AMERICONACTA DIAGRAMS AMERICONACTA DIAGRAMS AMERICONACTA DIAGRAMS AMERICONACTA DIAGRAMS AMERICONACTA DIAGRAMS AMERICA DIAGRAMS	APHELOCHAETA MONITARIS 1 2 5 1 5 2 APHELOCHAETA MONITARIS 1 1 5 4 CIRRATULUS CIRRATUS 1 1 5 4 CIRRATULUS CIRRATUS 23 23 24 CIRRATULUS CIRRATUS 3 4 33 32 12 CIRRATULUS CIRRATUS 5 7 1 5 4 CIRRATULUS CIRRATUS 5 7 1 1 5 4 COSSURA LONGOCIRRATA 5 7 2 9 1 10 10 THARYX ACUTUS 23 23 24 2 24 COSSURA LONGOCIRRATA 2 4 6 4 6 4 6 1 1 1 1 THARYX ACUTUS 24 25 25 25 25 25 THARYX ACUTUS 24 25 25 25 25 25 THARYX ACUTUS 25 25 25 25 25 25 THARYX ACUTUS 25 25 25 25 25 THARYX COLLARIS 4 6 4 6 5 5 COSSURA LONGOCIRRATA 3 5 5 5 COSSURA LONGOCIRRATA 4 5 5 5 COSSURA LONGOCIRRATA 5 7 2 6 1 THERE COLLARIS 7 7 2 6 1 THERE COLLARIS 7 7 2 6 1 THERE COLLARIS 7 7 7 7 THERE COLLARIS 7 7 7 7 THERE COLLARIS 7 7 7 7 THERE COLLARIS 7 7 7 7 THERE COLLARIS 7 7 7 7 THERE COLLARIS 7 7 7 7 THERE COLLARIS 7 7 7 7 THERE COLLARIS 7 7 7 7 THERE COLLARIS 7 7 7 7 THERE COLLARIS 7 7 7 7 THERE COLLARIS 7 7 7 7 THERE COLLARIS 7 7 7 7 THERE COLLARIS 7 7 7 7 THERE COLLARIS 7 7 7 7 7 THERE COLLARIS 7 7 7 7 7 THERE COLLARIS 7 7 7 7 7 THERE COLLARIS 7 7 7 7 7 THERE COLLARIS 7 7 7 7 7 7 7 THERE COLLARIS 7 7 7 7 7 7 7 7 THERE COLLARIS 7 7 7 7 7 7 7 7 7	16 12 15 5 38 25 18 76 1 2 4 15 30 1 5 1 7 1 3 15 44 1 15 42 58 23 10 12 7 11 32 1 1 1 4 2 1 1 15 42 58 23 10 12 7 11 32 1 1 1 4 2 1 1 17 312 258 4 1 3 1 3 1 5 1 6 2 1 1 17 312 258 1 3 65 11 36 2 1 1 1 6 2 1 1 17 312 258
AMERICONEGES SENTITION OFFICIAL OFFICIAL SAME OFFICE SERVING ENTITIONES SENTITION OFFICIAL SAME OFFICE SERVING OFFICIAL SA	APHELOCHAETA MONITARIS 1 1 3 4 4 4 5 5 6	16 12 15 5 39 25 16 76 1 2 4 15 30 23 10 12 7 11 33 15 44 1 15 42 58 23 10 12 7 11 33 15 44 1 15 42 58 24 1 15 42 58 2 1 1 15 42 58 2 1 1 15 42 58 1 1 1 4 2 6 6 4 4 1 15 30 6 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
COMPLICATION CONTINUE COLUMNING COLU	CHAELOCAME IS STAND CHAELOCAME IS STAND	16 12 15 5 39 25 18 76 1 2 4 15 30 23 10 12 7 11 33 15 44 2 1 15 42 58 23 10 12 7 11 33 15 44 2 1 1 15 42 58 2 1 3 1 1 4 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CHRAINLOS CHRAINS CHRAINS CHAINS CHRAINLOS CHRAINS CHRAINLOS CHAINS CHAINS CHRAINLOS CHAINS CHAINS CHRAINLOS CHAINLAS CHAINS CHRAINLOS CHAINLAS CHAINS CHRAINLAS CHAINL	CHARTOLOUS CRATUS	16 12 15 5 39 25 16 76 1 2 4 15 30 23 10 12 7 14 3 1 4 15 30 23 10 12 7 14 3 1 4 1 15 42 56 23 10 1 2 1 4 2 1 4 1 1 1 1 2 1 4 2 6 4 1 3 1 1 4 2 6 4 4 1 3 1 4 2 6 4 4 1 3 1 4 2 6 4 4 1 3 1 4 2 1 1 4 1 3 1 4 2 1 1 1 3 6 1 3 1 6 4 1 3 6 1 3 1 4 1 1 1 3 6 1 3 1 4 1 1 1
MANITECLIAM BATTATUS MANITECLIAM SATISTICAL AND SATISTICAL AND AND SECRETARIA SATISTICAL AND AND SECRETARIA SATISTICAL AND AND SECRETARIA SATISTICAL AND AND SECRETARIA SATISTICAL AND AND SECRETARIA SATISTICAL AND AND SECRETARIA SATISTICAL AND AND SECRETARIA SATISTICAL AND AND SECRETARIA SATISTICAL AND AND SECRETARIA SATISTICAL AND AND SECRETARIA SATISTICAL AND AND SECRETARIA SATISTICAL AND AND SECRETARIA SATISTICAL AND AND SECRETARIA SATISTICAL AND AND SECRETARIA SATISTICAL AND AND SECRETARIA SATISTICAL AND AND SECRETARIA SATISTICAL AND AND SECRETARIA SATISTICAL AND AND SECRETARIA SATISTICAL AND SECRETARIA SATISTICAL AND AND SECRETARIA SATISTICAL AND AND SECRETARIA SATISTICAL AND SECRETARIA SATISTICAL AND SECRETARIA SATISTICAL AND AND SECRETARIA SATISTICAL A	CIRRATULUS CIRRATUS	16 12 15 5 39 25 16 76 1 4 7 5 8 1
MONTICELLIAM BAPTISTE MONTICELLIAM BAPTISTE MONTICELLIAM BAPTISTE MONTICELLIAM BAPTISTE MONTICELLIAM BAPTISTE MONTICELLIAM BAPTISTE MONTICELLIAM BAPTISTE MONTICELLIAM BAPTISTE MONTICELLIAM BAPTISTE MONTICELLIAM BAPTISTE MONTICELLIAM BAPTISTE MONTICELLIAM CONSIGNATION MONTICELLIAM CON	MONTICELLINA BAPTISTE 1 97 56 99	16 12 15 15 38 25 18 76 1 4 7 5 30 30 30 30 30 30 30 30 30 30 30 30 30
MONTICELLIMA DOS CORAMACHALIS 23 1 1 1 1 1 1 1 1 1	MONTICELLINA DORSOBRANCHALIS 1 3 3 3 3 3 3 3 3 3	23 10 12 7 11 32 15 44 1 1 15 42 58 23 10 12 7 11 33 15 44 1 1 15 42 58 23 10 12 7 11 33 15 44 1 1 15 42 58 21 1 3 1 1 4 2 6 4 1 1 17 312 259 4 1 3 1 1 5 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
The processor of the	FINENCIAL CONCOURATION P. 23 8 4 830 308 247	23 10 12 7 11 33 15 44 1 15 42 50 2 1 1 1 1 4 2 6 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
COSSUMA LONGCHANTA S 7 1 1 5 4	E PHERUSA AFFINIS 5 7 1 5 4 1 1 1 1 1 1 1 1 1	15 78 103 211 357 328 406 731 90 25 111 117 312 259 1 3 65 11 36 2 1 6 2 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1
AVE PHERUSA PHERUSA PHERUSA PHERUSA PHERUSA PHERUSA PHERUSA PHERUSA PHERUSA 1 1 5 4 1 1 5 4 1 1 4 1 1 4 2 1 1 4 2 1 1 4 2 1 1 4 2 1 1 4 2 1 1 4 2 1 1 4 2 1 1 4 2 1 1 4 2 1	E PHERUSA AFFINS 5 7 7 1 5 4 5 5	15 78 103 211 357 328 406 731 90 25 111 117 312 258 4 1 3 1 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
New Particular Security New Particular S	E PHERUSA AFFINIS E STERIA RELATIVA 1 1 5 4 STERNARASIS SCUTATA 1 STERNARASIS SCUTATA 1 CAPITELLA CAPITATA 1 HETHOMASTUS FILLFORNIENSIS 4 CLYMENDIA STUS CALLFORNIENSIS 4 CLYMENDIA STUS CALLFORNIENSIS 7 CLYMENDIA STAS CALLRISS 7 EUCLYMENDIA COLLARIS 7 EUCLYMENDIA COLLARIS 7 EUCLYMENDIA COLLARIS 7 EUCLYMENDIA COLLARIS 7 FANTILELLA PRAETERMISSA 4 GALATHOMEN OCULATA 4 GALATHOMEN COLLATA 4 GALATHOMEN COLLATA 4 GALATHOME GRAVILATA 4 AMPHARETE ACUTIFRONS 1 AMPHARETE ACUTIFRONS 1 ANDEOTHRUS GRACILIS 3 CHONE DUNER 3 EUCHONE DUNER 1 ACHONE DUNER 1 EUCHONE INCECEANS 5	1 1 4 2 6 4 4 5 1 1 1 4 5 1 1 1 1 1 1 1 1 1
SCALIBRECIAN MELATUM 1 1 6 4 1 1 6 4 1 1 6 6 4 1 1 1 6 6 4 1 1 1 6 6 4 1 1 1 6 6 6 1 1 1 1 6 6 6 1 1 1 1	SCALIBREGIAA INFLATUM	15 76 103 211 357 326 406 731 90 25 111 117 312 259 4 1 3 13 1 35 2 1 6 7 1 1 1 5 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CAMPAGE NAME NAME NAME NAME NAME NAME NAME NAM	STERNAPSIS SCUTATA 1 1 10 10	1 1 4 2 6 4 1 1 4 2 6 4 1 1 1 4 2 6 4 1 1 1 1 1 1 1 1 1
STERMANDAS SQUIATA CAPTICIDAE SQUIATA CAPTICIDAE SQUIATA CAPTICIDAE SQUIATA CAPTICIDAE SQUIATA CAPTICIDAE SQUIATA CALVERVINA SQUIATA CALVERV	STERRAMPSIS SCULARS CAPTIELINA ACAPITATA 1	15 78 103 211 357 328 406 731 90 25 111 117 312 258 4 1 3 1 5 2 1 6 73 1 6 73 1 90 25 111 117 312 258 1 3 65 11 36 2 1 6 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
STEPMAND STEPMAND	STERMAPSIS SCUTATA	15 78 103 211 357 328 406 731 90 25 111 117 312 259 4 1 3 1 5 1 1 38 2 1 5 2 1 1 1 1 38 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
HETOMASTIVE CALLER CAPATION 1	CAPITELLA CAPITATA 1 8 8 11 10 10 10	15 78 103 211 357 328 406 731 90 25 111 117 312 259
HETECOMASTUS CALLORANIS HETECO	HETEROMASTUS FILIFORMIS 1 1 1 1 1 1 1 1 1	15 76 103 211 357 328 406 731 80 25 111 117 312 258 4 1 3 1 3 1
WEDIOMASTUS CALLPORNIEWISKS 4 16 6 4 49 2 359 222 443 80 15 78 102 21 357 328 400 731 80 25 111177 312 259	MEDIOMASTUS CALIFORNIENSIS 1 18 6 4 49 2 359 282 443	15 78 103 211 357 328 406 731 90 25 111 117 312 259 4 1 3 1 3 1
CLYMENELALTORGUATA CLYMENELALTORGUATA EUCLYMENIANE EUCL	CLYMENIELA TORQUATA CLYMENIELA TORQUATA CLYMENINAS SPA EUCLYMENINAE EUCLYMENINAE EUCLYMENINAE MALDANE GLEBIFEX PRAXILELLA FRAETERMISSA FRAXILELLA FRAETERMISSA OMENIA FUSIFORMIS FREXILELA RAETERMISSA OMENIA FUSIFORMIS FUCINARIA GRAVULATA AMPHARETE ARCITERA AMPHARETE ARCITERA AMPHARETE ARCITERA AMPHARETE ARCITERA AMPHARETE ARCITERA ANOBOTHRUS GRAVULATA ANOBOTHRUS GR	4 1 3 1 1 3 65 11 38 2 1 1 1
CLYMENUTAL SPACE COLVARIENCE EUCLYMENT SPACE E	CLYMENICA SPA CLYMENICA SPA CLYMENICA SPA EUCLYMENICA SPA EUCLYMENICA SPA MALDAVE GLEBIEX MALDAVE GLEBIEX MALDAVE GLEBIEX MALDAVE GLEBIEX MALDAVE GLEBIEX MALDAVE GLEBIEX MALDAVE GLEBIEX ALANAMER GLEBIEX AMPHARETE ARCITIFRONS AMPHARETE ARCITICA AMPHARETE ARCITICA AMBHARETE ARCITICA AMBHARETE ARCITICA ANABELLIUS SPACILIS AMBHARETE ARCITICA ANABELLIUS COLULATA ANABEL	1 3 86 11 38 2 1 5 2 7
EUCLYMENE COLARIS 40 6 16 1 13 1 3 1 2 1 2 2 2 2 2 2 2 2 3 1	CLUMENCIA STARTS	1 3 86 11 38 2 1 1 5 2 7
EUCLYMENIANE TOWNER DATE OF TABLETS	EUCLYMENIA 1 2 9 1	1 3 65 11 36 2 1
Convenience Convenience	MALDANE GLEBIEX	1 3 85 11 38 2 1
PRAVILLEILA PRAETERMISSA 3 1 113 1 3 5 1 1 1 1 1 1 1 1 1	PRAXILELLA PRAETERMISSA 3 1 1 1 1 1 1 1 1 1	88
PRAVILELLA GRACILES 3	PRAXILELLA GRACILIS 3 1 1 1 1 1 1 1 1 1	
PRAXILLELIA PPAETERMISSA	PRAXILLELIA PRAETERMISSA 4 4 4 4 4 4 4 4 4	- 1
GALATHOWENIA OCULATA 4 1 1 4 2 E POWENIA FUSIFORMIS 3 2 4 2 E AMPHARETE ACUTIFRONS 1 1 1 2 5 6 10 3 6 3 4 2 E AMPHARETE ACUTIFRONS 1 1 1 2 5 6 10 3 6 1 2 2 E AMPHARETE ACUTIFRONS 1 1 1 2 5 6 10 3 6 1 2 E AMPHARETE ACUTIFRONS 1 1 3 1 2 6 1 2 1 2 1 2 1 1 2 1	GALATHOWENIA OCULATA 4 4 6 6 6 6 6 6 6 6	
E AMPHARETE ACUTIFRONS 4 2 E AMPHARETE ACUTIFRONS 1 1 2 5 6 10 3 6 6 3 4 2 E AMPHARETE ACUTIFRONS 1 1 1 2 5 6 10 3 6 6 3 4 2 E AMPHARETE ARCTICAL 1 1 1 2 5 6 10 3 6 6 3 1 2 E AMPHARETE ARCTICAL 1 1 3 1 2 5 1 2 1 1 2 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OWENIA FUSIFORMIS 3 3 5 5 5 5 5 5 5 5	
E PUNEVIA PLASIFICATIONS 4 3 2 E AMPHARETE RACUTIFRONS 1 1 1 2 5 6 10 3 6 3 4 2 E AMPHARETE RACUTIFRONS 1 1 1 2 5 6 10 3 6 3 1 2 E AMPHARETE RACUTIFRONS 1 1 1 2 5 6 10 3 6 3 1 2 E AMPHARETE RACUTIFRONS 3 1 3 1 2 5 6 1 7 1	PERTINANA TOSITIONINS PERTINANA TOSITIONINS PERTINANA TOSITIONINS 1 1 1 1 1 1 1 1 1	
E AMPHARETE ACUTIFRONS 1 1 2 5 5 6 10 3 6 6 3 4 2 2 E AMPHARETE ACUTIFRONS 1 1 1 1 2 5 5 6 10 3 6 6 3 4 2 E AMPHARETE ACUTIFRONS 1 1 1 3 1 5 11 5 11 5 11 E AABELLIUES OCULATA 1 1 3 1 5 11 5 11 5 11 E AABELLIUES OCULATA 3 1 1 3 1 5 1 5 1 5 1 EUCHONE DUE ROUGH SALE CONSTRUINS 1 1 1 1 1 1 EUCHONE MCOLOR 1 1 1 1 1 1 EUCHONE MCOLOR 1 1 1 1 1 EUCHONE MCOLOR 1 1 1 1 1 E POL YGORDÍUS SP.A 1 1 1 1 1 1 E POL YGORDÍUS SP.A 1 1 1 1 1 1 E POL YGORDÍUS SP.A 1 1 1 1 1 1 E POL YGORDÍUS SP.A 1 1 1 1 1 1 E POL YGORDÍUS SP.A 1 1 1 1 1 E POL YGORDÍUS SP.A 1 1 1 1 1 E POL YGORDÍUS SP.A 1 1 1 1 1 E POL YGORDÍUS SP.A 1 1 1 1 1 E POL YGORDÍUS SP.A 1 1 1 1 1 E POL YGORDÍUS SP.A 1 1 1 1 1 E POL YGORDÍUS SP.A 1 1 1 E POL YGORDÍUS SP.A 1 1 1 1 E POL YGORDÍUS SP.A 1 1 1 E POL YGORDÍUS SP.A 1 1 1 1 E POL YGORDÍUS SP.A 1 1 1 E POL YGORDÍUS SP.A 1 1 1 E POL	AMPHARETE ACUTIFRONS AMPHARETE ACUTIFRONS AMPHARETE ACUTIFRONS AMPHARETE ACUTIFRONS AMPHARETE ACUTIFRONS AMPHARETE ACUTIFRONS AMPHARETE ACUTIFRONS AMPHARETE ACUTIFRONS AMPHARETE ACUTIFRONS CHONE DUNIER ELUCHONE ELICANS ELUCHONE ELICANS LAONOME KROEYER AND COORDING SOLA TO ACORDING SOLA TO ACORDING SOLA TO ACORDING SOLA TO ACUTIFRONS	
E AMPHARETE ACUTIFROWS E AMPHARETE ACUTIFROWS E ANOBOTHRUS GRACILL	AMPHARETE ACUTIFRONS AMMPHARETE ARCTICA ANOBOTHRUS GRACILIS ASABELLIDES OCULATA ASABELLIDES OCULATA ASABELLIDES OCULATA ASABELLIDES OCULATA ASABELLIDES OCULATA ASABELLIDES OCULATA ASABELLIDES OCULATA ASABELLIDES OCULATA ASABELLIDES OCULATA ANOBOLIS ELGANS ELCHONE INCOEVERY ASABELLIDES OCULATA ASABELLIDES OCU	
E AMPHARETE ACUTIFRONS E AMPHARETE ARCTICA A WOBDITICOIDE S APECTINATUS TUBIFICOIDE S APECTINATUS E AND SPARE LICENS SPARE A WORD AND SPARE LICENS SPARE A WORD AND SPARE LICENS SPARE E ASABELLIDES OCCULATA A WORD AND SPARE A WORD AND SPARE A WORD AND SPARE A WORD AND SPARE A WORD AND SPARE A WORD AND SPARE A WORD AND SPARE A WORD AND SPARE A WORD AND SPARE A WORD AND SPARE A WORD AND SPARE A WORD AND SPARE A WORD AND SPARE A SABELLIDES OCCULATA A SABELLIDE	AMPHARETE ACUTIFRONS AMPHARETE ACCTICA AMPHARETE ACCTICA AMPHARETE ACCTICA AMBOUTHURS GRACILIS ASABELLIDES OCULATA T 1 8 9 1 BOLYCIRRUS CHONE DUNERI EUCHONE ELEGANS EUCHONE INCOLOR LAONOME KROEVER DAN COORDUS EGR	
E AMPHAREIE ARCTICA E ANOBOTHIA SCRULIATA E ANOBOTHIA SCRULIATA A SABELLIA SOCIULATA B B 11	AMPHARETE ARCTICA ANOBOTHRUS GRACIUS ASABELLUES OCULATA 1 1 8 9 1 SOLYCIRRUS CHONE DUNERU EUCHONE ELEGANS EUCHONE RICOLOR LAONOME KROEYERU 1 1 1 3	5 5 6 10 3 6 6 3
E ANOBOTHRUS GRACILLS E ASABELLIDES OCCUATA E ASABELLIDES OCCUATA 1 1 3 8 9 11 32 2 7 4 8 3 1 5 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ANOBOTHRIS GRACILIS ASSIBLICIOS OCULATA POLYCIRIOS CHONE DUNERI EUCHONE ILEGANS EUCHONE INCLOR LAONOME KROEVERI FOLYCIRIOS 1 1 3 1 3 1 3 1 43 81 EUCHONE INCLOR LAONOME KROEVERI FOLYCIRIOS FOLY LAONOME KROEVERI FOLYCIRIOS FOLY FOLY	
E ASABELLIDES OCULATA 1 1 1 1 1 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 2 2 3 3 1 2 2 1 2 2 3 3 1 2 1 1 2 2 1 2 2 1 2 2 1 2 3 1	ASABELLIDES OCULATA 1 1 8 9 1 1 8 9 1 1	2
POLYCIRRUS STATIONE DUNERING STATIONE DUNERING STATIONE CHONE DUNERING STATIONE DUNERING STATIONE CHORE CHONE DUNERING STATIONE CHORE CH	POLYCIREUS 3 1 3 3 4 3 4 3 4 4 4 4	2 7 4 8 3 1 5 11 5 59 1 27
CHONE DATES 43 81 5 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 <	CHONE DUNGER CHONE DUNGER EUCHONE ELEGANS EUCHONE INCOLOR LAONOME KROEYER TOWN CORPUSE SER	
EUCHONE LOUGH CHAIR LOUGH 43 81 5 2 1 2 1 2 1 2 1 2 2 2 2 2 1 2 <td>EUCHONE ELICANS EUCHONE ELICANS EUCHONE ELICANS LAONOME KROEYER LAONOME KROEYER 1</td> <td></td>	EUCHONE ELICANS EUCHONE ELICANS EUCHONE ELICANS LAONOME KROEYER LAONOME KROEYER 1	
EUCHONE ELEGANS EUCHONE MOCICIOR LAONOME KROEYERI E POLYGORDIUS SP.A TUBIFICIDAE SP.2 TUBIFICIDAE SP.2 TUBIFICIDAE SP.A TUBIFICIPAL SP.A TUBIFICIDAE SP.A TUBIFICIDAE SP.A TUBIFICIDAE SP.A TUBIFICIDAE SP.A TUBIFICIDAE SP.A TUBIFICIDAE SP.A TUBIFICIDAE SP.A TUBIFICIDAE SP.A TUBIFICIDAE SP.A TUBIFICIDAE SP.A TUBIFICIDAE SP.A TUBIFICIDAE SP.A TUBIFICIDAE SP.A TUBIFICIDAE SP.A TUBIFICIDAE SP.A TUBIFICIDAE SP.A TUBIFICIDAE SP.A TUBIFICIPAL SP.A TUBIFICIPAL SP.A TUBIFICIPAL SP.A TUBIFICIPAL	EUCHONE ELEGANS ELICHONE INTERPRETATION OF THE PROPERTY OF THE	
E POLYGORDIUS SPA TUBIFICIDAE SP2 TUBIFICIDAE SP2 TUBIFICIDAE SP2 TUBIFICIDAE SPA TUBIFICIPAL SPA TUBIFICIPAL SPA TUBIFICIPAL SPA TUBIFICIPAL SPA TUBIFICIPAL SPA TUBIFICIPAL SPA TUBIFICIPAL SPA TUBIFICIPAL SPA TUBIFICIPAL SPA TUBIFICIPAL SPA TUBI	EUCHONE INCOLOR LAONOME KROEYERI	
LAONOME KROEYER!		7 2 2 1 6 7
E POLYGORDIÚS SP.A. 1 1 10 38 35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
E POLYGORDIUS S.P.A. 4 3 2 4 9 1 1 6 3 TUBIFICOIDES APECTINATUS 4 2 1 1 1 1 1 1 1 2		
TUBIFICIDAE SP2 4 3 2 4 3 4 9 1 1 6 3 TUBIFICOIDES APECTINATUS 4 2 1 1 1 38 35 1 1 2 2 GASTROPODA SPA 1 1 1 1 1 2 2 ONOBA PELAGICA 2 2 2 3 4 9 6 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2		
TUBIFICIDAE SP.2 4 3 2 4 9 1 1 8 3 TUBIFICOIDAE SPARCTINATUS 4 2 1 1 1 1 1 2 2 GASTROPODA SPA 1 1 1 1 1 1 2 2 ONOGA PELGICA 2 2 2 2 2 2 2		
TUBINICOIDES APECTINATUS 4 2 1 1 10 38 35 1 1 2 GASTROPODA SP.A 1 1 1 1 1 1 2 ONOBA PELAGICA 2 2 2 2 2 2	Trigitecidal Sp 2 3 2 3 4	3
GASTROPODA SP.A 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	THRECOIDES APECTINATUS 4 2 1 1 10 38	
GASTROPODA SPA 1 2 2 2		1 1 2
ONOBA PELAGICA		
ONOBA PELAGICA		
CHOCK LECTION		

_	Ŧ	П	~	T	П	T	77	Т	7	П	П	Т	7-	7	П	Т	Т		-	T		П	T	Τ			Т	Τ	П	Т	Т	П	Π	Τ	Π	2	6	3	П	×	1	П	Т	П	- -	128	5	
- -	╀	Н	_	╀	Н	╬	H	+	-	+	Н	+	15	10	H	+	╀	Н	7	+	╁	Н	+	\dagger	\vdash	Н	+	╁	7	+	+	╁	Н	+	H	╬	H	ш	H	\dagger	Н	十	╁	Н	┪	8	4	
F 7	╀	Н	+	╀	Н	┿	${\mathbb H}$	+	+	+	Н	+		12	_	+	t	H	H	\dagger	╁	Н	+	\dagger	Н	Н	+	\dagger	-	H	†	t	H	╬	╁	╅	╁		H	╁	H	┌┞	- 6	Н	\dagger	4	- 0	
h	╅	H	ᆉ	12	Н	+	6	Н	+	\dagger	6	┿	╪	Ħ	H	*	\dagger	-	7	┝	┾	Ħ	1	╡	T	Ħ	T	t	H	H	+	T	П	t	П	†	8	Ť	Ħ	7	T	Π	٣	П	1	1	T	
٠, بو	╀	Н	7	╀	Н	+	┾	Н	┿	╀	Н	+	+	╁	Н	7	╁	╁	٥	+	╁	Н	+	+	╁	Н	+	+	H	Н	\dagger	┢	Н	+	Н	╁	6	╁	H	╤╬	┥	$\mid \uparrow \mid$	+	Н	1	+	\dagger	
NF16		Н	-	╀	Н	╀	+	Н	+	╀	H	+	+	╀	Н	~	+	╁	Н	+	+	Н	+	+	╁	Н	H	+	╁	Н	+	+	Н	+	╁	+	Н	+	Н	┿		H	十	Н	e (╬	\vdash	1
H	╬	Н	5	-	H	+	37	Н	+	+	Н	+	╬	+	Н	12	+	╁	31	+	+	+	Н	+	╁	Н	H	t	╁	Н	$^{+}$	\dagger	ᅱ	┪	H	╁	4	╁	H	+	7	H	十	F	H	+	$\dagger \dagger$	1
2	╀	Ш	4	f	H	+	5	Ш	+	+	Н	4	+	╀	ш	0	+	+	38	+	+	-	Н	+	+	Н	Н	+	╁	Н	+	+	<u>س</u>	╁	H	+	ᇦ	╁	Н	+	╀	╁	+	╁	Н	╁	H	1
Þ.	╬	H		<u>ا</u>	Н	+	19	ш	+	╀	Н	+,	╗	╁	Н	7	+	╁	2	+	+	╁	Н	+	╁	Н	Н	+	╁	-	+	+	Н	╬	H	+	巨	十	Н	+	╅	H	十	-	H	╁	H	1
L	,	Н		-	Н	Ļ	+	Н	╬	+	Н	4	+	╀	Н	Ц	+		Ц	+	160	+	Н	+	╀	Н	Н	+	╀	Н	+	+	Н	+	╢	+	╁	+	₩	╁	╁	Н	十	╁	╁	┿	Н	1
١.	1	L		┸	Ц		ļ	Ц	1	1	Ц	Ц	4	\downarrow	Ц	5	4	1	Ц	4	-	Ļ	Ц	4	\downarrow	$oxed{\perp}$	Ц	4	\downarrow	Ц	4	+	Ц	4	Н	+	\coprod	+	Н	\downarrow	╀	H	+	+	╀	+	H	-
NF12	7		Ш	1		E									Ĺ				Ш		\perp	L	Ц	\perp	┸	L	Ц	┙	_	Ц	Ц	Ĺ	Ц	1	Ц		Ц	1	Ц	1	1	Ц	1	L	Ц	1	Ц	4
	7	Т	7	7			T	П				ľ	٦						11		ľ	1																	Ш			Ш			Ш	\perp	Ш]
Г	7	Τ	2	1	T	П	ď	П	П	T	F	П	T	T	Π	8	T	1	7		T	Τ	П		T	Γ		1	T	П		T	П	T		T	8			T		\prod		2	$\ \ $		\prod	
NF10	7	t	┥	⇟	+	ᅱ	5	H	\forall	\dagger	T	H	╡	†	1	6	†	t	H	\dagger	+	T	П	Ħ	T	T	Ħ	†	T	Ħ	П	T	П	1	1	1	7	1	П	1	T	П	٢	1	П	T	П	1
	╬	+	6	+	2	4	1	H	H	+	2	H	7	+	+	H	\dagger	╬	7	H	\dagger	t	H	+	\dagger	t	H	\dagger	\dagger	٢	H	╁	+	+	+	+	=	+	F	H	\dagger	Ħ	T	T	$\dag \dag$	+	$\dagger\dagger$	1
-	,	╄	H	+;	┸	7	+	L	H	╁	~	Н	ᅯ	┿	╁	Н	+	╁	H	Н	+	╁	Н	H	+	╁	Н	+	+	╁	Н	+	+	Η,	╀	H	둳	+	Н	H	+	H	\dashv	\dagger	H	+	$\dag \dag$	1
_	4	1	8		1	6	┸	L		4	þ	Н		+	\downarrow	8	+	Ļ	- 6	\mathbb{H}	+	╀	Н	Н	+	+	Н	4	+	╀	Н	+	╀	H	╀	\dashv	ē	+	Η	Н	╁	H	Η,	+	H	╪	H	┨
芦.			Ш	۶	L	Ц	2,	Ш	Ц	1		Ш		1	Ļ		\downarrow	1	-	Ц	1	1	Ц	Ц	4	\downarrow	Ц	4	1	\downarrow	Ц	4	<u> </u>	Ц	╀	\sqcup	8	4	1	Ц	1	Ц	Ц,	1	\coprod	4	\sqcup	4
L	1		7	۶	┸		45	֡֡֡	Ц		3	Ц	7	1	1		\perp	1	L	Ц		\perp	L	Ц	1	1	Ц	1	1	Ļ	Ц	1	╀	Ц	\downarrow	Ц	Д	4	\perp	Ц	4	\sqcup	Ц		\coprod	+	\sqcup	4
	~		$\ \ $	ľ	1					٦			1			2			ြ															Ц	L	Ш				Ц		Ш	Ц	\perp	Ц		Ш	
2	7	T	П	Ţ	1	П	T	T	П	Т	Τ	П	П	T	Τ			T	•					П					T						İ	$\ \cdot \ $		П			١		П	١				
	╡	╁	N	+	*	Н	+	十	Н	$^{+}$	t	Н		╬	╅	2	Ħ	†	-	Н	ᡮ	†	T	Н	†	\dagger	Н	Ħ	†	T	H	†	t	П	T	П	7	H	†	П	十	Ħ	П	T	Ħ	T	П	1
H	e (╬	4	┽	+	Н	+	1	Н	+	+	7	₽	2	╁	+	H	\dagger	77	Н	\dagger	+	╁	Н	†	╁	\dagger	H	7	t	Н	탉	t	H	7	H	~	H	╁	Н	5	*	1	╡	┪	- 8	3-	1
Ļ	2	╬		+	╀	Н	-[-	╀	Н	+	+	ы	Ш	╬	+	-	Н	+	-	Ш	+	+	╀	Н	+	+	+	H	╬	╁	H	+	╬	Н	↲	Н	6	Н	╁	┥	۲,	╬	H	-	Н	7	╫	\dashv
MF	┇	1	H	4	1	Н	+	-	Н	+	+	5	Ш	+	+	- 2	Н	+	+	Н	4	+	╀	Н	+	+	+-	Н	╬	╀	Н	+	+	Н	24	Н	+	Н	+	Н	+	╀	╁	a -	H	+	H	\dashv
ŀ	-	+	4	+	╀	H	+	╀	Н	+	+	Н	Н	6	┿	4	Н	+	155	Н	+	+	+	Н	+	+	╁	Н	╬	╁	╁	H	+	Н	+	Н	+	Н	╁	Н	۲,	╪┤	H	+	+	7	++	┨
	~	1	Ļ	4	4	Ц	4	1	Ц	3	1	L	Ц	\downarrow	4	150	Ц	4	255	\bot	\sqcup	4	\downarrow	Н	4	+	_		+	+	H	Ц	╬	H	+	H	1~	Н	╀	Н	4	2	╁	+	\mathbb{H}	50	╣	4
<u> </u>		\perp	82		\perp	Ц	Ц		Ц	Ц	1	L		3	1	1	Ш	4	8		Ц	4	\downarrow	Ц	\downarrow	4	Ļ	Ц	4	ļ		Ц	1	Ц	1	11	1	Н	ļ	Ц	\perp		Н	4	\bot	77	\coprod	4
İ	٦	-	8									'		17		•	Ш		Ş									Ц	1	1	Ĺ	Ц		Ц	\perp	Ц	Ţ	Ц	1	Ц	<u> </u>	18	Ц	_		Ц	Ш	4
Γ	٦	T	Τ		T		Π	Τ	Π	П	T	Γ			T	T	П	Ī	T			1					Ī							П		П		П				1	П			П		
l	1	Ì	1		1			ł						¥2	۱					l	İ	١						⋖		2				Н				П	ł	S		l	П	3			NIS IL	
١	١		١	li	ξ		۱,					CYCLOCARDIA BOREALIS		Y Z						l		₹	1	l		1		LAMPROPS QUADRIPLICATA			3	ANA	CAMPYLASPIS RUBICUNDA	П		П		Н	1	PLEUROGONIUM RUBICUNC			П	E E	Si		COROPHIUM CRASSICORNE ERICHTHONIUS RUBRICORNIS	Ž
١	١			П		YOLDIA SAPOTILLA		CRENELLA DECUSSATA			,	ZEA.	Ļ	MW	1	را داد	ş	İ	5		LYONSIA ARENOSA	\$	١	7				RIPL	3		Z Z	NG/M		$\ \cdot \ $	PTILANTHURA TENUIS		18	2	N L	RUB			Ш		SIŞ SIŞ	S	CBR	8
1	١	CYLICHNA ALBA	3						IGE!	Ş	2		DAT	RWA			HCA		MYA ARENARIA		Š	ğ		DENTULIUM ENTALE		ļ	Ų	Z	SNA	SIS		078	SIS		X X	CIROLANA POLITA	Š	CHIRIDOTEA TUFTS	71	ξ		AMPHIPODA SP.1	П	MAC	ŠĮŠ	MAT	35	Š
I.		₹ (2 X 2	ĭ \$		ä	S		5 S	SS	Ü	Š		S	ODE	SEC.	200	ORR			5	AR	¥ X		NO		1401011		S	114		3 8	Σ	S S		₹	N P	9	Ĕ	ĮŠ			S	Ş	S	る声	¥	NOT NOT NOT NOT NOT NOT NOT NOT NOT NOT	Š
Ě		ફ્રી	ξ		SIS SIS					2071	į		ART	24ST	Sis		AR M		١	1	NS/	ğ		12	П			MPRC	00 8		ST	ဋ	2		Š	Š	OTE	Ę	9			튎	E	BEI		OISS	S F F F	3
0 800	Taxon	2	5	Н	≱ }	ξĺŠ		8	3	È	į	٤٤	ASI	Ü	Š	AP	PT		Š	5	Š	Œ		ğ				3	EU		3 8	Ē	5	\$	E	Š	18	1	ō	4		₹	₹	¥	到	¥	ଥିଆ	S
Survey 9303 0 5 mm	۳,						$\ \ $			$\ \ $				$\ \ $	ľ			$\ \ $			$\ \ $		1		$\ \ $						1	1 1	1	11				$\ \ $			$\ \ $		П	Н		П		
						l _w				$\ \ $				$\ \ $							LYONSIIDAE	TDAE			$\ \ $			بوا					OAE	ANTHURIDEA		CIROLANIDAE			ž				¥		¥		س اس	اس
		CYLICHNIDAE			y S	NUCUL ANDAE		پر پراپ	برار	اررا			K	¥	SOLENIDAE		NE NE	$ \ $	MYIDAE		DAE	MA	-	IDAE			DAE	Ğ	IDAE.		DIASTYLIDAE	DAE	S S		SIDAE	₹ Ş	Į,	CHAETILIDAE	2	PARAMUNIDAE			S	S		PAE		COROPHIIDAE
-	ļ	뒨	턴	¥						MYTILIDAE	<u> </u>		ASTARTIDAE	CARDIIDAE						¥III	S	틸		<u> </u>		إي	TEMORIDAE	PRC	ğ			SIM	MPX	Ā			ERA			Z Z	≼	۲		F	딦	SSS	ဦုဋ	Ş
		칭	티	8	3		딍	≨	2	₹			AST	Š	ଞ୍ଚ	피			Σ		2	Ш				Ş		S	삘	쁴		š	3				띮	引히	5	Š	Ē	JOY.	Y	¥	8	¥	ଥିଷ୍ଟ	8
		$\ \ $	I.	밍			MYTILOIDA			$\ \ $	VENEROIDA							MYINA	1	PHO! ADOMYACEA			SCAPHOPODA	DENTALIDAE	CRUSTACEA	N.	TEN		$\ \ $			П		Ē		Š	VALVIFERA	$\ \ $	ASELLOTA		AMPHIPODA	N.	AMPELISCIDAE					
1		$\ \ $	RIVA! VIA	Ź						Ш								2		٩	11		Ŋ,	3	SUSI	ျိ	١	1	$ \ $							-						١١	1					
L		Ш		il	Ш	\perp	П		1	L	Ш		1	L	Ш		L	Ш	\perp			Ц	<u>හ</u>		ľÖ	Ш		1	Ш		1		Ш	1.	Ш	┸	Ш	1	Ш		Ш	ᆚ	上	Ш	.1.	П	┸	Ш

Г	6	П	7	Ŧ	7	N		7	7	힐	┑	7	7	٦	7	-1	ক	1	Ţ	7	Ţ	T	7	7	┑	1	7	٦	┰	╕
F	~	Н	4	e	\dashv	2	\dashv	4	4	징	4	-	4	4	-	6	5	4	-{	+	\dashv	+	4	4	4	\dashv	+	4	4	4
KILL	Ŧ	Н	2	\dashv	-	7	H	\dashv	\dashv	-	4	4	4	┥	\dashv	~	힐	┨	\dashv	\dashv	+	+	+	+	-	+	+	~	┥	嗣
H	6	8		┪	-	\dashv	ᅱ	\dashv	\dashv	+	┪	+	┪	┪	7	+	_	60	┪	۵	+	┪	┪	┪	┪	ᅱ	┪	1	┪	┨
9	2	Н	-	\dashv	-	Н	F	\dashv	\dashv	\dashv	4	ᅱ	\dashv	4	\dashv	+	+	\dashv	┨	-	4	+	┥	\dashv	4	+	4	~	\dashv	┨
F	÷	Н	4	\dashv	-	Н	\dashv	4	-	\dashv	4	4	\dashv	4	4	4	\dashv	ᅱ	4	\dashv	\dashv	4	+	4	4	-	-	~	\dashv	\dashv
H	3	H	4	4	_	4	3	_	-	\dashv	┨	┥	┥	-	┥	┥	┥	┥	뒤	┥	┥	4	4	ᅱ	4	ᅱ	-	=	4	\dashv
Ŀ	7	Н	_	Н	4	Н	2	\dashv	Н	4	=	\dashv	4	_	4	-	4	4	7	4	4	4	4	4	4	4	4	4	4	\dashv
Þ	1 2	Н		Н	-	Н	Н		-	Н	\dashv	+	┥	-	+	\dashv	\dashv	\dashv	Н	-	\dashv	-	\dashv	-	\dashv	၈	┨	Ŧ	\dashv	\dashv
L	3	Ц	Ц			Ц	Ц	Н	ļ	Ц	\dashv	Н	4	_	_	4	4	4	Ц	=	4	4	4	4	_	4	4	4	\dashv	4
Ĺ	7	Ц	Ц	Ц	Ľ	Ц	Ц		Ц					Ц			_	_				4	_	4	_	_	4			
Ė																						╛					╛			╝
L	_	F																								S				
Γ	3						1			1					1				2	2		₹				8		1	П	П
NF10	2						П			П						-				7	П	7	┪			Ŧ	٦			1
ľ	Ŧ	H	H	H		Н	F	Н	F	Н	H	7	Н	_	H	H	H	7	Ŧ	8	H	+	┪	٦	H	7	ᅥ	2	H	1
H	3	Н	_	Н	_	H	2	H	Н	Н	Н	Н	Н	-	-	Н	Н	4	Н	Н	Н	4	\dashv	-	H	18	\dashv	-	Н	H
۵	7	3	_	Н		L	4	Н	Н	2	Н	Н	Н	Ц	2	\dashv	Н	=		4	Н	4	4	4	Ц	ļ	Ц	Ц	Н	
	Į	Ц		Ц	_	L	L	Ц	Ц	Ц	Ц	Ц	Ц		Ц	Ц	Ц	Ц	_	Ц	Ц			4	Ц	3	Ц	_	Н	Н
L	3	Ц		Ц	Ц		L		Ц	Ц		Ц			Ц	Ц	Ц		Ĺ	Ц		Ц			_		Ц	_	Ц	
		L																							2	1,				
NF8	2																							-		13		•		
l	7	П		Γ			Г	Γ		П		Г	Г		Γ	П			ŀ		П				Π	3			П	
t	•	3		287		H	7	H	2	3		H			2	H		2	1	8	Т					Н	_	-	П	Н
Z-W	~	7	H	Ë	┝	H	H	F	\vdash	F	H	Н	2	Н	Н	Н	Н	Н	H	F	Н	Н	Н	_	L	Н	Н	H	H	Н
۲	=	H	┞	8	┝	┞	H	H	7	H	H	Н	H	┝	H	Н	Н		H	2	H	Н	-	_	Н	F	Н	L	H	Н
ŀ	•	8	H	H	3	۲	F	H	H	H	H	H	H	┝	H	Н	H		=	۲	H			-		Н		Η	Г	Н
24.0	~	2	F	H	┝	\vdash	6	H	H	H	Н	H	H	┝	H	Н	H	-	H	\vdash	H	H	Н	_	H	H	Н	H	H	Н
F	=	38	7	H	ŀ	L	H	H	L	Ļ	H	H	H	H	L	11	L	_	L	L	H	Н	_	_	H	Н	_	L	-	Н
ŀ		Ľ	L	L	L	L	L	L	L	Ľ	Н	L	L	L	Ļ.	L	Ц		L	L	L				Ľ	L			L	Ц
Survey 9303 0 5 mm	Taxon	COROPHIDAE UNCIOLA		COROPHIDAE UNCIOLA INERMIS			PHOTIS POLLEX	ISCHYROCERIDAE ISCHYROCERUS ANGUIPES		LYSIANASSIDAE HIPPOMEDON SERRATUS	OEDICEROTIDAE	OEDICEROTIDAE MONOCULODES EDWARDS/		OEDICEROTIDAE OEDICEROTIDAE SP.A	¥E	PHOXOCEPHALIDAE PHOXOCEPHALUS HOLBOLLI	PHOXOCEPHALIDAE RHEPOXYNIUS HUDSONI	PLEUSTIDAE STENOPLEUSTES INERMIS	لِدِ			CAPRELLIDAE MAYERELLA LIMICOLA	CANCRIDEA	CANCRIDAE CANCER BOREALIS		PHORONID PHORONIDAE PHORONIS ARCHITECTA	ECHINODERMATA	OPHIUROIDEA	SCUTELLINA	ECHINARACHNIDAE ECHINARACHNIUS PARMA

APPENDIX A-3: FARFIELD ABUNDANCE (0.3-mm FRACTION)

MUCHINELA SECTION 1 1 2 1 1 2 1 2 1 3 2 2 1 1 1 1 1 2 1 3 2 2 1 1 1 1 1 2 1 3 3 1 1 3 3 1 1 3 3	Survey	Survey 9303 0.3 mm	Ε.		# <u>`</u>	, 1	-	85 °	Ŀ	FF6	-	# <u>`</u>	-	Ŀ	# <u>`</u>	-	# -	6,	<u></u>	Ħ-	6	-	-12 2	6
MENTERA SP. 2	NEMERTEA	- TANGE	_	┺-	_	1	1	L	24		, =	7	_	Ц	Ш	H	F	H	Н	3		П	H	
HANGELIA LACTEAN		NEMERTEA SP.2	ш	Ц	H	П	H	Н		7	\dashv	H	$ \cdot $			\forall	1	+	+	+	1	Ī	†	
Infortation Infortation Infortation Infortation Information	PALEONEMERTEA	CADMICATION	$\frac{1}{1}$	1	\dagger	7	+	+	\int	1	+	+	1	1	Ţ	\dagger	†	+	+	+	1	T	\dagger	Τ
HUGNERAL HUGNERAL	TIBLI ANDAE		-	T	t	-	t	┞	Ĺ	İ	+	╀	Ļ			T	T	+	-	H			Ħ	П
INCRINGAL AMENICATION	HETERONEMERTEA			П	H	L	П	H	\prod	ш	H	Ш		Ц	П	H	H	H	\dashv	H		ľ	7	ľ
AMANUSCISCIAMICALIATION AManuscisciamicaliation Amanuscisciamica	LINEIDAE	MICRURA		\perp	十		+	+			5		\perp		Ţ	\dagger	\dagger	+	+	1		7	+	T
TETRASTERMAN NITRATUM	MONOSIYLIPEKA AMDHIDORIDAE	A WENT STREET		F	†	1	Ť			-	+	+	\downarrow	\downarrow	L	t	6	+	_	H	Ţ		\dagger	
HARMOTHONNE HARMO	TETRASTEMMATIDAE	TETRASTEMMA VITTAT			H	П	H	H	\prod		H	H	H	Ц	Ц	H	П	Н	Н	Н		П	Н	П
HARMOTHONINE	ANNELIDA			\Box	+		\dagger	\dashv		\downarrow	+	+	+	1	I	\dagger	1	+	+	+	1	T	\dagger	
PRYCLOCK MANTAL 1	POLYCHAETA	- 1	ľ	Ť	†	1	⇟	 -	\int	1	+	+	1	1	Ţ	\dagger	†	\dagger	+	-	I	Ī	t	Τ
FINE CONTROL MACHINE 1 1 1 1 1 1 1 1 1	POLYNOIDAE	•	1	7	+	ŀ	†	1		ŕ	-	-	ľ	l	F	t	+	+	L	-	1	ſ	1	7
WINTERESTRUCTORY 1 1 2 1 1 2 1 1 2 1 2 1 2 1 1	DENGLICATION	ETECNE CARSA			t	1	t	-		ŧ	┝	200	L		F	ŧ	6	9		13 9	7	2	7	Γ
PHYLLODOCE MUCOSA HWICHOUTHAMUS SCZELKOWII EXOCOME HERES EXOCOME HERES EXOCOME HERES EXOCOME HERES SPHAERGONIS AND AND AND AND AND AND AND AND AND AND	PHYLODOCIDAE	MYSTIDES BOREALIS			T	F	†	+		F	2	H	Ш			H	П	H	H	Ш	Ш		П	П
## PAYLLODGE BULGGEA WICKSEA W	PHYLLODOCIDAE	PHYLLODOCE			Н	H	H	\dashv			H	7	\prod		\prod	+	1	+	\dashv	+	Ţ	7	†	7
EXCOONE FREESON	PHYLLODOCIDAE	PHYLLODOCE MUCOSA	-	1	=	1	+	+	2	寸	+	+	+		7	╡	†	7	+	+	-		╡	<u> </u>
EXCOCNEC MEMBERS EXACOCNEC MEMB	HESIONIDAE	MICROPHTHALMUS SC.		ţ	\dagger	7	†	+	\int	1	+	+	+		⊥_	1	٢	┾	1	╀	ŀ	ſ	1	7
SPINGENOSYLLS BREWNERONS 1 1 2 1 2 1 1 2 1 1 1 2 1 <td>SYLLIDAE</td> <td>EXOCOME MEDES</td> <td>1</td> <td>1</td> <td>t</td> <td>Ŧ</td> <td>t</td> <td>+</td> <td></td> <td></td> <td>+</td> <td>+</td> <td>+</td> <td> </td> <td>L</td> <td>6</td> <td>1</td> <td>ᆫ</td> <td>18</td> <td>\vdash</td> <td>-</td> <td></td> <td>t</td> <td>1</td>	SYLLIDAE	EXOCOME MEDES	1	1	t	Ŧ	t	+			+	+	+		L	6	1	ᆫ	18	\vdash	-		t	1
NEPHTYS SIGNATURE SALPHOCORPALIA 1	SYLLIDAE	SPHAFROSYI IS BREVIERONS		Ţ	t	ļ	T	-	Ĺ	t	╁	╀	L		L	t		_	L	7			Н	
SYLLIDES LANDONICA NEMITYS NEM	SYLLIDAE	SPHAEROSYLLIS LONGICAUDA		L		F	H	H	٦	9	2	H	ı	Ц	7	H	F	Н	7		Ц	П	H	
NEPHTYS NECKERA 15 16 10 12 1 2 1 1 1 1 2 1 1	SYLLIDAE	SYLLIDES JAPONICA	ı		H	Ц	H	Н			Ц	_		2		\forall		\dashv	\dashv	7	=		7	T
NEPHTYS NECRAL NEPHTYS NECRAL NEPHTYS NECRA NEPHTYS NECRA NEPHTYS NECRA SPHAFEODORG-SIS MINUTA 2 SPHAFEODORG-SIS MINUTA 2 SPHAFEODORG-SIS MINUTA 2 SPHAFEODORG-SIS MINUTA 3 SPHAFEODORG-SIS MINUTA 2 SPHAFEODORG-SIS MINUTA 4 SPHAFEODORG-SIS MINUTA 5	SYLLIDAE	SYLLIDES LONGOCIRRATA	ı		2	7	1	\dashv		┙	┙	_	- 1			+	7	+	+	1	2	Ī	†	T
NEPHTYS MCISA	NEREIDAE	- 1		1	1	1	+	4	2	1	+	+]	I	†	1	+	╁	- (- (1	Ť	T
NEMPTI'S MEDIEMA	NEPHTYIDAE	- 1	-	1	†	1	6	<u></u>	7	1	┽	+			Ţ	†	ヤ	+	7	┸		1	†	1
STANDER OLIVE STANDER OF STANDER OF STANDER OLIVE STANDE	NEPHIYIDAE	- 1	1	ŀ	┝	ļ	\dagger	ļ.		1	1	+			1	+	ŕ	+	╀	-	6	1	5	٦
CONVICERAL	SPHAFRODORIDAE	SPHAFRODOROPSIS M	~	1	t	ļ	t	1		L	12	m			L	T	╒	\vdash	-	Ļ	Ш		Н	П
MINOE NIGRIPES 1	GLYCERIDAE	GLYCERA			H		H	H		Ц	Н	Н	Н	Ц	Ц	H	П	H	H	Ц	Ш	П	\dashv	П
NUMCE NIGRIPES 1	GONIADIDAE				1	1	+	\perp			+	+		1	ľ	†	Ť	+	-	77	9	ſ	†	Ţ
SCOLETOMA FRAGILS 1	LUMBRINERIDAE		1	1	\dagger	1	+	1		=	17	-	\perp	1	^	\dagger	1	╬	1	┸	L	7	₹-	Τ
SCOLETOMA NEBES 1 2 3 26 3 3 1 2 2 2 2 2 3 26 3 3 1 2 2 2 2 2 2 2 2 2	LUMBRINERIDAE	NINOE NIGRIPES	$\frac{1}{2}$	ŀ	†	Ŧ	\dagger	+	\int	1	+	-	+	\downarrow	Ţ	t	T	╀	╀	╀	I	Ī	t	
DORVILLEA SOCIABILIS 1 2 3 4 3 3 3	LUMBRINERIDAE	SCOLE TOWN TRAGICS	-	1	t	Ŧ	1	+		İ	+	+	+	Ļ	L	\dagger	T	+	┞	Ł		5	6	7
PARCUCIA CAECA 1 2 2 2 3 26 3 1 1 2 2 6 1 2 3 1 1 2 6 1 2 2 1 1 2 2 6 1 2 2 1 2 6 1 1 2 3 1 1 2 6 1 1 2 2 6 1 1 2 3 1 1 2 3 1 1 2 3 1 3 1 1 2 3 1 3 1 1 2 3 1 3 1 3	DORVILLEIDAE	DORVILLEA SOCIABILIS	\perp	F	t	F	+	H	Ĺ		H	\vdash	\vdash	L	Ц	Н	Ħ	Н	H	H			П	
LETIOSCOLOPIOS ACUTUS 2 6 1 1 2 3 1 4 2 6 1 1 2 3 1 4 1 2 6 1 1 2 3 1 4 2 6 1 1 2 3 1 4 1 2 3 3 1 4 1 2 3 3 3 3 3 3 3 3 3	DORVILLEIDAE	PAROUGIA CAECA	-		2	F	7	H		1	28	-	Ц	3	٦	Н	2	2		ш	=	Ŧ	7	न
ARCIOEA CATHERNAME ARKICLEA CATHERNAME ARKICLEA CATHERNAME ARKICLEA CATHERNAME ARKICLEA CATHERNAME ARKICLEA CATHERNAME ARKICLEA CATHERNAME ARKICLEA CATHERNAME ARKICLEA CATHERNAME ARKICLEA CATHERNAME ARKICLEA CATHERNAME ARKICLEA CATHERNAME ARKICLEA CATHERNAME ARKICLEA CATHERNAME ARKICLEA CATHERNAME ARKICLEA CATHERNAME ARKICLEA CATHERNAME ARKICLEA CATHERNAME ARKICLEA CATHERNAME ARKICLA CATHER	ORBINIDAE	LEITOSCOLOPLOS ACU	2	9	F	1	3	7				-			=	+	7	=	8	28 40	_1	=	_	ল
ARCIOLEA CATHERINAE ARCICLEA CAJALERINAE ARCICLEA CAJALERINAE ARCICLEA CAJALERINAE ARCICLEA CAJALERINAE APSTOBEA SOCIALIS APSTOBEA COLORIGATION APSTOBEA COLORIGATION APSTOBEA COLORIGATION APSTOBEA COLORIGATION APSTOBEA COLORIGATION APSTOBEA COLORIGATION APSTOBEA COLORIGATION APSTOBEA COLORIGATION APSTOBEA COLORIGATION APSTOBEA COLORIGATION APSTOBEA COLORIGATION APSTOBEA COLORIGATION APSTOBEA COLORIGATION APSTOBEA COLORIGATION APSTOBEA COLORIGATION APSTOBEA COLORIGATION APSTOBEA COLORIGATION APSTOBEA COLORIGATION APSTOBEA COLORIGATION APSTORE CO	ORBINIDAE	SCOLOPLOS ARMIGER			+	1	+	+		1	. I.	ı	_		1	†	1	┸	-	+	Ţ	4 8	4 5	27.
ANCIDERA LONGING GRADULUS AND ANCIDERATOR AND ANCIDERA LONGING GRADULUS AND ANCIDERA LONGING GRADULUS AND AND ANCIDERA GRADULUS AND AND AND AND AND AND AND AND AND AND	PARAONIDAE	ARICIDEA CATHERINAE	┸	\perp	†	f		_		2 8	L.	- 1	_	ļ.	T	t	1	L		_	1	3	_	,
APSTOCRAMENCH STRUCTURE RG I	PARACINIDAE	ARREIDEA GOADRILOBY	L	L	=	ة ا	_	_		3			_		_	15	F	+	(C)	51 53	5		2	7
POLYDORA SOCIALIS	APISTORBANCHIDAE	APISTOBRANCHIIS TUI	L	L	7	•		_		1_	_		_		_		T			ш			Н	
PRICANCSPIO STEENSTRUPY 1 7 3 6 4 15 9 12 7 1 1 24 79 10 13 SPRICHARCOLA ENGLY SPRICHARCOLA ENGLY SPRICHARCOLA ENGLY TROCHOCHAETA MULTISETOSA TROCHOCHAETA MUNICARIS TROCHOCHAETA MUNICARIA TROCHOCHAETA MUNICARIS TROCHOCHAETA MUNICARIA TROCHOCHAETA MUNICARIA TROCHOCHAETA MUNICARIA TROCHOCHAETA MUNICARIA TROCHOCHAETA MUNICARIA TROCHOCHAETA MUNICARIA TROCHOCHAETA MUNICARIA TROCHOCHAETA MUNICARIA TROCHOCHAETA MUNICARIA TROCHOCHAETA MUNICARIA TROCHOCHAETA MUNICARIA TROCHOCHAETA MUNICARIA TROCHOCHAETA MUNICARIA TROCHOCHAETA MUNICARIA TROCHOCHAETA MUNIC	SPIONIDAE	POLYDORA SOCIALIS	Ш		H		1 1	H		Ц	1!			Ш	ш	7		L	LL				7	
SPICHMOND SPICE	SPIONIDAE	PRIONOSPIO STEENST	Ц	Ш				_		寸	+	_1	_ 1			황	_1.	Ы.		88 .	8 8	8	=	R
STREBLEGORD BENEDICT TROCHOCHAETA MARIONI APHELOCHAETA MARIONI APHELOCHAETA MARIONI APHELOCHAETA MARIONI APHELOCHAETA MARIONI APHELOCHAETA MONITARIS APHELOCHAETA MONITARIS APHELOCHAETA MONITARIS APHELOCHAETA MONITARIS APHELOCHAETA MONITARIS APHELOCHAETA MONITARIS APHELOCHAETA MONITARIS APHERIOSA APHELOCHAETA MARIONI APHERIOSA APHERIOS	SPIONIDAE	SPIO LIMICOLA	┙	⅃			- 1	_	1	•	2	┸		1		2	_1_		् शुर	3		۳	†	٢
TROCHOCHAETA TROCHOCHAETA TROCHOCHAETA TROCHOCHAETA TROCHOCHAETA TROCHOCHAETA TROCHOCHAETA MULTISETOSA TROCHOCHAETA MULTISETOSA TROCHOCHAETA MULTISETOSA TROCHOCHAETA MULTISETOSA TROCHOCHAETA MUSINI TROCHOCHAETA MUNICALINA DAPIELOCHAETA MUNICALINA DAPIELOCHAETA MONICALINA DAPIESTOSA TROCHOCHAETA MONICALINA BAPTISTE TROCHOCHAETA MONICALINA BAPTISTE TROCHOCHAETA TR	SPIONIDAE	SPICEHANES BOMBYX	1	t	\dagger	Ŧ	\dagger	\downarrow		İ	+	+	\downarrow	1	T	t	T	+	╀	╀		1	T	1
TROCHOCHAETA CARICA 1 6 1 2 2 2 2 1 1 2 3 2 3 2 2 5 2 5 2 5 2 2 1 1 1 1 1 4 4 4 4 5 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 4 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 4	TROCHOCHAETIDAE	TROCHOCHAETA			T	┺	T				\vdash	\vdash	H	Ц	Ц	H	П	Н	Н	7		П	П	
APHELOCHAETA MULTISETOSA APHELOCHAETA MANLTISETOSA APHELOCHAETA MANICARIS APHELOCHAETA MANICARIS 2 3 2 5 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TROCHOCHAETIDAE	TROCHOCHAETA CAR			H	П	H	H			Н	${\mathbb H}$	Н	\sqcup	\Box		7	\dashv	+		4		1	1
APHELOCHAETA MARIONU 2 2 3 2 3 2 4 4 4 3 5 1 5 2 5 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1	TROCHOCHAETIDAE	TROCHOCHAETA MUL		目	+	7	2	7		#	+	+	+]	+	†	+	+	7	<u>-</u>	Ţ	†	T
### CAMPICATION CONTROLLY 43 51 54 21 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2	CIRRATULIDAE	APHELOCHAETA MARI	1	٠.	†	Ŧ	\dagger	+		Ť	+	+	+	1	F	\dagger	T	+	╀	1	1	T	T	T
MONTICELLINA DORSOBRANCHIALIS 6 5 MONTICELLINA BAPTISTE 12 8 3 MONTICELLINA BAPTISTE 12 8 3 THARYX ACUTUS 28 42 39 42 39 43 2 4 1 2 2 47 59 18 285 186 422 1 8 3 PHERUS SCALIBREGMA INFLATUM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CIRRATULIDAE	CHAFTOZOME SP A	15		21		5			1	1	╀	\perp	\perp	F	┢	T	\dagger	H	22 14	12		T	
MONTICELLINA BAPTISTE 12 8 THARYX ACUTUS 12 2 47 59 16 28 45 56 12 8 3 THARYX ACUTUS 12 2 47 59 16 28 186 422 12 8 3 3 PHERIOR 1 1 2 2 47 59 16 285 186 422 1 1 2 2 47 59 16 285 186 422 PHERIOR 1 1 2 2 47 59 16 285 186 422 1 1 2 2 47 59 16 285 186 422	CIRRATULIDAE	MONTICELLINA DORSOBRANCHIALIS		1	H		П		Ц		H	H	Н	Ц	П	H	8	ш				П	H	П
THARTX ACUTUS 13 61 26 45 56 45 56 45 58 1 8 3 COSSURA LONGOCIRRATA 1	CIRRATULIDAE	MONTICELLINA BAPTISTE			H		H	H					1	4	1	_	함	_	21°	+	1	1	18	F
COSSUME CONSOCIATION	CIRRATULIDAE	THARYX ACUTUS	_	-1-	15		╁		\perp	6 6	_	_	_1_	<u></u>	1	╪	•	┸		12 10	8		R	7
PHERUSA SCALIBREGMA INFLATU OPHELINA ACUMINATA	EI AREI I GERIDAE	COSONA CONCOUNTAIN	┸		2		+		L	1				1	$oxed{\Box}$	\dagger	T	t	-				Ħ	
SCALIBREGMA INFLATU OPHELINA ACUMINATA	FLABELLIGERIDAE	PHERUSA		L	r	F	T	H			-	H	\sqcup	Ц	Д	Н	П	H	Н	Н	П	-	Н	
-	SCALIBREGMIDAE	SCALIBREGMA INFLATUM		Ц	H	П	F	 -			Н	H				\dagger	1	+	+	-	7		1	7
	OPHELIIDAE	OPHELINA ACUMINATA]	1	7	\dashv	-			\dashv	\dashv	=	4	=	1	1	\dashv	\dashv		- -	1	1	7

Surve	Survey 9303 0.3 mm	FF1 FF4 FF5 FF6 FF7 FF9	FF10 FF11 FF12
CAPITELLIDAE	CAPITELLA CAPITATA	1 2 4 1 6 1 8 3 3 1	5 3 1 4 4 2 1
CAPITELLIDAE	MEDIOMASTUS CALIFORNIENSIS	9 50 20 31 20 5 17	16 8 14 8 54 28 11 39 17 7
AMPHARETIDAE	AMPHARETE ACUTIFRONS		
AMPHARETIDAE			•
AMPHARETIDAE	ASABELLIDES OCH ATA	3 0 3	1 1 2 10 3
TEREBELLIDAE	POLYCIRRUS	Ш	
TRICHOBRANCHIDA	E TEREBELLIDES ATLANTIS	5 3 8 4	
SABELLIDAE	CHONE		47
SABELLIDAE	EUCHONE INCOLOR	2 2 2 1 2 1 8 10 20 19 34 32	35
ARCHIANNELIDA POI YGORDIIDAE	POLYGORDIUS SP.A		
TUBIFICINA			
TUBIFICIDAE			1
TUBIFICIDAE	TUBIFICIDAE SP.2		13 9 3
TUBIFICIDAE	TUBIFICOIDES APECTINATUS	20 (0) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1)	20
MESOGASTBODODA		,	
RISSOIDAE	ONOBA PELAGICA	15 17 19	
CEPHALASPIDEA			
CYLICHNIDAE	CYLICHINA	9 9	
APLACOPHORA			
CHAFTODERMATION	KE CHAFTODERNA NITION IN		
BIVALVIA		8 5 5 5 25 8 20 4 3 5 2 13 2 29 37	24 37 10 12 13 19 9 9 7 5
NUCULOIDEA			
NUCULIDAE	NUCULA	9 3 2 1 1 12 11 31 21 34 13 21 30 58 7 5	3 208 80 134 17 22 9
NUCULANIDAE	MEGAYOLDIA THRACIAEFORMIS		ľ
NUCULANIDAE	YOLDIA SAPOTILLA	5 8 4 6 2 5 1 4 10	1 S / S
MYTILOIDA	COCNELLA DECLISSATA	6	A4 10 18
	MISCHIE		
MYTHIDAE	MYTHUS		1 4
MYTILIDAE	MYTILUS EDULIS		5 1
VENEROIDA			
THYASIRIDAE	THYASIRA GOULDII	1	
ASTARTIDAE	ASTARTE UNDATA	2 3	3
AKCIICIDAE	ARC INCA ISLANDICA		
HIATELIDAE	HIATELLA ARCTICA		8 2 6 1
PHOLADOMYACEA			
PERIPLOMATIDAE	PERIPLOMA PAPYRATIUM		
DENT DENTALIDAE	DENTULIUM ENTALE	4 1 5	2
CRUSTACEA			
CUMACEA	A 1 1131 10 A 1110000110		
DIASTYLIDAE	DIASTYIS	1 3	
DIKONOPHORA			
PARATANAIDAE	TANAISSUS PSAMMOPHILUS		
ANTHURIDAE	PTILANTHURA TENUIS		2
VALVIFERA			
IDOTEIDAE	EDOTEA MONTOSA		
PARAMINNIDAE	PI FUROGONIUM	2 2 1 2 2 2	4
PARAMUNIDAE	PLEUROGONIUM INERME	2	
PARAMUNIDAE	PLEUROGONIUM SPINOSISSIMUM	3	-
GAMMARIDEA		, , , , , , , , , , , , , , , , , , ,	
AMPELISCIDAE	AMPELISCA	2	
AMPELISCIDAE	AMPELISCA ABDITA		
COROPHILDAE	COROLLIOM		

Survey 9303 0.3 mm	Ë	Ļ	L	Ľ	Γ	Γ	3	ŀ	FF6	L	L	E		L	E	Γ		욛	l	L	E	Γ		<u>F</u> F12	
Taxon	•	2 3	-	2	3	1	2	3	1 2	3	-	7	က	-	7	13.	-	2	3	-	7	3	-	7	3
COROPHIDAE UNCIOLA		H	L	L	L		H	H	H	Н		Ш	Ш	L	Ц			Ц			Ц	Ш		Ц	
ISAEIDAE PHOTIS POLLEX	2	\vdash	L	L		7	2	1	11	2	3 1	12	9 14		1 2	2	•	8 4	2				3	4	8
HALIDAE		2		Ľ		F	2	4	Н	2		Ц	Ц		2 1			-				3			
PHOXOCEPHALIDAE PHOXOCEPHALUS HOLBOLLI		L	L	L			H	L	-	_								Ц			_				
PODOCERIDAE DYOPEDOS MONOCANTHA		\vdash	L	L			H	H	Н	Н	Ц	Ц	Ц		Ц						Ц			2	
STENOTHOIDAE METOPELLA ANGUSTA		\vdash	L	L			-	2	1	2	8 13	12 4	3	6	1 2	4	•	1 5	1						
CAPRELLIDEA		Н	Ц	Ц			Н	Н	Н	Н	Ц			Ц	Ц										
CAPRELLIDAE MAYERELLA LIMICOLA	1	Н	Ц	1				П	2	Н		_			Ц						_				
SIPUNCULOIDEA SIPUNCULA	ļ	Н	ŀ	Ц	F	3	F	2	Н		3	Ц			2			Ц		13	8	22			
PRIAPULIDA		_								Ц					_						4				
PRIAPULIDAE PRIAPULUS CAUDATUS		Н	L	H			Н	Н	H	Н	Ц				Ц										
PHORONIDA		H		Ц				Ц	-	Н	Щ					·		_			4			╝	
PHORONIDAE PHORONIS ARCHITECTA		Н	Ц	Ц			Н	Н	\dashv	4					Ц			_			4		3		
ECHINODERMATA		Н		Ц				Н	_	Н		_		_	4			_			4			_	
OPHIUROIDEA		-	2				4	5	1	2		_	2		2	1	1		2		5	1			

	•				•	(•
	Такол	-	2	.	-	~ •	₹
NEMERIEA	NEMERTEA SP 2		T	1	1	1	1
PALEONEMERTEA			П	П	П	П	П
TUBULANIDAE	CARINOMELLA LACTEA		Ī	\top			
TUBULANIDAE		Ĭ	T	Ť	Ť	T	T
TELENONEMEN CONTRACTOR	MCBIRA	۳	F	┝	٦	Γ	
MONOSTYLIFERA			T	T	Ī	Γ	
AMPHIPORIDAE	AMPHIPORUS ANGULATUS		П	3	П	2	7
TETRASTEMMATIDAE			П	П		₹	
ANNELIDA			T	T	1	T	
POLYCHAETA			T	1	1	Ī	ľ
POLYNOIDAE	HARMOTHOINAE	ľ	Ī	1	T	7	1
	PHOLOE MINUTA	7	-	1	Ī	Ţ	7
إيس	ETEONE LONGA	1	7	F	7	7	7
PHYLLODOCIDAE	MYSTIDES BOREALIS		1	1	1	T	
1	PHYLLODOCE	٤	٦	1	Ī	T	I
1	PHYLLODOCE MUCUSA	8	8	•	1	T	I
1	MICKOPH I HALMUS SCZELKOWII	7	ľ	┪	T	Ţ	I
	EXOCONE MEBES	•	T	†	Ì	T	l
SYLLIDAE	EXOGONE VERUGERA		T	Ť	Ī	Ţ	I
	SPHAEROS YLLIS BREVIFRONS	Ī	T	Ť	Ť	T	
	SWITTER ADDAILS	1	T	Ť		T	
SYLLIDAE	SYLLIDES JAPONICA SVI 10ES 1 DASOCIDBATA		T	T	6	۴	4
	STEEDES FORSONIA IN		T	T	1	1	1
ACINTAIN	NEDLITYS		T	T	Ī	٦	ľ
NEDLINIAE	NEPHTYS INCISA		Γ	Ť	T	T	1
	NEPHTYS NEOTENA	٤	8	118	Ī	Γ	2
SPHAFFOLDAF	SPHAFRODOROPSIS MINITA				Ī	Γ	1
ı	GLYCERA			Γ			
	GONIADA MACULATA					F	
LUMBRINERIDAE		4	П	F		F	
	NINOE NIGRIPES	1	Ī				
	SCOLETOMA FRAGILIS					٦	
111	SCOLETOMA HEBES	2			7		
	DORVILLEA SOCIABILIS				٦	٦	
ΑĒ	PAROUGIA CAECA				6	7	7
	LEITOSCOLOPLOS ACUTUS	R	4	P	F	2	7
	SCOLOPLOS ARMIGER	7	<u>و</u>	7	1	T	ı
	ARICIDEA CATHERINAE	<u>5</u>	162	8	18	1	ŀ
	ARICIDEA GUADRIL OBATA		T	T	3 8	9 9	╬
	LEVINSENIA GRACILIS	Ţ	Ī	T	۲	7	╣
NCTIONE NCTIONE	DOLYDODA SOCIALIS	Ţ	T	T	1	T	1
SPICINICAE	PRIONOSPIO STEFNSTRIIPI	8	27	2	Ī	8	۳
	SPIOLIMICOLA		П	5	13	ន	۳
	SPIOPHANES BOMBYX						
SPIONIDAE	STREBLOSPIO BENEDICTI		٦	1		T	
TROCHOCHAETIDAE	TROCHOCHAETA		T	Ť	T	T	
TROCHOCHAETIDAE	TOCHOCHAETA CARICA		Τ	T		٢	ı
CIPBATI II ITAE	APHEI OCHAFTA MARIONI		Ī	T	Ī	۳	4
CIRRATE II DAE	APHEL OCHAFTA MONILARIS			Γ	7	7	<u>ا</u> ٣
CIRRATULIDAE	CHAETOZONE SP.A				43	67	ß
CIRRATULIDAE	MONTICELLINA DORSOBRANCHIALIS		П	٦			
CIRRATULIDAE	MONTICELLINA BAPTISTE	_	1			T	
CIRRATULIDAE	THARYX ACUTUS	2/2	3	2	e e	15	7
FLABELLIGERIDAE	COSCOLATION TO THE PARTY OF THE						1
FLABELLIGERIDAE	PHERUSA	٦	П	ᅱ			
SCALIBREGMIDAE	SCALIBREGMA INFLATUM		T			T	1
OPHELIIDAE	OPHELINA ACUMINATA]	7	1]	

Survey 9303 0.3 mm	33 0.3 mm		F13	T	<u> </u>	F 4	
CAPITELLIDAE CA	CAPITELLA CAPITATA	-	⋪₽	, 6	-	√~	᠇
	MEDIOMASTUS CALIFORNIENSIS	47	R	9	R	23	-
ږو	Z Z		П	П		П	
			T	1			7
	ANOBOTHRUS GRACILIS		T	T	1	T	Т
TEREBEILIDAE	POLYCIRRUS	ľ	T	F	T	T	Γ
TRICHOBRANCHIDAE	TEREBELLIDES ATLANTIS		П	П	П	П	П
SABELLIDAE	CHONE		П	1			
AE	EUCHONE INCOLOR		T	1	7	₹	
ARCHIANNELIDA	A GO SUNGE CO A		T	Ť	T	T	
U K	OL TGURINGS ST.A		T	T	T	T	
TUBIFICIDAE			T	T		Г	
	TUBIFICIDAE SP.2		П	Ħ	П	П	П
JBIFICIDAE	TUBIFICOIDES APECTINATUS	10	7	2	8	ß	37
GASTROPODA			7	1	T	7	T
	1000		Ť	T	T	T	T
CEDUAL ASDICEA	Grober rechellen		T	t	Ì	T	Τ
	CYLICHINA			T	Ī	Γ	
			П	П	П	П	П
ERMATIDA			П	1	Ī		
CHAETODERMATIDAE	CHAETODERMA NITIDULUM	ľ	1	ľ	ľ	7	1
BIVALVIA		6	7	7	7	7	2
	4 = 30 = 3		1	T	۶	3	9
	MUCCANOL DIA TUBACIAZZOBUIS		1	t	₹	3	7
NOOD NOON	VOLDIA SAPOTII I A		Ť	T	T	٦	Γ
			T	T	Ī	Т	
	CRENELLA DECUSSATA		П	П	П	П	П
	MUSCULUS			7	T	T	
MYTILIDAE	MYTILUS	,	1	†		T	Τ
	MY IILUS EDULIS	2	↟	1	T	T	Γ
	THYASIRA GOLILOII	Ī	T	Ť	T	°	Τ
	ASTARTE UNDATA		T	T	T	1	Γ
ARCTICIDAE	ARCTICA ISLANDICA		Γ	T			
			П	П			
	HIATELLA ARCTICA	4	7	7	1	1	T
PHOLADOMYACEA		ľ	Ť	†	1	T	Ţ
DAE	PERIPLOMA PAPYKATIUM	2		T	Ť	T	T
DENT DENTALIDAE	DENTULIUM ENTALE		T	T	T	T	П
			П	П		П	П
			1	†	7		T
DIASTYLIDAE	DIASTYIS		T	T	Τ	T	Γ
			П			П	П
	TANAISSUS PSAMMOPHILUS	Ī	1	1	1	T	Т
IRIDAE	PTII ANTHURA TENUIS	T	T	T	T	T	Τ
		П	П	П	П	П	П
EIDAE	EDOTEA MONTOSA	Ī	Π	\sqcap	T	T	П
PARELLOIA	PI EUROGONIUM	~	T	a	T	T	Τ
$\ $	PLEUROGONIUM INERME		П	Π	П	П	П
	PLEUROGONIUM SPINOSISSIMUM		T	1	1	T	T
×			П	П	П	П	П
	AMPELISCA	Ī	ľ	ţ	T	T	Ţ
AMPELISCIDAE	AMPELISCA ABOTTA	c	7	1	T	T	T
	OKOPHOW WITH THE PROPERTY OF T		1	1	1	1]

Survey 9303 0.3 mm	Ļ	Ħ,	ئے	Ŀ	¥.	•
COROPHIDAE	1	1	1	1	1	Ž
		2	٦	3		
PHOXOCEPHALIDAE HARPINIA PROPINGUA		L				
PHOXOCEPHALIDAE PHOXOCEPHALUS HOLBOLLI		L	L			
PODOCERIDAE DYOPEDOS MONOCANTHA						
STENOTHOIDAE METOPELLA ANGUSTA		2	1] 2			
CAPRELLIDEA						
CAPRELLIDAE MAYERELLA LIMICOLA						
SIPUNCULOIDEA SIPUNCULA		Ш				
PRIAPULIDA		Ц				
PRIAPULIDAE PRIAPULUS CAUDATUS						
PHORONIDA						
PHORONIDAE PHORONIS ARCHITECTA		Ц	Ц			
ECHINODERMATA						
OPHIUROIDEA		3	7		1	
		l		l		

APPENDIX A-4: FARFIELD ABUNDANCE (0.5-mm FRACTION)

Survey	Survey 9303 0.5 mm	#	L		Į.	L	F	1.	1.	1	-	F.	Į.	L	E	Γ		FF10	┢	世.	1.	L	FF12	<u> </u>
Childadia	Taxon	+	2	1	7	-	7	7	┿	7	-	1	?	1	~	7	₹	7	~	+	7	- -		
HYDROZOA		\pm	\perp		\dagger	+	1		\dagger	+	+	+	\perp	-		1	Ť	\dagger	\dagger	╁	╀	1	\perp	L
ACTINIARIA			Ц		H	H	\prod		H	Н	Н	H	Ц			П	Ħ	П	Н	Н	Ц		Ц	Ц
AIGANDITA	ACTINIARIA SP.2		4		+	4			+	7	6	+	2				S	-	7	+	\downarrow	\downarrow		1
EDWARDSIIDAE	EDWARDSIA ELEGANS	\prod	\coprod	Ш	$\dagger \dagger$	H	\prod		-	4	╁	$oxed{\parallel}$	Ц		\prod	П	Ħ	┪	7	H	\coprod	3	2	
NEMERTEA	000	က	7	<u>۳</u>	\dagger	+	7	•	7	-	+	7			2	7	₹	+	\dagger	+	+	1	_	\perp
	NEMERTEA SP.4	\parallel			H	H	\prod		╢	H	H	\coprod	\prod		\prod	\prod	Ħ	$\dagger \dagger$	H	H	\coprod	\coprod	Ц	Ц
PALEONEMERTEA		_	4		+	+	<u> </u>		+	+	+	4			1	1	-	+	+	+	4	_	\perp	
TUBULANIDAE	CARINOMELLA LACTEA TUBULANUS PELLUCIDUS	\pm	1		\dagger	+	<u> </u>	1	+	+	+	5				Т	T	\dagger	+	+	\coprod	Ц	Ш	
HETERONEMERTEA			Ц		H	Н	\coprod		H	Н	Н	Ш	L			П	П	\dashv		Н	Ц		Ц	
LINGIDAE	CEREBRATULUS LACTEUS	4	٥	÷	┪	-	4	Ī	-	-	- -	د 1	2 8	-	ľ	1*	2 5	+	m «	-	- 8	4		7
MONOSTYLIFERA	A CANONIA	1	1	L	+	-	2		Ш.	↓		Т	Ш	L	7	1	2	-	+	Ш	Ľ	\prod	Ш	
AMPHIPORIDAE	AMPHIPORUS ANGULATUS	\prod	╽		H	H	\prod		H	┝	${\mathbb H}$	ert	Ц		F	П	П	H	4	H	Ц	Ц	Ц	Ц
ANNELIDA	TETRASTEMMA VITTATUM	$\frac{1}{2}$	\downarrow	I	\dagger	+	\downarrow		+	+	+	+	$oldsymbol{\perp}$		T	Ť	1	\dagger	+	+	1	1	╽	1
YCHAETA		+	1	\prod	\dagger	+		I	+	+	+	Ļ	L		T	T	T	t	+	+	ļ	L	L	L
POLYNOIDAE	BYLGIDES GROENLANDICUS	H	Ц		H	Н	F		Н	Н	Н	\sqcup	Ц		П	П	П	Н	Н	Н	Ц	Ц	Ц	Ц
	ENIPO TORELLI		Ц		H	Ц	2		0	က	7	6	2			7		+	1	+	\perp		\downarrow	
	GATTYANA CIRROSA	·	\downarrow	ľ	\dagger	-	7	<u> </u>	+	╬	+	+	_	•	2	₹	7	7	+	╬	7		1	1
TACIONY IOC	A ONIOR	1	1	1	+	1	1	İ	\dagger	+	+	╀			T	T	Ť	┢	\dagger	+	╀	1		L
POLYNOIDAE	LAONICE CIRRATA	$\frac{1}{2}$	1	I	\dagger	╀	ļ	Ī	t	+	+	\downarrow			T	T	┍	╀	\dagger	+	Ļ	L		L
	POLYDORA CAULLERY		L		\vdash	H			\vdash	-	\vdash	H			Γ			Н	Н	Н	Ц	Ц	Ц	Ц
	POLYDORA CORNUTA	H	Ц		H	Н			H	H	Н	Н	Ц			П		ш.		Н	Ц	Ц	Ц	Ц
	POLYDORA QUADRILOBATA	+	_		+	4				ᅰ	_	4	-		Ť	=	8	S	9	+	4		_[
	POLYDORA SOCIALIS	+	1	1	\dagger	+	1	1	R	1	* - -	 	6	₽		7	m		<u></u>	+	1	1		
	PRIONOSPIO STEENSTRIIDI	0 13	\$	ξ	-	13 28	200	25	6	5	╀	+		Š	2	8	3	190	143	4 15	8	L	Ľ	
	SPIO FILICORNIS	۰.		3		_	L	L	L	+	╀	 						1 .	L			7		L
POLYNOIDAE	SPIO LIMICOLA	29 30	45	228	32	65 246	6 245	259	217 4	448 4	442 8	38	174	88	8	8	g	214	88	61	3 180		Ц	7
	SPIO THULINI	+	1		\dagger	\dashv	\int		+	7	+	4	\int			1	†	+	+	+	4			Į.
	SPIOPHANES BOMBYX	+			+	+	\int	Ţ	+	+	+	\downarrow			T	†	7	+	╪	+	1	35	1	
l	PHOLOF MINITA	+	7		\dagger	1	-	î	6	┝	╄	_	ľ	-	•	7	T	4	┢	~	5 4	_		
П	PARAMPHINOME JEFFREYSII	H	Ц	4	2	H	Ц	I	Н	H	Н	\mathbb{H}			П	Ħ	П	Н	Н	Ш	Ц			Ц
ŀΙ	ETEONE LONGA	-	Ц		H	Ц	3 1	F	-	9	H	5	5	9	П	7	f	ᅱ	Н	8	3 6	2		
	MYSTIDES BOREALIS	+			+	+	-	寸	+	+	+	+	\prod		1	1	†	\dagger	+	+	4	1	┙	\perp
1	PARANAITIS SPECIOSA	+	\downarrow	I	\dagger	4		<u> </u>	+	+	+	+	\int		†	†	†	\dagger	╬	+	1	1		1
PHYLLODOCIDAE	PHYLLODOCE MACI! ATA	+		I	\dagger	+	_	T	+	+	1	\downarrow			T		1	\dagger	╁	+	\downarrow	1	L	L
	PHYLLODOCE MUCOSA	H	\Box	Γ	Н	Н	2	3	5	4	H	Н		Г	2	2	3	F	2	Н	Ц	F	Ц	
HESIONIDAE	MICROPHTHALMUS SCZELKOWII	+	\prod		+	\downarrow	\prod		+	+	+	4	Ţ			1	†	\dagger	+	+	4	1	1	1
ı	ANCIS I ROS YLLIS GROENLANDICA	+	\int		╬	4	\prod	1	+	+	+	+	I	ſ	٢	•	T	1.	15	╀	ļ	1		
ı	EXOCONE LONGICIRRUS	+	L	Γ	t	\downarrow	I	Ī	+	+	+	\downarrow	L		1		T	1	1	╀	_		L	
Н	EXOGONE VERUGERA	-	L		\vdash	H			H	H	H	\sqcup		33	33	24	6	9	47	Н	Ц	Ц	Ц	Ц
il	SPHAEROSYLLIS LONGICAUDA	\dashv	\coprod		Н	\sqcup			+	╡	-	4		F		T	T	=	╡	+		4	\perp	1
1	SYLLIDES JAPONICA	+	\int	ľ	╬	4		†	2	- -		1	1	J	1	†	†	\dagger	+	╬		<u> </u>	╧	\perp
- 1	TVPOCYLLIC SD 4	+	Ī	2	+	+	\prod	<u>†</u>	4	-	0		7	Ť	1	Ť	T	†	╁	+	-		l	L
		+	Ĺ		\dagger	\vdash		T	\dagger	+	+	-		2	T	T	T		+	H	L			Ц
	NEANTHES VIRENS	H	Ц		Н	Ц			H	Н	Н	Н			П	П	П	Н	Н	Н	Ц			
	NEREIS GRAYI	+	\int		+	4	\perp	1	+	+	+	4	I	Ţ	\dagger	7	T	\dagger	+	+	4	1		\perp
	NEDHTYS CIRCINA IA	+	F		+	1		T	-	-	4	+	ľ	1	T	1	┢	1	+	1,	Ļ	1	_	
	NEPHTYS CILIATA	["			+	╀	٦	T	+	+	+	-		-		T	T	Ħ		Ļ	L	2		۳
NEPHTYIDAE	NEPHTYS INCISA	H	Ц	П	Н	Ц	Ц	Ħ	9	8	7	8	6		-	7	=	8	7	+				
	NEPHTYS NEOTENA	+	\int	1	+	\downarrow		†	+	+	╀	+	Ţ	j	Ť	Ť	╡	t	\dagger	╬	1	1		1
	SPHAERODOROPSIS MINUTA	$\frac{1}{2}$	1		+	$\frac{1}{2}$		1	1	+	╡	$\frac{1}{2}$			1	1	1	1	$\frac{1}{2}$	+	-			

GONIADIDAE GONIADIDAE LUMBRINERIDAE LUMBRINERIDAE LUMBRINERIDAE LUMBRINERIDAE LUMBRINERIDAE COLETO CORRINIDAE CORRINAE CORRINIDAE CORRINIDAE CORRINIDAE CORRINIDAE CORRINAE CORRIDAE CORRIN	GONIADA MACULATA	1 2	~	╅	2	+	2	7	7	7	7	7	7		"- "	\coprod	1	1	- 2	77	-	1	Ί
1111111	CONDO MACOLA IA	-	t	_	1						-	•	1	-	ļ			Ì			Į		
111111				\dagger	_	F		H	Ĺ			-	_	- 1	_		1	_	H	-	320	П	
111111	ARYSSONINOF WINSNESAE	٦		+	F		\vdash	L.		L		L	Н	Ц	Ц		L	П	F	Ш			١
11111	INDENIGRIPES	5	8	80	1	17	14	17 37	7 45	33	7.4	S	48	8	9 22	54	46	2	4	2 2	ß	ន	જ
	COLETOMA FRAGILIS	3	L	-							4				\Box		_	=	=			7	ľ
	COLETOMA HEBES	H		\dashv			\dashv	1			1	+	+	-	4	=	R	2	┽	1,	4	3	₹
	AROUGIA CAECA			-	7	~	6	+	7	6		+	+	6		7		7	7	7		Ţ	ı
	EITOSCOLOPLOS	-	j	+	┙	1	+	- -	1	ľ	ſ	+	+	١	l	٢	٤	ŧ	ļ	,	8	ľ	18
	ETTOSCOLOPLOS ACUTUS	3	1	+	9	•	+	9	2	1	1	+	<u> </u>	D Ç	7 0		1	*	+	l		1	1
	COLOPLOS ARMIGER	+	1	\dagger	\prod	+	\dagger	1	5	3	28	18	ž	l		٤	Ę	8	┝	-	207	33	첧
PARAONIDAE	RICIDEA CATHERINAE	+	1	\dagger	\prod	†	+	+	┸	1	3	┷	3	1	Ļ	1	L	1	╁	-			1
١	RICIDEA MINUTA		_	+	_	ŀ	l.	1	L		Ţ	+	L			ľ		F	127 111	L			l
PARAONIDAE	RICIDEA QUADRILOBATA	3 0	= 1	3 2	7	8	78	8 9	7	3	8 4	┝	000	15 45	33	↓		-	64	8	å	18	2
PARAONIDAE	VINSENIA GRACILIS	ر م	7	*	_	-	L	1		┸	١	-		L	1	L	1	-		L	L		١
APISTOBRANCHIDAE A	PISTOBRANCHUS TULLBERGI	+	7	\dagger	\prod	†	+	7	L	_	1	丄	3	\downarrow	1	1	İ	†	+	-		T	Ì
TROCHOCHAETIDAE	ROCHOCHAETA		İ	┿	ľ	†	+	+	\int		Ť	+	+	ļ	1	L	I	t	-	Ļ		T	١
TROCHOCHAETIDAE 11	ROCHOCHAE IA CARICA		•	+	4	1	+	+	1	ľ	ŀ	t	+	ļ	Ţ	L		t		-			Γ
TROCHOCHAETIDAE 7	ROCHOCHAETA MULTISETOSA	- [1	\dagger	\prod	ţ	+	+	\int	- (1	\dagger	1	+	1			T	1	1		Ī	l
CIRRATULIDAE		5		-	1	-	+	┙	1	7	ľ	+	+	1	1	8	•	ţ	1	,		Ī	ľ
CIRRATULIDAE	PHELOCHAETA MARIONI	9	•	7	4	6	7	7	4 22		6	+	4	•	2		L	7	1	1		T	1
CIRRATULIDAE	PHELOCHAETA MONILARIS	-	-	+	1	1	\dagger	+		I	1	+	+	+	1	\downarrow		†	\dagger	+			
CIRRATULIDAE	CHAETOZONE SETOSA			-	┙	1	_1	+	1			+	+	\perp	[1	ţ	,,,	42		Ţ	
	HAETOZONE SP.A	9	2	7	8	٦	2	R	1			+	+	2		1	1	5	_	L		;	ľ
	MONTICELLINA BAPTISTE	\downarrow]	+	\prod	1	+	+	"	7		\dagger	+	\downarrow	1	? ?	3 8	8	\dagger	1			1
	IONTICELLINA DORSOBRANCHIALIS	-		+	7	1	+	┙	1			\dagger	+	1	1	7	- 1	8	\dagger	+	- 8	97	100
- 1	THARYX ACUTUS	_	_	+		1	-	7	/	3	3	_	3	1	1	\$	1	8	ŀ	- 6	3	?	1
	OSSURA LONGOCIRRATA	10	7	•	3	2	+	_	┙	П.	312	8	9	7	-	\downarrow	I	†	†				ļ
	RADA VILLOSA	┙		+	1	1	=	-	\int	I		1	+	4	4	1	Ī	†	\dagger	+	1		l
	IPLOCIRRUS HIRSUTUS	1		+	1	1	7	-	1	1		+	+	4	4	1		1	╁	\downarrow	ľ		l
	HERUSA			+		1	+	1	ig			+	+	4	1	1		T	╡	+	1		ľ
FLABELLIGERIDAE P	HERUSA AFFINIS	╝	╝	_	_	1	+	+	_[1	+	╀		1			T	╬			T	
Ŀ	CALIBREGMA INFLATUM	7	6	8	17 21	2	+	7		Ī		+	+	2	١		İ	T	\dagger	+		T	l
- 1	OPHELINA ACUMINATA	+	1	+		1	+	+	_[`	1	1	+	+	\downarrow		1	1	t	╬		1	Ι	
	TERNAPSIS SCUTATA	ľ	1	╡	7	1	1	7		I	-	+	+		1		ľ	٢	+	+			ľ
	CAPITELLA CAPITATA	_	- 1	+	\prod		†	+		I		+	+	+	l		1	1	t	\downarrow	L		
١	HETEROMASTUS FILIFORMIS	7	o (7	_	8	L	74		407	873	f	25.0	35	85	-	2	132	۴	\ \	169	S	188
	IEDIOMASTUS CALIFORNIENSIS	-	- 1	2	7	ę	2		3		0/0	1	1	L	L	L		1	+		2		
MALDANIDAE	XIOTHELLA CATENATA	\downarrow	1	\dagger	I	1	\dagger	1	1	I		ł	+	1	Ļ	ľ	. L	13	t	ŀ	L		ļ
	LINENELLA IONGORIA	1	ŕ	8	1	•	\dagger	-	7	[\vdash	\vdash	-	Ī	7	7	-	-	2 1		
MALUAMIDAE	AL DANIE OF EDICEY	53	1 2	, 8	1	•	-	-				H	\vdash	1	ľ	L	Ł.	33	7	L			
	DANIEL A COACILIS		1_	+	[4	+	ľ	-			H	\vdash	\vdash	L	L	1	Γ	-	L			H
	DANII CI I DDACTEDINOCA	+	1	\dagger	F	1	l	\perp	3	F		H	-	L	1	9		88	-	L			
	DOAY!!!!DA ODNATA	+	İ	\dagger	F	İ	-	ŀ				H	H	-	1	Ĺ		l	H	Н			
MAI DANIDAE	HODINE I OVENI	-		\vdash	F		+	H	L		-	L	H	H	Ц		4	1		-			١
	AI ATHOWENIA OCULATA	H	İ	=			-	H	Ĺ		1		Н	Ц	Ц			7	1	4			1
	YRIOCHELE HEERI	H		۲				Н	Ц	-		+	+	4				7	1	+			ľ
	OWENIA FUSIFORMIS	H		H			H	Н	Ц			+	+	_1				7	+	+	32		1
	MPHARETE ACUTIFRONS			Н	\Box		-	-				+	-	12 2	15	9	6	=	†	\downarrow	1		ł
	MPHARETE ARCTICA		ш	\dashv			┙		┙	╛		+	+	+	1	_[┙	Ť		4]		1
AMPHARETIDAE A	NOBOTHRUS GRACILIS	30	ਲ	7	3	ี	R	<u>=</u>	3	•	⊼	\dagger	<u>R</u>	+	-	1	?	1	3	\$ }	۱		ı
AMPHARETIDAE A	SABELLIDES OCULATA	\dashv		+	4	1	+	+				+	+	+	٩	4	_	=	\dagger	+	1		١
AMPHARETIDAE M	MELINNA CRISTATA	+	7	+	\downarrow	1	\dagger	+	- -			\dagger	+	 	1	1	I	Ť	\dagger	+	ļ		
TEREBELLIDAE	OLYCIRRUS	+	1	\dagger	\downarrow		\dagger	+	2 5	ľ		+	+	+	ļ	Ļ		T	t	ł	Ļ		1
TEREBELLIDAE	OL TCHREUS EXIMIUS	+	İ	+	I		\dagger	╀	2 "			╁	+	6	L	L		T	H	ŀ	L		
TEREBELLIDAE P	POLYCIPROS MEDUSA	+	İ	\dagger	\downarrow	1	┝	╀	1		Ī	t	+	+	L	L	L	Ī	┝	H	L		
TEREBELLIDAE	DECEL INCO	+	İ	\dagger	ļ		+	+	ļ"	ľ		H	H	\vdash	L	L			H	L			
TENCECLIONE TEICHORPANCHIDAE T	TEREBELLIDES ATI ANTIS	1	F	t	F	٠	7	2	2 140	69	23	F	33	L	L	Ц		П	Н	H	2		li
TRICHOBRANCHIDAE	EREBELLIDES STROEM!	+		\dagger	L		-	L				Н	H	Н	Ц				\exists	+	4		1
SABELLIDAE	CHONE DUNER!	-		H			-	-	Ц		Ш	H	Н	H	4	Ц		F			1		1
SABELLIDAE	UCHONE INCOLOR			2	3 4	Ŧ		2	6 15	8	8	7	8	+	~	9	Ξ	7	2	5	4		
	LAONOME KROEYER!	_		-			1	4	4			1	\dashv	\dashv	=	4]	7	-	$rac{1}{2}$	1		l

Surv	Survey 9303 0 5 mm		r	H		f	553	L	911	T	ſ		ŀ	£		L	1		ľ	1	ŀ	۴	Ŀ	Г
		1	6	-	2 3	ᅱ	_	=	~	~	ᄏ	~	-	-	_		~	<u></u>	Ī	ᅰ	<u></u>	╡	ᅯ	0
SABELLIDAE	PSEUDOPOTAMILLA RENIFORMIS	9	\dagger	+	1	+	+	Ţ	Ţ	\dagger	\dagger	+	+	4	1	1	\downarrow	I	Ī	\dagger	+	+	╁	Т
TUBIFICIDAE			H	H	\prod	H	H	\prod		П	$\dagger \dagger$	H	H	\coprod	Ц	\coprod	ľ			H	Н	Н	╂	
TUBIFICIDAE	TUBIFICIDAE SP.2	,	٤	+	Ţ	+	-	- 6	Ţ	Ť	e	+	- -	4	1	4	1		ā	18	8	+	+	7
TUBIFICEDAE	TUBIFICOIDES PSEUDOGASTER	3	╅	╀	1	╀		┸		Ī	T	╁	╀	Ļ	Ļ	Ļ	1		5	7	3	+	+	Τ
GASTROPODA			H	H	П	H	$oldsymbol{ec{ec{H}}}$	위		目	H	-	Н		Ц		8		F	H	H	Н	H	П
	GASTROPODA SP.1	1	\dagger	+	1	+	+	Ţ	T	1	\dagger	+	+	= =	1	1	1	I	Ţ	\dagger	╁	+	╀	Т
MESOGASTROPODA	7. 5.00		H	\vdash	I	Ш	Ш		П	П	П	Н	Н	Ц	Ц	Ц	Ц			Н	Н	Н	Н	Π
RISSOIDAE	ONOBA PELAGICA POLINICES PALLIDAIS	1	+	H	=	7	20 17	7 40	85	135	7	+	18	\perp	4	13	2	8	7	6	+	+	-	T
STENOGLOSSA			H	H	П	H	\mathbb{H}	П	П	П	H	\mathbb{H}	Н	Ц	Ц	Ц	Ц			Н	Н	Н	Н	П
NEPTUNEIDAE	COLUS PYGMAEUS	•	+	H		\dashv	\dashv	\downarrow			\dagger	+	+	4	4	4	\perp			+	+	+	╁	Т
TIRRIDAE	OFNOPOTA INCISULA	-	\dagger	+	T	6	+	I	T	T	\dagger	╞	+	╀	1	\downarrow	L		T	7	┾	╁	╁	T
TURRIDAE	OENOPOTA PYRAMIDALIS		Н	H	\prod	H	$oxed{\parallel}$		\prod	7	\parallel	H	H	Ц	Ц	Ц	Ц			H	Н	H	Н	П
TURRIDAE	PROPEBELA TURRICULA		\dagger	+	1	+	+	Ţ	1	1	†	+	+	1	1	4	1		Ţ	\dagger	+	+	+	Т
CYLICHNIDAE	CYLICHINA	F	+	\perp	ļ	+	+	e	7	П	П	Н	H	Ľ	2	Ц	Ц	2	П	Н	-	Н	Н	П
CYLICHNIDAE	CYLICHINA ALBA	2	H	H	7	H		6	18	6	H	H	_]					ſ	+	+	+	+	1
ADI ACODHORA	CYLICHINA GOULLA		7	+	İ	1	+	7	•	1	+	<u>+</u>	+	1	1	\downarrow	\perp	Ι	1	1	+	╁	+	I
CHAETODERMATIDA			t	\vdash	L	H	-			Т	T	\vdash	┞	L		Ц				H	Н	Н	Н	П
CHAETODERMATID	CHAETODERMATIDAE CHAETODERMA NITIDULUM	2	Н	Н	Ц	H			П	П	H	H	Н	Ц	Ц				7	+		+	+	ŀ
BIVALVIA		8	+	+	_	e	+	3	•	┪	┪	╅	+	+	5		- -	-	1	┪	+	╪	+	न
NUCULOIDEA	ALICHA ANDRIN ATA	1	\dagger	+	#	\dagger	+	ç	1	5	I.	<u>;</u>	 2	1	1	1	\downarrow	T	1	t	+	╀	╀	T
NUCLI IDAE	NIJCULA DEL PHINODONTA	1	+	+	1		1_	9 2	P	3 5	2 8	┸	27		7	58	27	45	2	┝	┝	-	╀	F
NUCULIDAE	NUCULOMA TENUIS	Ш	7	5 2	Ц	2	6 5	1	П	7	H	2	L	3	Ц	ш	Ш		80	12	7	Н	Н	П
NUCULANIDAE	MEGAYOLDIA THRACIAEFORMIS	_	7	+	၈	+	4				\dagger	+	+	4	1	4	\downarrow		7	7	₹	+	+	Т
NUCULANIDAE NICH ANDAE	VO DIA SABOTII I A	- 0	+	+	•	•	15	,	1	†	,	-	-		1		-	χ	_	37	+	+	+	Т
MYTILOIDA		ட	+	Ц	L	Ш	11		1	П	T	H	H	Ц	Ц		Ш	Ш	П	ш	Н	Н	Н	П
MYTILIDAE	CRENELLA DECUSSATA	5 13	18	H	Ï	\dashv	\dashv		1	\top	\dagger	+	4		_	14	위	15	Ť	\dagger	+	+	+	Т
MYTILIDAE MYTILIDAE	MUSCULUS MIGER	-	╪	+	1	+	\downarrow	1	T	Ť	†	+	+	1	1	\downarrow		ŀ	T	\dagger	+	+	+	Т
MYTILIDAE	MYTILUS EDULIS		+	+	T	+	ig	F		П	H	H	H	Ц	Ц	Ц			П	Н	Н	Н	Н	П
VENEROIDA		ш	Н	Ц	Ц	Ц	Ш	Ц		П	H	Ц	Ц					Ш	ľ	H	H	-	4	
THYASIRIDAE	THYASIRA GOULDII	22	77	12	7	25	35	2	2	•	8	4	=	20	4 0		21/2	7,	•	=	+	╬	e	Т
CARDIDAE	CERASTODERMA PINNULATUM		╅	╀	1	+	╀	Ţ	T	T	+	+	╀				L	7	T	╁	╁	╁	+	Т
SOLENIDAE	ENSIS DIRECTUS		Н	Н	Ц	H	H	Ц	П	П	H	H	Н	Ц	Ц	Ц	Ц	Ш		H	Н	Н	H	П
ARCTICIDAE	ARCTICA ISLANDICA		+	+	1	+	+	6	₽	ē.	†	+	+	╛	1	1	=	°		+	+	2	6	ग
MYINA	PI AK MOKKHUANA		+	+	1	+	+	Ţ	-	7	\dagger	+	+	1	\perp	1		Ι		\dagger	+	╀	+	Т
MYIDAE	MYA ARENARIA	1 2	7	H	Ц	Н	$oldsymbol{ec{ec{H}}}$	\prod	7	뒥	Ħ	2	-	Ц	Ц	Ц		2		Н	뉘	뉘	Н	П
HIATELLIDAE	HIATELLA ARCTICA		+	+		+	4		1	\top	\dagger	+	+	4	1	\downarrow	\perp	7	1	\dagger	+	2	+	Т
PHOLADOMYACEA PERIPLOMATIDAE	PERIPI OMA PAPYRATIUM		\dagger	+	1	13	91	8	2	卞	\dagger	4	1	Ļ	\perp	ļ	<u>ا</u>	-	T	\dagger	+	+	╀	T
SCAPHOPODA			H	H		H	Ш	Ш	\prod	П	H	H	H	Ц	Ц	Ц	Ц			Н	Н	Н	Н	П
DENTALIDA	DENTH HIM ENTALE	4	+	+	*	+	12	Ţ	†	†	†	+	+	1	1	\downarrow	1		T	┪	┿	+	+	T
CRUSTACEA			╁┼	H		$egin{pmatrix} + & & \\ + & & \\ \end{smallmatrix}$	<u> </u>			\sqcap	$\dagger \dagger$	H	₩	\coprod		Ц			\prod	╁	₩	╫	${\mathbb H}$	ТΤ
TANDOODINAL I	I AUDOODS OUTSOODS ICATA	1	t	+	İ	\dagger	+	ļ	T	Ť	t	+	ļ	1	ļ	\downarrow			T	t	ł	╀	-	T
LEUCONIDAE	EUDORELLA HIRSUTA		t	╀	L	+	-		T	T	t	+	H	L	L	Ļ				H	H	Н	H	П
LEUCONIDAE	EUDORELLA PUSILLA	Ц	7	-		2	8	8 7	9	7	7	7	<u></u>			Ц	2		2	3	8	+	+	Т
LEUCONIDAE	LEUCON ACUTIROSTRIS	3	\dagger	e	1	+		ļ	✝	\dagger	†	+	+	1	1	1			=	╬	7	+	+	T
DIASTYLIDAE	DIASTYLIS QUADRISPINOSA		+	+	T	+	+		T	┢	t	+	H	Ľ	1	L			Ħ	H	H	H	H	П
DIASTYLIDAE	DIASTYLIS SCULPTA		Н	H	Ħ	H	Н	Ц	Ħ		H	H	Н	Ц		Ц			H	H	\dashv	Н	+	6
DIASTYLIDAE	LEPTOSTYLIS LONGIMANA		\dashv	\dashv		+	=		2	7	1	+	-		_				1	=	\dashv	$\frac{1}{2}$	4	7

Survey	Survey 9303 0.5 mm	Ľ	Ļ	L	H	H	Ħ.	1.		FF6	F	F.	1		H3	H		9	L	E.	L.		FF12	Г
1	Taxon	=	2		ন	뤼	<u>-1</u>	7	╡	7	-	1	"	7	7	*	┥	7	-	7	2	1	7	7
CAMPYLASPIDAE	CAMPYLASPIS RUBICUNDA	\dagger	+	1	1	+	\downarrow		+	+	+	-	I	T	\dagger	t	t	╀	╀	\perp	I		T	Τ
I	TANAISSUS PSAMMOPHILUS	7	╁┤	Ц	╽	H	\prod		H	H	H	\coprod			H	H	H	╫	$oldsymbol{H}$	H	\prod			П
ANTHURIDEA	DTII ANTLI IDA TENI IIS	\pm	+	1	\pm	+	1	1	+	+	+	+	I	\dagger	+	┾	ا	1	8	1		Í	\dagger	Τ
VALVIFERA			arpropto	Ц	\prod	H	\prod		H	H	H	Ц		Ħ	H		ш	<u>! </u>	H	Н	ľ			Π
IDOTEIDAE	EDOTEA MONTOSA	\pm	+		1	+	7	1	+	+	+	-		7	+	4	1	=	2	\downarrow			1	Τ
ASELLOTA	ELOTER TRICORA	\mathbf{T}	\mathbb{H}	Ц		H	\prod		H	H	H	H		Ħ	$\dagger \dagger$	H	H	H	${f H}$	\coprod	\prod		1	П
MUNNIDAE			Н	Ц		\dashv			+	+	+	4		1	=	+	\dagger	+	+	4	1		1	T
PARAMUNNIDAE	PLEUROGONIUM INERME	+	+		\perp	+	776	İ	+	+	+	+		\dagger	†	\dagger	┝	+	╀	\downarrow	I		T	T
PARAMONNIDAE	PLEUROGONIUM ROBICONDOM	\dagger	+	\perp		+	7	T	+	╀	+	1		1	4	Ħ	+	H	Н	Н			Ħ	П
AMPHIPODA		Н	H	Ц	-	H	5	7	ᅱ	-	뉘	5		2	H	2	-	H	Н	\sqcup	\prod		=	7
GAMMARIDEA		\parallel	\dashv	\perp		+	\prod		+	+	+	4		†	+	\dagger	+	+	+	4	Ţ		Ť	Ţ
AMPELISCIDAE	AMPELISCA ABOITA	1	+	\perp	1	+			+	+	+	+		1	-	×	\dagger	+	+	+	I		T	Ţ
AMPELISCIDAE	DVR IS CAMADO	$\frac{1}{2}$	Ŧ	1	1	╁	ľ	┸	+	+	+	+		1	+	╡	+	╀	+	-	Ĺ		T	
AMPELISCIDAE	HAPLOOPS TUBICOLA	L	+	٣	-	-	8	7	\vdash	-	\vdash	F		2	F	1	F	Н	9	6			П	П
AORIDAE	LEPTOCHEIRUS PINGUIS	H	Н	Ц		H	Ц		H	Н	Н	Ц		7	6	\dashv	+	\dashv	\dashv	4	\int		1	T
ARGISSIDAE	ARGISSA HAMATIPES		Н	Ц		\dashv	-		+	+	+	4		1	+	+	7	╬	+	+	$oxed{I}$		7	T
EUSIRIDAE	PONTOGENEIA INERMIS	1	+		1	+	-	Ţ	+	+	+	-	ľ	†	┪	\dagger	╬	+	+	+	F		ŀ	,
ISAEIDAE	PHOTIS POLLEX	1	+		1	+	1	Ī	+	+	+	+		Ť	+	t	-	┝	+	\downarrow	I			1
INCHARACTIONE	ANONYY II JEBOBS!	\dagger	+		İ	+	-		-	F-	-	1 2	9	T	t	H	3	+	\vdash	-	F			
LYSIANASSIDAE	HIPPOMEDON SERRATUS	T	-	1	İ	H	2		╁	+	+	L	L		T	H	H	\vdash	4	Ц			П	
LYSIANASSIDAE	ORCHOMENELLA	l	-	L		H			F	H	Н	Н		П	Н	Н	Н	Н	Н	Н	Ц		П	
LYSIANASSIDAE	ORCHOMENELLA MINUTA	H	Н	Ц		H	3		H	H	\dashv	\sqcup		7	8	\dashv	+	\dashv	+	┙	\int		1	1
OEDICEROTIDAE		1	4			4	\int	1	+	+	+	<u>۳</u>		7	+	+	┥	+	+	2 2		1	1	T
OEDICEROTIDAE	MONOCULODES EDWARDS/	ļ	+	ľ	ŀ	1	- 0	ţ	╬	╬		4	T	5	٩	4	╬	-	+	ď	·		Ť	T
PHOXOCEPHALIDAE	PAKHINIA PROHINGOA	1	+	1	1	+	6	┸	-	╬	1	+	I	2	+	╅	+	╀	+	L			T	Τ
Ų	STENOPI FUSTES INFRMIS	1	+	\perp	İ	+	ļ		+	+	H	Ļ			t	6	+	H	Н	H			П	
PODOCERIDAE	DYOPEDOS MONOCANTHA	\vdash	H	Ц		Н			Н	Ш	Ш	Ц		F	~	H	H	Н	7	Ц	Ц		1	Ī
HOIDAE	METOPELLA ANGUSTA	\forall	Н	Ц		H	8	၈	2	8	7	13	၉	7	₹	6	e	7	+	4	\int	Ī	†	7
	011000000000000000000000000000000000000	1	+	\perp	1	+	1		+	+	+	\downarrow	Ţ	Ţ	\dagger	†	+	╪	+	+	I		Ť	I
CAPRELLIDAE	MAYERFI I A I MICOLA	†	+	\downarrow	†	+		İ	\dagger	+	+	+	I	1	\dagger	+	+	╁	+	+			П	
DECAPODA			H	Ц		H			H	H	Н	Ц			$ \cdot $	H	H	Н	H	Н				٦
ANOMURA		H	Н	Ц		Н	Ц		H	\dashv	\dashv	4	\prod	+	1	\dagger	+	+	+	4	_		1	T
AXIIDAE	AUXIUS SERRATUS	\pm	4	\perp	1	+	\int	ľ	+	+	+	+		1	\dagger	\dagger	+	╪	+	,	ſ		Ť	I
SIPUNCULOIDEA	SIPUNCULA MEDIASOMA DIABUANES	$\frac{1}{2}$	+	\perp	1	+	\int	1	t	+	+	+	I	T	\dagger	\dagger	\dagger	+	+	L	L		T	Ī
GOLFINGIIDAE	PHASCOLION STROMBI		F			2	\prod	F	H	Н	H	\sqcup	\prod	9	$\dagger \dagger$	6	H	H	H	\coprod	П		П	
PRIAPULIDA PRIAPULIDA	PRIADII US CAUDATUS	\pm	+		\perp	+	\int	İ	2		8	\downarrow	\prod	T	\dagger	\dagger	+	+	╁	+	\prod		T	П
PHORONIDA		\vdash	╀	L		\vdash	L		+	H	\vdash	H		Ħ	H	Н	Н	Н	Н	Н			П	
PHORONIDAE	PHORONIS ARCHITECTA	\prod	H	Ц		${\mathbb H}$	\prod		7	\dashv	4	$\!$		-	\dagger	+	7	-		+	$oldsymbol{\perp}$	9	•	₹
CHINODERMAIA		\dagger	+	1	1	+	$oxed{I}$	İ	\dagger	+	╀	\downarrow		T	\dagger	\dagger	+	+	+	\perp	L		T	Γ
PORCELLANASTERID	A CTENODISCUS CRISPATUS	F	\mathbb{H}	Ц		H	-		Н	H	H	\coprod			H	H	H	H	H	H	П		П	П
LEPTOGNATHINA		H	Н	Ц		${f H}$	Ц		H	+	4	\perp	\prod	1	7	+	+	+	+	\downarrow	I		1	T
ECHINASTERIDAE	HENRICIA SANGUINOLENTA	٠	+	\perp	\pm	+	1		\dagger	┽	╬	+	I	1	\dagger	\dagger	\dagger	-	-	\downarrow	\prod	80	T	Ī
CHILDENICA		+	+	1	T	+	1		\dagger	+	+	L	Γ	1	H	H	H	H	H	\mathbb{H}	П		П	П
OPHIOLEPIDIDAE	OPHIURA ROBUSTA	\prod	1			H	7		0	15	9	12 10			+	十	\dashv	+	+	+	3		Ť	Ţ
SCUTELLINA	ECHINARACHNIUS PARMA	1	+	L		+	\perp		+	┾	+	+		T	T	\dagger	H	H	H	Н	Ц		Ħ	П
HOLOTHUROIDEA	1 1	\prod	H	Ц		H	\prod		Н	H	Н	ert		Ŧ	H	\forall	\dagger	+	+	+	\int		T	T
JROCHORDATA		\pm	+		1	+	$\frac{1}{1}$		\dagger	+	+	+	I	1	\dagger	+	+	+	+	+	1		1	T
STOLIDOBRANCHIA	SOSTOLOBOANCHIS ON III ADIS	$\frac{1}{2}$	+	1	1	+	\perp		+	+	+	+	F	T	†	t	\dagger	+	+	+			T	Τ
MOLGOLIDAE	BOSTACHOBRANCHOS FILGLARIS	1	$\frac{1}{2}$		1	\mathbf{I}	-		1	-	1	1	1	1	1	1	1	ł	1	1		1	1	

Servey 9505 C.U min	mm	7	FF13	3	1	2	
		П		П		П	
HYDROZOA		T		T	I	T	
	ACTINIARIA SP.2	٦	2	Г		П	$ \ $
ATHENARIA FDWARDSIIDAE EDW	EDWARDSIA ELEGANS	2	3	-			
					7	5	٦
	NEMERTEA SP.2 NEMERTEA SP.4					П	11
	1				1	1	1
W W	CARINOMELLA LACTEA TUBULANUS PELLUCIDUS		\prod		•	1	ן דו
	01220110111110		ſ			T	
	CEREBRA JOLOS LACTEOS MICRIRA	G	100	8	1	6	7
						П	Ш
AMPHIPORIDAE AMP	AMPHIPORUS ANGULATUS				•	T	1
	ASIEMMA VIIIAIOM					П	
YCHAETA						ľ	ľ
	BYLGIDES GROENLANDICUS				90 (6	
	O TORELLI	•			"	7	
POLYNOIDAE GAL	HARMOTHOINAE						Ш
	AICE.					٦	
	LAONICE CIRRATA	ľ					
POLYNOIDAE POL	POLYDORA CAULLERYI	1		6		l	
	DORA QUADRIL OBATA	7		-			
	POLYDORA SOCIALIS		٦				
	PRIONOSPIO CIRRIFERA	١	ľ		8	•	٩
POLYNOIDAE PRIC	WOSPIO STEENSTRUP	₹	L	2	8		
	SPIO LIMICOLA	-		•	237	288	152
	THULINI		-	ľ			
	PHANES BOMBYX	7	=	8	•		
	PHANES KROEYER	1					
	AMPHINOME JEFFREYS!		L			1	
	ONE LONGA	1		X	-	3	
	MYSTIDES BOREALIS						
ı	ANAITIS SPECIOSA						
PHYLLODOCIDAE PHY	LODOCE MACINATA	က	\perp	L	L		
	LODOCE MUCOSA	27	12	76			
П	MICROPHTHAL MUS SCZELKOWII			7			
1	STROSYLLIS GROENLANDICA		_				\perp
	EXOCOVE REBES	L	\perp				L
SYLLIDAE	GONE VERUGERA			L			
	AEROSYLLIS LONGICAUDA	Ц	Ц				
	SYLLIDES JAPONICA		1			ľ	Ţ
	IDES LONGOCIRRATA					1	
SYLLIDAE	DSYLLIS SP.1		1			1	\perp
	NEANTHES VIRENS	Ц	Ц	Ц	Ц		Ц
	NEREIS GRAYI						Ĺ
	AGLAOPHAMUS CIRCINATA		7		1		\perp
	HITS CILIATA	L	\perp				L
1	HTYS INCISA		Ц		Ц	-	Ц
NEPHTYIDAE NEP	NEPHTYS NEOTENA	10		130			
	AERODOROPSIS MINUTA		_	_			_

Survey 9	Survey 9303 0.5 mm Taxon		٤٣	3	Ŧ	7	η
П	GONIADA MACULATA		Ţ			Γ	``
LUMBRINERIDAE	ABYSSONINGE WINSNESAE		П			П	П
	NINOE NIGRIPES	7	8	5	4	위	٦
LUMBRINERIDAE	SCOLETOWA FRAGILIS	٩	3	37		Γ	
	PAROUGIA CAECA		П	П	Ŧ	6	$ \cdot $
	LEITOSCOLOPI OS	9	8	7.0	\$	16	18
ORBINIDAE	SCOLOPLOS ARMIGER	3	2 2	7	77	1	۱
	ARICIDEA CATHERINAE	ន	g	172		П	H
PARAONIDAE	ARICIDEA MINUTA		Ţ		•	į	1
ONIDAE	ARICIDEA QUADRIL OBATA	I	Τ		5 6	\$ 8	2 3
CONDAE	ADISTORDANCING THE BEDGE		Π	Ī	•		1
HOCHAFTIDAE	TROCHOCHAETA	F	7		Γ	Π	
HOCHAETIDAE	TROCHOCHAETA CARICA		П			7	
TROCHOCHAETIDAE	TROCHOCHAETA MULTISETOSA	7	\prod	7	7	7	1
ATULIDAE	ACUTE OCUACITA MADIONII	I	T		•	1	
CIRRATULIDAE	APHELOCHAETA MONII ARIS				7	2	9
	CHAETOZONE SETOSA						
	CHAETOZONE SP.A			П	8	83	125
CIRRATULIDAE	MONTICELLINA BAPTISTE					T	1
	MONTICELLINA DORSOBRANCHIALIS	1	3	900		T	1
•	THARYX ACUTUS	77	102	3	Ş	15	۴
- 1	DDADA WILDSA		Γ	T		1	١
1	DIPI OCIRRUS HIRSUTUS						
BELLIGERIDAE	PHERUSA	1	13	18		П	
BELLIGERIDAE	PHERUSA AFFINIS				ľ	,	
ALIBREGMIDAE	SCALIBREGMA INFLATUM			I	1	2	
OPHELHDAE	CHELINA ACUMINATA				\$	32	15
TELL LANE	CAPITELLA CAPITATA	1	8	9			
MELLIDAE	HETEROMASTUS FILIFORMIS						
CAPITELLIDAE	MEDIOMASTUS CALIFORNIENSIS	98	128	8	14	14	18
DANIDAE	AXIOTHELLA CATENATA						1
DANIDAE	CLYMENELLA TORQUATA				1	٩	ľ
DANIDAE	EUCLYMENINAE				۰	1	ľ
DANIDAE	MALDANE GLEBIFEX				٥	-	1_
DANIDAG	DOAY!! I E! A DOAFTEDWISSA						L
MALDANIDAE	PRAXILLIRA ORNATA						
DANIDAE	RHODINE LOVEN!						
ENIIDAE	GALATHOWENIA OCULATA			1		٦	
OWENIIDAE	MYRIOCHELE HEERI					1	
ENIIDAE	OWENIA FUSIFORMIS					7	
AMPHARETIDAE	AMPHARE LE ACUTIFICANS		Į				
DUADETIDAE	ANDROTHRIS GRACIIIS				80	2	Ĺ
HARETIDAE	ASABELLIDES OCULATA						
AMPHARETIDAE	MELINNA CRISTATA						Ц
EBELLIDAE	POLYCIRRUS	٦	Ī		-		
TEREBELLIDAE	POLYCIRRUS EXIMIUS	\perp			I		1
EBELLIDAE	POLYCIRRUS MEDUSA				I		1
EBELLIDAE	PROCLEA GRAFFII	1			I		Ĺ
LUCEDANCHINAE	T.	\perp					
TRICHOBRANCHIDAE	TEREBELLIDES STROEM!	L			-	-	
SABELLIDAE	1	Ц				1	
SABELLIDAE	EUCHONE INCOLOR				_	7	
LYCI		_					

Surve	Survey 9303 0.5 mm	1-		L	FF14	•
SABELLIDAE	PSEUDOPOTAMILLA RENIFORMIS	H	Ш			\prod
TUBIFICINA		+	\downarrow			
TUBIFICIDAE	TUBIFICIDAE SP.2		Ц			
TUBIFICIDAE	TUBIFICOIDES APECTINATUS		-	R	52	9
GASTROPODA	TUBILICOIDES PSEUIXOSASTER	ł	\perp			
	GASTROPODA SP.1		Ц	Ц		
MESOCASTBODODA	GASTROPODA SP.2	+	\perp			
RESCHARE	ONOBA PELAGICA	H	Ļ	8		3
NATICIDAE	POLINICES PALLIDUS	H	Ц			
STENOGLOSSA		-		j		
NEPTUNEIDAE	COLUS PYGMAEUS	+	\downarrow			T
TOXOGLOSSA	OCMODOTA MOISINA	+	ļ			I
TIBRIDAE	OFNOPOTA PVRAMIDALIS	ł	L			
TURRIDAE	PROPEBELA TURRICULA		Ц			
CEPHALASPIDEA						
CYLICHNIDAE	CYLICHINA		1			
CYLICHNIDAE	CYLICHNA ALBA	$\frac{1}{1}$	1		6	1
API ACOPHORA		-	L			
CHAETODERMATIDA			Ц	Ц		
CHAETODERMATIDAE	CHAETODERMA NITIDULUM				Ì	٦
BIVALVIA		+	_			
NUCUL OIDEA	A 11.011 A 44.011 A TA	+	1	1		l
NOCOLIDAE	MUCULA ANNOLATA	$\frac{1}{1}$	ļ	5	8	1
NUCULIDAE	NUCULOMA TENUIS	L	Ļ	_		8
NUCULANIDAE	MEGAYOLDIA THRACIAEFORMIS		Ц		8	3
NUCULANIDAE	NUCULANA PERNULA	+	1	Ĺ	Ĭ	ľ
NUCULANIDAE	YOLDIA SAPOTILLA	†	1	*	*	1
MY IIIOUN MYTII INAE	CREMELLA DECLISSATA	ł	L	L		
MYTILIDAE	MUSCULUS NIGER	-	Ľ			
MYTILIDAE	MYTILUS		Ц			
MYTILIDAE	MYTILUS EDULIS	7				
VENEROIDA	10 100 100 100	$\frac{1}{1}$	1	,	ř	75
IHYASIRIDAE	ACTABLE INDATA	$\frac{1}{1}$	_	3		\$
CARDIDAE	CERASTODERMA PINNULATUM	"	Ļ			
SOLENIDAE	ENSIS DIRECTUS	[]	2	Ц		
ARCTICIDAE	ARCTICA ISLANDICA	7	4			
	PITAR MORRHUANA	+	1			
MYINA	MYA ARENARIA	╁	\perp	Į,		
HIATELLIDAE	HIATELLA ARCTICA	4	5		Ц	
PHOLADOMYACEA	11 11 11 11 11 11 11 11 11 11 11 11 11	+				1
PEKIPLOMATIDAE	THE LOW PATTER TOWN	╀	1			
DENTALIDA			L			
DENTALIDAE	DENTULIUM ENTALE				=	
CRUSTACEA		+	1			
LAMPROPIDAE	LAMPROPS QUADRIPLICATA	-	L			
LEUCONIDAE	EUDORELLA HIRSUTA	$\frac{1}{1}$	Ц		2	
LEUCONIDAE	EUDORELLA PUSILLA	+	1		ľ	
LEUCONIDAE DIASTAI IDAE	DIASTVI IS ARREVIATA	+	\perp		١	
DIASTYLIDAE	DIASTYLIS QUADRISPINOSA	Н	Ц	Ц		
DIASTYLIDAE	DIASTYLIS SCULPTA	-				
DIASTYLIDAE	LEPTOSTYLIS LONGIMANA	-	4	_	╛	

Min 5.0 5.058 vervey		FF 13		PE44	Γ
Ê		1	2 3	1 2	e
MPYLASPIDAE	CAMPYLASPIS RUBICUNDA	+	\downarrow		
پر	TANAISSUS PSAMMOPHILUS		\vdash		
		H			
	PTILANTHURA TENUIS	+			T
	MONTOSA	80	10		
IDOTEIDAE	EDOTEA TRILOBA	Ш	Ш		
ASELLOTA		$\frac{1}{1}$			
	SONII IN INFRME	+	_		I
PARAMUNNIDAE PLEUROC	PLEUROGONIUM RUBICUNDUM			7	
	SONIUM SPINOSISSIMUM	-	ľ		\int
AMPHIPODA		1	7		I
	AMPELISCA ABOITA	-	1		
	AMPELISCA MACROCEPHALA		Ц		
	AIMARDI	+		ľ	
AMPELISCIDAE HAPLOOF	HAPLOOPS TUBICOLA	+		2 3	Ι
	HAMATIPES	7	3		Ι
EUSIRIDAE PONTOGI	ENEIA INERMIS	-			
	OLLEX	-	1 6		
اسِ	ISCHYROCERUS ANGUIPES	+			T
	CILLJEBORGI	+			
1	ORCHOMENELLA				
1 1	ENELLA MINUTA	+			
	TO CONTRACTOR	-	_	-	
DEDICERO IDAE MONCKO	MONOCULODES EDWARDSI HARPINIA PROPINGUA	1		1	I
	EPHALUS HOLBOLLI				
	EUSTES INERMIS	+			
PODOCERIDAE DYOPED	DYOPEDOS MONOCANTHA	+	,		
	A WOODIN	H			
TLIDAE	AEGININA LONGICORNIS	+		-	Ţ
	בי בושויסכבי	+			
		$ \cdot $	Ц		
AXIIDAE AUXIUS S	AUXIUS SERRATUS	+		•	I
DAF	OMA DIAPHANES				Ι
DAE	PHASCOLION STROMBI		\prod	1	
PRIAPULIDAE	PRIAPULUS CAUDATUS	+			
		+	ľ		
SONIDAE	PHORONIS ARCHITECTA	+	2		
CRIBELLINA		Н	Ц		
PORCELLANASTERIDA CTENODISCUS CRISPATUS	SCUS CRISPATUS	+	1	-	
STERIDAE	HENRICIA SANGUINOLENTA				
			1		
CHILOPHIURINA OBLICI EDIDIAE ODALI IRA	COUNTRY BORUSTA	+	1	6.	I
1	LI COCOLU	H	L	ì	
HINARACHNIIDAE ROIDEA	ECHINARACHNIUS PARMA		_		
UROCHORDATA		H	Ц		
1	BOSTRICHOBBANCHUS PILUI ARIS	+	1	1	

APPENDIX A-5: TAXA IDENTIFIED TO SPECIES LEVEL

CNIDARIA	Family Cerianthidae	Ceriantheopsis americana
		Actiniaria sp. 2
		Actiniaria sp. 6
	Family Edwardsiidae	Edwardsia elegans
TURBELLARIA		Turbellaria sp. 1
NEMERTEA		Nemertea sp. 2
112112111211		Nemertea sp. 3
		Nemertea sp. 4
	Family Tubulanidae	Tubulanus pellucidus
" .	Turny I double during the	Carinomella lactea
	Family Lineidae	Cerebratulus lacteus
	Family Amphiporidae	Amphiporus angulatus
	Family Tetrastemmatidae	Tetrastemma vittatum
POLYCHAETA	Family Polynoidae	Gattyana cirrosa
TOBTCIEBIN	Turning Torynordae	Enipo torelli
	· -	Bylgides groenlandicus
	Family Sigalionidae	Pholoe minuta
	Family Amphinomidae	Paramphinome jeffreysii
	Family Phyllodocidae	Phyllodoce mucosa
	I aminy 1 hymodocidae	Phyllodoce maculata
·		Eteone longa
		Eulalia viridis
		Mystides borealis
		Paranaitis speciosa
	Family Harianidas	Phyllodoce arenae
	Family Hesionidae	Microphthalmus sczelkowii
	Family Pilargidae	Ancistrosyllis groenlandica
	Family Syllidae	Typosyllis sp. 1
		Exogone verugera
		Exogone hebes
		Exogone longicirrus
		Sphaerosyllis brevifrons
		Sphaerosyllis longicauda
		Syllides japonica
		Syllides longocirrata
	Family Nereidae	Neanthes virens
		Nereis grayi
	Family Nephtyidae	Nephtys neotena
		Nephtys ciliata
		Nephtys caeca
- · · · · · · · · · · · · · · · · · · ·		Nephtys incisa
		Aglaophamus circinata
	Family Sphaerodoridae	Sphaerodoropsis minuta
	Family Glyceridae	Glycera capitata
	Family Goniadidae	Goniada maculata
	Family Lumbrineridae	Abyssoninoe winsnesae
		Scoletoma fragilis
		Scoletoma hebes
		Ninoe nigripes
	Family Arabellidae	Drilonereis filum
	Family Dorvilleidae	Dorvillea sociabilis
		Parougia caeca
	Family Orbiniidae	Scoloplos armiger
		Leitoscoloplos acutus

······································		Leitoscoloplos sp. B
	Family Paranidas	· · · · · · · · · · · · · · · · · · ·
	Family Paraonidae	Aricidea quadrilobata Aricidea minuta
	 	
		Levinsenia gracilis Aricidea catherinae
	Family Amintahanahidaa	
	Family Apistobranchidae	Apistobranchus tullbergi
	Family Spionidae	Spionidae sp. 1
	 	Laonice cirrata
	Family Polynoidae	Polydora cornuta
	Family Spionidae	Polydora socialis
	· · · · · · · · · · · · · · · · · · ·	Polydora caulleryi
	·	Polydora quadrilobata
		Prionospio steenstrupi
		Spio thulini
	<u> </u>	Spio filicornis
		Spio limicola
		Spiophanes bombyx
		Spiophanes kroeyeri
		Pygospio elegans
		Streblospio benedicti
		Prionospio cirrifera
	Family Trochochaetidae	Trochochaeta carica
	<u> </u>	Trochochaeta multisetosa
	Family Cirratulidae	Cirratulus cirratus
		Aphelochaeta sp. A
		Monticellina baptiste
	.]	Aphelochaeta monilaris
		Tharyx acutus
		Aphelochaeta marioni
		Monticellina dorsobranchialis
		Chaetozone sp. A
		Chaetozone setosa
	Family Cossuridae	Cossura longocirrata
	Family Flabelligeridae	Brada villosa
		Pherusa affinis
		Diplocirrus hirsutus
	Family Scalibregmidae	Scalibregma inflatum
	Family Opheliidae	Ophelina acuminata
	Family Sternaspidae	Sternapsis scutata
	Family Capitellidae	Capitella capitata
		Heteromastus filiformis
		Mediomastus californiensis
	Family Maldanidae	Clymenella torquata
<u> </u>	_ ammij wandanidac	Maldane glebifex
	 	Axiothella catenata
-	 	Praxillella gracilis
	 	Praxillella praetermissa
		Rhodine loveni
		Euclymene collaris
		
		Clymenura sp. A
	Formilla Committee	Praxillura ornata
	Family Oweniidae	Owenia fusiformis
		Myriochele heeri
	<u></u>	Galathowenia oculata

	Transle Americanida	De stinenia manulata
	Family Amphictenidae	Pectinaria granulata
	Family Ampharetidae	Ampharete arctica
		Ampharete acutifrons
		Melinna cristata
		Anobothrus gracilis
		Asabellides oculata
	Family Terebellidae	Polycirrus medusa
		Polycirrus eximius
		Proclea graffii
	Family Trichobranchidae	Terebellides atlantis
	T1 C-1-1111-	Terebellides stroemii
	Family Sabellidae	Chone duneri
·- · · · · · · · · · · · · · · · · · ·		Euchone incolor
		Euchone elegans
		Pseudopotamilla reniformis
		Laonome kroeyeri
ANNELIDA	Family Polygordiidae	Polygordius sp. A
	Family Enchytraeidae	Enchytraeidae sp. 3
	Family Tubificidae	Tubificidae sp. 2
		Tubificoides pseudogaster
		Tubificoides apectinatus
GASTROPODA		Gastropoda sp. 1
		Gastropoda sp. 2
		Gastropoda sp. A
	Family Rissoidae	Onoba pelagica
	Family Naticidae	Polinices pallidus
	Family Neptuneidae	Colus pygmaeus
	Family Turridae	Oenopota pyramidalis
		Oenopota incisula
		Propebela turricula
	Family Cylichnidae	Cylichna alba
		Cylichna gouldi
APLACOPHORA_	Family Chaetodermatidae	Chaetoderma nitidulum
BIVALVIA	Family Nuculidae	Nuculoma tenuis
		Nucula annulata
		Nucula delphinodonta
	Family Nuculanidae	Nuculana pernula
		Megayoldia thraciaeformis
		Yoldia sapotilla
	Family Mytilidae	Mytilus edulis
		Crenella decussata
		Crenella glandula
		Musculus niger
	Family Thyasiridae	Thyasira gouldii
	Family Carditidae	Cyclocardia borealis
·	Family Astartidae	Astarte undata
	Family Cardiidae	Cerastoderma pinnulatum
	Family Solenidae	Ensis directus
 		Macoma balthica
	Family Tellinidae	mucoma vannica
	Family Tellinidae Family Arcticidae	
	Family Arcticidae	Arctica islandica
	Family Arcticidae Family Veneridae	Arctica islandica Pitar morrhuana
	Family Arcticidae	Arctica islandica

	Family Periplomatidae	Periploma papyratium					
SCAPHOPODA	Family Dentaliidae	Dentulium entale					
CRUSTACEA	Family Lampropidae	Lamprops quadriplicata					
	Family Leuconidae	Leucon acutirostris					
		Eudorella hirsuta					
		Eudorella pusilla					
		Eudorellopsis deformis					
	Family Diastylidae	Diastylis quadrispinosa					
		Diastylis sculpta					
		Diastylis abbreviata					
		Leptostylis longimana					
	Family Campylaspidae	Campylaspis sp. 1					
		Campylaspis rubicunda					
	Family Paratanaidae	Tanaissus psammophilus					
	Family Anthuridae	Ptilanthura tenuis					
	Family Cirolanidae	Cirolana polita					
	Family Idoteidae	Edotea montosa					
	Tanniy Idoleidae	Edotea triloba					
	Family Chaetiliidae	Chiridotea tuftsi					
	Family Paramunnidae	Pleurogonium spinosissimum					
	Taliniy Faraniumidae	Pleurogonium rubicundum					
		Pleurogonium inerme					
							
 	Esmila Amaslicaides	Amphipoda sp. 1					
	Family Ampeliscidae	Ampelisca macrocephala					
		Ampelisca abdita					
		Byblis gaimardi					
	- 	Haploops tubicola					
	Family Aoridae	Leptocheirus pinguis					
	Family Argissidae	Argissa hamatipes					
	Family Corophiidae	Corophium crassicorne					
		Erichthonius rubricornis					
		Unciola inermis					
·····		Unciola irrorata					
		Pseudunciola obliquua					
<u></u>	Family Eusiridae	Pontogeneia inermis					
	Family Haustoriidae	Acanthohaustorius millsi					
	Family Isaeidae	Photis pollex					
	Family Ischyroceridae	Ischyrocerus anguipes					
	Family Lysianassidae	Anonyx lilljeborgi					
		Hippomedon serratus					
		Orchomenella minuta					
	Family Oedicerotidae	Oedicerotidae sp. 2					
		Oedicerotidae sp. A					
		Monoculodes edwardsi					
	Family Phoxocephalidae	Harpinia propingua					
•		Phoxocephalus holbolli					
		Rhepoxynius hudsoni					
***	Family Pleustidae	Stenopleustes inermis					
	Family Podoceridae	Dyopedos monocantha					
	Family Stenothoidae	Metopella angusta					
	Family Caprellidae	Mayerella limicola					
	anniy Capicilluae	Aeginina longicornis					
	Family Axiidae	Auxius serratus					

SIPUNCULOIDEA	Family Golfingiidae	Nephasoma diaphanes
		Phascolion strombi
PRIAPULIDA	Family Priapulidae	Priapulus caudatus
PHORONIDA	Family Phoronidae	Phoronis architecta
ECHINODERMATA	Family Porcellanasteridae	Ctenodiscus crispatus
	Family Echinasteridae	Henricia sanguinolenta
	Family Ophiolepididae	Ophiura robusta
	Family Echinarachniidae	Echinarachnius parma
UROCHORDATA	Family Molgulidae	Bostrichobranchus pilularis

APPENDIX B: SEDIMENT CHEMISTRY DATA

PAH/LAB Spreads	sheet	PCB/Pesticide Spr	
Column	Full Analyte Name	Column	Full Analyte Name
naphthalene	naphthalene	CL2(08)	CL2(08)
C1-naphthal	C1-naphthalenes	HEXACHLOROB	HEXACHLOROBENZENE
C2-naphthal	C2-naphthalenes	LINDANE	LINDANE
C3-naphthal	C3-naphthalenes	CL3(18)	CL3(18)
C4-naphthal	C4-naphthalenes	CL3(28)	CL3(28)
biphenyl	biphenyl	HEPTACHLOR	HEPTACHLOR
acenaphthyl	acenaphthylene	CL4(52)	CL4(52)
acenaphthen	acenaphthene	ALDRIN	ALDRIN
dibenzofura	dibenzofuran	CL4(44)	CL4(44)
fluorene	fluorene	HEPTACHLORE	HEPTACHLOREPOXIDE
C1-fluorene	C1-fluorenes	CL4(66)	CL4(66)
	C2-fluorenes	2,4-DDE	2,4-DDE
C2-fluorene	C3-fluorenes	CL5(101)	CL5(101)
C3-fluorene	anthracene	CIS-CHLORDA	CIS-CHLORDANE
anthracene	C1-phenanthrenes/anthracenes	TRANS-NONAC	TRANS-NONACHLOR
C1-phenanth	C2-phenanthrenes/anthracenes	DIELDRIN	DIELDRIN
C2-phenanth	C3-phenanthrenes/anthracenes	4,4-DDE	4,4-DDE
C3-phenanth		CL4(77)	CL4(77)
C4-phenanth	C4-phenanthrenes/anthracenes	2,4-DDD	2,4-DDD
dibenzothio	dibenzothiophene	ENDRIN	ENDRIN
C1-dibenzot	C1-dibenzothiophenes	CL5(118)	CL5(118)
C2-dibenzot	C2-dibenzothiophenes	4,4-DDD	4,4-DDD
C3-dibenzot	C3-dibenzothiophenes		2,4-DDT
fluoranthen	fluoranthene	2,4-DDT	CL6(153)
pyrene	pyrene	CL6(153)	CL5(105)
C1-fluorant	C1-fluoranthenes/pyrenes	CL5(105)	4,4-DDT
benz[a]anth			
chrysene	chrysene	CL6(138)	CL6(138)
C1-chrysene	C1-chrysenes	CL5(126)	CL5(126)
C2-chrysene	C2-chrysenes	CL7(187)	CL7(187)
C3-chrysene	C3-chrysenes	CL6(128)	CL6(128)
C4-chrysene	C4-chrysenes	CL7(180)	CL7(180)
benzo[b]flu	benzo[b]fluoranthene	MIREX	MIREX
benzo[k]flu	benzo[k]fluoranthene	CL7(170)	CL7(170)
benzo[e]pyr	benzo[e]pyrene	CL8(195)	CL8(195)
benzo[a]pyr	benzo[a]pyrene	CL9(206)	CL9(206)
perylene	perylene	CL10(209)	CL10(209)
indeno[1,2,	indeno[1,2,3-c,d]pyrene	DBOFB	DBOFB
dibenz[a,h]	dibenz[a,h]anthracene	CL5(112)	CL5(112)
benzo[g,h,i	benzo[g,h,i]perylene		
phenyl deca	phenyl decanes		
phenyl unde	phenyl undecanes		
phenyl dode	phenyl dodecanes		
phenyl trid	phenyl tridecanes		
phenyl tetr	phenyl tetradecanes		
naphthalene	naphthalene-d8		
acenaphthen	acenaphthene-d10		
benzo[a]pyr	benzo[a]pyrene-d12		
phenyl nona	phenyl nonane		

Massachusetts Water Resources Authority 1993 Sediment Chemistry – Task 12 Product Number S9398PAH.WK1 PAH Data reported in ng/g.

	C1 - phenanth	262.68	221.08	68.25	80.83	194.9	319.31	46.38	287.05	109.73	73.74	148.05	116.84	146.19	138.21	55.51	65.07	112.27	44.9	149.01	147.27	48.46	39.89	186.57
	anthracene	71.55	62.04	34.44	35.83	62.56	261.4	23.47	134.21	41.09	33.2	45.22	34.11	41.68	36.44	13.92	14.99	30.05	16.16	24.74	22.95	18.88	15.06	125.07
	phenanthren	259.44	226.2	89.57	94.34	224.09	499.49	52.7	382.37	130,55	98.75	155.95	120.99	165.72	151.45	51.79	61.51	115	62.71	115.81	101.41	43.48	38.7	261.17
	33-fluorene	114.25	112.69	3.47 <	38.11	4.91 <	108.64	29.13	57.15	73.44	46.94	74.24	60.67	87.54	81.06	3.9 <	43.83	63.53	4.05 <	7.19 <	5.53 <	3.36 <	3.25 <	47.94
	2-fluarene (74.93	65.78	25.25	27.96	4.91 <	72.27	21.37	88	47.25	27.39	45.06	37.76	50.59	46.05	22.44	27.15	36.41	4.05 <	7.19 <	46.69	3.36 <	3,25 <	40.94
·	C1-flucrene C2-flucrene C3-flucrene phenanthren anthracene	28.83	26.13	96.6	11.97	35.28	42.62	8.49	57.24	17.5	12.4	18.9	15.29	21.37	17.56	6.51	9.97	17.51	2.03 <	13.62	12.16	8.21	8,3	28.28
** {	fluorene	29.01	25.9	10.93	10.11	27.66	74.27	7.68	52.92	15.51	12.78	16.87	14.3	18.65	16.81	5.91	7.61	12.94	8.17	13.4	12.64	5.91	4.37	38.68
	dibenzofura	18.49	16.24	5.97	5.74	14.61	26.76	4.19	18.31	9.57	7.17	12.22	10.11	14.82	13.05	4.14	5.61	11.11	6.2	11.03	10.33	3.41	2.65	20.62
Sample	₽	S93030200	S93030198	S93030151	S93030153	S93030179	S93030182	893030072	S93030074	S93030352	S93030354	S93030214	S93030216	S93030234	S93030237	64.5 18-AUG-93 S93030312	65.0 18-AUG-93 S93030310	. S93030292	893030294	893030269	\$ \$93030277	3 893030326	3 893030328	32 0 16-AHG-93 S93030134
Sample	Date	84.0 17-AUG-93 S93030200	84.5 17-AUG-93 S93030198	29.0 16-AUG-93 S93030151	29.0 16-AUG-93 S93030153	89.5 17-AUG-93 S93030179	90.0 17-AUG-93 S93030182	26.0 16-AUG-93 S93030072	26.0 16-AUG-93 S93030074	21.5 19-AUG-93 S93030352	21.5 19-AUG-93 S93030354	76.0 17-AUG-93 S93030214	76.5 17-AUG-93 S93030216	89.0 17-AUG-93 S93030234	89.0 17-AUG-93 S93030237	18-AUG-93	18-AUG-93	37.0 18-AUG-93 S	37,0 18-AUG-93 S	40,0 18-AUG-93 S	40.5 18-AUG-93 S	49.0 18-AUG-93 S	49.0 18-AUG-93 S	16_AIIG_0
Sample	Depth(m)	84.0	84.5	29.0 1	29.0	89.5 1	90.0	26.0 1	26.0 1	21.5 1	21.5 1	76.0 1	76.5 1	89.0 1			65.0	37.0	37.0					
	Lonaitude Depth(m)	70.62233	70.62233	70 87917	70.87917	70.49967	70.49967	70.90000	70.90000	70.82267	70.82267	70,65350	70.65350	70.42550	70 42550	70.42233	70 42233	70.40417	70.40417	70.26700	70.26700	70.65683		
	Latitude		42 46650	42 41383	42 41383	42 65883	42,65883	42.38933	42.38933	42.31917	42.31917	42.41717	42,41717	42.28983	42 28983	42 1333	42 1333	41.89783	41.89783	41.95767	41.95767	4231217	4231217	40.0004.4
	Station	i i	<u>.</u>	· ·	2 4	2	<u> </u>	FF12	FF 12	FF13	FF13	FF14	FF14	FF 1	. H	- 4		. H	9 4	2 44	44		9 6	

Massachusetts Water Resources Authority 1993 Sediment Chemistry – Task 12

,	C1-phenanth	138.19	813.3	539.51	166.18	216.84	133.52	618.61	2.34 f	5.33	6.97	6.01	9.56	9.62	763.04	1540.05	145.76	161.62
	ļ	88.2	633.53	459	151.24	201.51	99.97	462.28	0.89 f	1.8 f	2.87	2.64	5.94	3.81	422.7	825.92	94.24	129.13
	C1-flugrene C2-flugrene C3-flugrene phenanthren anthracene	183.3	1374.47	1008.35	421.79	577.74	289.41	1158.79	2.42	6.94	7.24	7.69	10.49	13.77	911.37	1812.45	174.49	203.09
	C3-fluorene	42.71	195.04	125.13	28.99	54.18	33.55	114.28	3.12 <	3.01 <	4 .84	5.05	5.76	2.93 <	228.7	412.12	53.38	44.75
	C2-fluorene	33.57	170.99	115.38	22.3	36.2	27.55	104.37	3.12 <	3.09	3.68	3.72	4.9	4.83	210.83	364.16	44.47	38.74
	C1-fluorene	21.08	132.07	90.53	24.21	29.03	19.28	100.44	1.3 f	1.48 f	1.86	1.51 f	2.14	2.32	119.85	256.69	24.18	25.14
	fluorene	26.73	216.44	178.7	69.85	86.58	41.06	187.25	0.58 f	0.88 f	1.27 f	1.14 f	1.7	1.77	136.78	264.38	25.31	28.78
	dibenzofura	14.65	116.14	103.51	37.71	55.19	21.88	93.23	0.22 f	0.4 f	0.7 f	0.77 f	1.07 f	1.14 f	65.16	126.47	13.71	14.34
Sample	₽	S93030136	893030120	893030122	S93030105	S93030103	893030393	S93030397	293030090	S93030088	S93030372	S93030375	893030010	S93030012	893030029	593030031	S93030043	\$93030045
Sample	Date	32.0 16-AUG-93 S9	34.0 16-AUG-93 S9	34.0 16-AUG-93 S9	34.0 16-AUG-93 S9	34.5 16-AUG-93 S9	34.0 19-AUG-93 SS	34.0 19~AUG-93 S9	32.0 16-AUG-93 S93030090	32.5 16-AUG-93 S9	29.5 19-AUG-93 S93030372	30.0 19-AUG-93 SS	38.0 15-AUG-93 S93030010	38.0 15-AUG-93 S93030012	30.5 15-AUG-93 S93030029	30.5 15-AUG-93 S93030031	30,5 15 AUG-93 S93030043	31.0 15-AUG-93 S93030045
Sample	Depth(m)	32.0																
	Longitude	42.39317 70.83833	70.83083					70.83800										
	Station Latitude Longitude Depth(m)	42.39317	42 39033	NF12 42.39033	NF14 42.38767	NF14 42.38767	42.37767			42.38150								42.40100
	Station	NF10	NE10	NF1 S	NF1 1	NF14	NF16	NF16	NF17	NF17	NES CENT	ב ב ב ב ב	NF 1	N N	. X	2 2) 6H	NF9

Description of Qualifiers (tabulated to right of data):

Product Number S9398PAH.WK1

f = reported value below method detection limit

< = reported value is the method detection limit</p>

x = matrix interference

Massachusetts Water Resources Authority 1993 Sediment Chemistry – Task 12 Product Number S9398PAH.WK1 PAH Data reported in ng/g.

;	inoranthen	532.95	458.35	172.23	206.25	428.61	802.86	118.66	616.59	265.61	182.2	314.29	251.27	338.57	314.41	105.19	124.73	239.22	112.66	242.91	217.09	90.64	85.05	441.83
	3-dibenzot f	65.31	67.73	1.74 <	16.71	82.99	56.56	12.71	25.13	34.74	24.56	44.05	36.48	37.82	41.9	15.04	23.15	31.42	2.03 <	39.32	29.22	28.39	1.63 <	21.32
	22-dibenzot (60.79	62	18.35	16.87	62.05	58.19	10.66	30.26	30.44	20.65	36.13	35.25	37.52	35.42	12.18	15.83	29.15	2.03 <	31.86	28.1	16.67	11,57	28.33
	C1-dibenzot C2-dibenzot C3-dibenzot fluoranthen	36.29	35.82	8.68	12.53	39.27	39.95	6:29	28.95	19.31	12.27	22.61	20.84	24.7	24.18	9.46	8.65	19.32	12.08	20.26	15.22	8.67	6.35	23.39
	- 1	22.11	17.65	7.22	6.82	17.09	34.69	5.47	26.87	10.92	8.26	13.29	10.15	14.81	13.15	4.47	5.14	10.54	5.71	9.5	8.75	5.04	3.29	20.35
	4-phenantho	185.52	152.35	55.9	52.58	142.45	165.18	38.12	119.6	99.88	72.96	87.83	82.08	113.71	122.19	30.45	46.51	98.6	4.05 <	92.19	69.08	62.31	37.21	94.28
÷.	3-phenanthC	157.5	129.28	43.17	34.4	119.89	138.58	56.95	104.85	72.81	58.78	87.59	78.19	95.1	82.37	40.02	42.39	99.89	> 50.4	116.56	123.99	41.29	24.05	79.5
	C2-phenanthC3-phenanthC4-phenanthdiberzothio	266.51	236.15	65.42	66.34	209.6	247.97	45.96	187.67	105.96	72.76	148.44	118.94	163.25	149.15	59.02	82	138.01	96.02	164.68	146.11	57.93	45.46	138.55
Sample	<u>□</u>	S93030200	S93030198	S93030151	S93030153	S93030179	S93030182	S93030072	S93030074	S93030352	S93030354	S93030214	S93030216	S93030234	S93030237	S93030312	S93030310	S93030292	S93030294	S93030269	S93030277	S93030326	\$93030328	\$93030134
Sample	Date	84.0 17-AUG-93 S93030200	84.5 17 - AUG - 93 S93030198	29.0 16-AUG-93 S93030151	29.0 16-AUG-93 S93030153	89.5 17 AUG93 S93030179	90.0 17-AUG-93 S93030182	26.0 16-AUG-93	26.0 16-AUG-93 S93030074	21.5 19-AUG-93 S93030352	21.5 19-AUG-93	76.0 17-AUG-93 S93030214	76.5 17-AUG-93 S93030216	89.0 17-AUG-93 S93030234	89.0 17-AUG-93	64.5 18-AUG-93	65.0 18-AUG-93	37.0 18-AUG-93	37.0 18-AUG-93	40.0 18-AUG-93	40.5 18-AUG-93	49.0 18-AUG-93	49.0 18-AUG-93	32.0 16-AUG-93
Sample	Depth(m)	1 0.48	84.5 1	29.0	29.0	89.5	90.0	26.0 1	26.0 1	21.5	21.5 1	76.0 1	76.5 1	89.0 1	89.0 1	64.5	65.0 1	37.0 1	37.0 1					
	ongitude	70.62233	70.62233	70.87917	70.87917	70.49967	70.49967	70.90000	70.90000	70.82267	70.82267	70.65350	70.65350	70.42550	70.42550	70.42233	70.42233	70.40417	70.40417	70.26700	70.26700	70.65683	70.65683	70.83833
	Latitude Longitude Depth(m)	42.46650	42.46650	42,41383	42,41383	42.65883	42.65883	42.38933	42,38933	42,31917	42.31917	42.41717	42.41717	42.28983	42 28983	42 13333	42 13333	41.89783	41.89783	41.95767	41.95767	42.31217	42.31217	42.39317
	Station					FF4	1	FF12	FF12	FF13	FF13	FF14	FF14	FF4	. H	. H	. R	. H	9 4	1	14	6 1 1	6 E	NF10

Massachusetts Water Resources Authority

PAH Data reported in ng/g.

:	fluoranthen	328.38	1959.17	1290.41	428.32	632.11	365.85	1411.31	3.83 f	10.91	13.92	14.93	24.38	22.18	1640.91	3193.99	364.74	394.12
:	33-dibenzot	20.14	80.91	53.05	10.21	15.5	12.13	46.8	1.56 <	1.51 <	1.55 <	1.54 ×	3.03	3.1	114.23	235.64	22.63	21.06
:	22-dibenzot (20.71	107.81	69.94	14,68	18.11	14.8	60.71	1.56 <	1.51 <	1.55 <	1.54 ×	2.43	2.53	134.65	272.02	56.96	26.48
	C1 - dibenzot C2 - dibenzot C3 - dibenzot fluoranthen	17.09	93.68	63.02	17.34	20.76	13.39	63.23	1.56 <	0.77 f	1.24 f	1.22 f	1.55 f	1.67	93.88	188.39	18.92	19.79
	- 1	14.14	113.79	82.48	29.92	40.3	18.68	88.67	1.56 <	0.53 f	0.65 f	0.64 f	0.99 f	1.17 f	68.36	142.33	13.35	15.87
	24-phenantho	78.44	358.38	247.15	49.77	85.1	58.96	202.01	3.12 <	3.01 <	3.11 <	7.27	8.25	7.12	383.34	752.5	89.01	81.52
	3-phenanth	63.34	282.56	195.92	40.45	63.93	50.49	177.91	3.12 <	3.01 <	4.56	4.58	6.85	8.79	369.65	720.77	79.84	73.39
	C2-phenanthC3-phenanthC4-phenanthdibenzothio	111.25	564.43	363.24	87.62	128.08	86.04	373.12	3.05 f	4.84	6.26	6.05	10.99	8.6	596.75	1200.93	123.92	124.42
gampie	Ω	S93030136	S93030120	S93030122	S93030105	S93030103	893030393	293030397	060080868	893030088	S93030372	S93030375	S93030010	S93030012	893030029	S93030031	S93030043	S93030045
gambie	Date	32.0 16-AUG-93 S93030136	34.0 16-AUG-93 S93030120	34.0 16-AUG-93 S93030122	34.0 16-AUG-93 S93030105	34,5 16-AUG-93 S	34.0 19-AUG-93 S	34.0 19-AUG-93 S	32.0 16-AUG-93 S	32,5 16-AUG-93 S93030088	29.5 19-AUG-93 S	30.0 19-AUG-93 S	38.0 15-AUG-93 S93030010	38.0 15-AUG-93 S93030012	30,5 15-AUG-93 S93030029	30.5 15-AUG-93 S93030031	30,5 15-AUG-93 S	31.0 15-AUG-93 S93030045
Sample	epth(m)	32.0 1	34.0 1	34.0 1	34.0 1	34.5 1	34.0 1	34.0 1	32.0 1	32.5 1	29.5 1	30.0	38.0	38.0	30.5	30.5	30.5	31.0
-	Station Latitude Longitude Depth(m)	70.83833	70.83083	70.83083	70.82400	70.82400	70.83800	70.83800	70.81467	70.81467	70.82883	70.82883	70.80600	70.80600	70.86383	70.86383	70.84550	70.84550
	Latitude	NF10 42.39317 70.83833	42.39033	42.39033	42.38767	42.38767	42.37767	42.37767	42.38150	42.38150	42.33783	42.33783	42.41550	42.41550	42,40017	42 40017	42.40100	42.40100
	Station	NF10	NET O		1 HZ								1 N	Z Z	2 2	2	ο σ Σ Ζ	

Description of Qualifiers (tabulated to right of data):

¹⁹⁹³ Sediment Chemistry - Task 12

Product Number S9398PAH.WK1

f = reported value below method detection limit

< = reported value is the method detection limit</p>

x = matrix interference

Massachusetts Water Resources Authority 1993 Sediment Chemistry – Task 12 Product Number S9398PAH.WK1 PAH Data reported in ng/g.

	-chrysene	> 90.9	7.01 <	3.47 <	3.49 <	4.91 <	4.78 <	3.23 <	3.46 <	3.95 <	3.45 <	4.43 <	5.05 <	5.68 <	7.2 <	3.9 <	3.99 <	4.72 <	4.05 <	7.19 <	5.53 <	3.36 <	3.25 <	3.41 <
	C1-chrysene C2-chrysene C3-chrysene C4-chrysene	68.72	58.3	17.62	18.85	59.13	58.07	15.62	41.31	48.59	56.6	32.41	40.79	49.33	41.35	17.8	20.49	32,55	4.05 <	31.45	5.53 <	36.14	3.25 <	38.7
	C2-chrysene C	120.36	108.73	33.1	35.58	107.42	114.16	27.96	81.77	84.47	48.82	69.55	70.02	88.22	85.5	29.94	30.77	56.18	29.72	50.57	57.5	44.83	23.01	76.93
	C1-chrysene	152.33	148.35	39.74	49.76	141.66	193.6	41.67	145.28	97.57	57.51	91.01	92.69	112.64	101.09	32.86	36.89	71.89	31.81	60.23	61.99	34.83	82	131.64
	chrysene	181.54	156.18	50.57	68.56	126.46	234.21	46.87	165.73	101.73	80.09	92.51	112.32	112.51	101.78	32.32	8	79.9	27.27	62.89	65.4	27.36	31.16	150.55
	benz[a]anth	509.6	172.83	62.19	79.89	153.14	302.92	55.63	253.95	126.57	75	107.18	110.81	126.39	116.56	37.65	45.08	83.46	35.58	72.52	74.2	29.97	36.98	206.43
·	C1-fluorant benz[a]anth	406.62	358.84	114.94	132.46	366.3	497.66	96.89	428.3	187.64	122.46	233.31	197.44	227.79	210.15	98.89	82.2	157.66	83.23	153.74	134.15	88.15	63.73	330.56
	pyrene	513.91	440.4	163.8	196.92	439.46	661.06	120.59	552.55	264.52	174.36	303.25	248.96	305.06	281.94	95.62	106.4	218.59	103.76	213.57	190.97	85.46	82.96	417.79
Sample	۵	84.0 17-AUG-93 S93030200	84.5 17-AUG-93 S93030198	29.0 16-AUG-93 S93030151	29.0 16-AUG-93 S93030153	89.5 17-AUG-93 S93030179	90.0 17-AUG-93 S93030182	26.0 16-AUG-93 S93030072	26.0 16-AUG-93 S93030074	21.5 19-AUG-93 S93030352	21.5 19-AUG-93 S93030354	76.0 17-AUG-93 S93030214	93 S93030216	89.0 17-AUG-93 S93030234	89.0 17-AUG-93 S93030237	93 S93030312	93 S93030310	93 S93030292	37.0 18-AUG-93 S93030294	40.0 18-AUG-93 S93030269	40.5 18-AUG-93 S93030277	49.0 18-AUG-93 S93030326	49.0 18-AUG-93 S93030328	32.0 16-AUG-93 S93030134
Sample	Date	17-AUG-9	17-AUG-9	16-AUG-9	16-AUG-9	17-AUG-9	17-AUG-9	16-AUG-6	16AUG-9	19-AUG-6	19-AUG-6	17-AUG-9	76.5 17-AUG-93 S9	17-AUG-	17-AUG-	64.5 18-AUG-93 S9	65.0 18-AUG-93 S9	37.0 18-AUG-93 S9	18-AUG-	18-AUG-	18-AUG-	18~AUG-	18-AUG-	16-AUG-
Sample	Depth(m)	84.0	84.5	29.0	29.0	89.5	90.0	26.0	26.0	21.5	21.5	76.0								_				
	Longitude Depth(m)	70.62233	70.62233	70.87917	70.87917	70.49967	70.49967	70.90000	70.90000	70.82267	70.82267	70.65350	70.65350	70.42550	70.42550	70.42233	70.42233	70.40417	70.40417	70.26700	70.26700	70.65683	70.65683	70.83833
:	Latitude	42.46650	42,46650	42.41383	42.41383	42.65883	42.65883	42.38933	42.38933	42.31917	42.31917	42.41717	42.41717	42.28983	42.28983	42.13333	42.13333	41.89783	41.89783	41.95767	41.95767	42.31217	42.31217	42.39317
	Station	Æ	Æ	FF10	FF10	FF11	<u> </u>	FF12	FF12	FF13	FF13	FF14	FF14	FF4	FF4	FF5	FF5	FF6	FF6	FF7	FF7	F.	FF9	NF10

Massachusetts Water Resources Authority 1993 Sediment Chemistry – Task 12 Product Number S9398PAH.WK1 PAH Data reported in ng/g.

Latitude Longitude Depth(m) Date ID pyrene C1-flucrant benz[a]anth Ctr-chysene C2-chysene	on Lattude Lo 10 42.39317 71 12 42.39033 71 12 42.39033 71 14 42.38767 7 16 42.37767 7 17 42.38150 7 17 42.38150 7 17 42.38150 7 17 42.38150 7 17 42.38150 7 17 42.38150 7 17 42.38150 7	70.83833 70.83083 70.83083 70.82400 70.82400 70.83800 70.83800 70.81467	32.0 16 34.0 16 34.0 16 34.0 16 34.0 17 34.0 17 34.0 17 32.0 1	Date 6-AUG-93 (6-AUG-93 (6-AUG-93 (6-AUG-93 (9-AUG-94 (9	S93030136 S93030120 S93030122 S93030105 S93030103 S93030393	314.6 314.6 1757.54 1122.95 356.96 523.91 327.71	C1-fluorant 235.25 1325.87 767.5 213.54 281.55 184.38	157.23 1001.15 601.79	chrysene 119.27	C1-chrysene 104.69	C2-chrysene (60.19	32.71	1-chrysene
16-AUG-93 S93030136 314.6 235.25 157.23 119.27 104.69 60.71 16-AUG-93 S93030120 1757.54 1325.87 1001.15 714.3 600.71 347.58 16-AUG-93 S93030122 1122.95 767.5 601.79 459.89 362.51 216.75 16-AUG-93 S93030103 356.96 213.54 173.19 125.04 87.12 47.08 19-AUG-93 S93030103 523.91 281.55 221.82 162.35 104.88 62.9 19-AUG-93 S93030397 1239.79 897.08 698.29 484.66 374.31 200.58 19-AUG-93 S93030397 13.76 3.45 1.59 f 1.34 f 1.31 f 3.12 19-AUG-93 S93030079 13.76 3.45 4.79 3.87 3.85 3.33 19-AUG-93 S93030070 23.57 19.22 9.52 8.14 8.15 5.87 15-AUG-93 S93030010 23.57 19.22 9.52 8.14 8.15 5.87 15-AUG-93 S93030012 23.57 19	4 2.39317 77 2 42.39033 77 4 42.38767 7 4 42.37767 7 6 42.37767 7 6 42.37767 7 7 42.38150 7 7 42.38150 7 2 42.38783 7	'0.83833 '0.83083 '0.82400 '0.82400 '0.82800 '0.83800 '0.83800	34.0 16 34.0 16 34.0 16 34.0 16 34.0 16 34.0 17 34.0 18 34.0 18	6-AUG-93 (6-AUG-93 (6-AUG-93 (6-AUG-93 (9-AUG-94 (9-AUG-	S93030136 S93030120 S93030105 S93030103 S93030393	314.6 1757.54 1122.95 356.96 523.91 327.71	235.25 1325.87 767.5 213.54 281.55 184.38	157.23 1001.15 601.79	119.27	104.69	60.19	32.71	,
34.0 16—AUG—93 S93030120 1757.54 1325.87 1001.15 714.3 600.71 347.58 34.0 16—AUG—93 S93030122 1122.95 767.5 601.79 459.89 362.51 216.75 34.0 16—AUG—93 S93030105 356.96 213.54 173.19 125.04 87.12 47.08 34.0 19—AUG—93 S93030103 327.71 184.38 145.01 112.55 79.79 47.34 34.0 19—AUG—93 S93030039 327.71 184.38 145.01 112.55 79.79 47.34 32.0 16—AUG—93 S93030039 3.57 f 3.45 1.59 f 1.34 f 1.31 f 3.12 29.5 19—AUG—93 S93030072 13.76 10.4 4.78 3.87 3.85 3.33 30.0 19—AUG—93 S93030072 13.76 10.4 4.78 3.87 3.85 3.33 38.0 15—AUG—93 S93030072 13.76 14.83 7.83 6.93 5.96 4.19 38.0 15—AUG—93 S93030072 15.30 14.83 7.83 6.93 5.96 4.13 30.5 15—AUG—93 S93030073 15.30 166.53 174.04 687.82 413.4 <tr< td=""><td>2 42.39033 71 2 42.39033 71 4 42.38767 7 6 42.37767 7 6 42.37767 7 7 42.38150 7 7 42.38150 7 7 42.38150 7 7 42.38150 7</td><td>70.83083 70.83083 70.82400 70.83800 70.83800 70.81467</td><td>34.0 16 34.0 16 34.0 10 34.5 10 34.0 17 32.0 1</td><td>6-AUG-93 (6-AUG-93 (6-AUG-93 (6-AUG-93 (9-AUG-94 (9-AUG-</td><td>\$93030120 \$93030122 \$93030105 \$93030303 \$93030393</td><td>1757.54 1122.95 356.96 523.91 327.71</td><td>1325.87 767.5 213.54 281.55 184.38</td><td>1001.15 601.79 173.19</td><td></td><td></td><td></td><td></td><td>٠. د. د.</td></tr<>	2 42.39033 71 2 42.39033 71 4 42.38767 7 6 42.37767 7 6 42.37767 7 7 42.38150 7 7 42.38150 7 7 42.38150 7 7 42.38150 7	70.83083 70.83083 70.82400 70.83800 70.83800 70.81467	34.0 16 34.0 16 34.0 10 34.5 10 34.0 17 32.0 1	6-AUG-93 (6-AUG-93 (6-AUG-93 (6-AUG-93 (9-AUG-94 (9-AUG-	\$93030120 \$93030122 \$93030105 \$93030303 \$93030393	1757.54 1122.95 356.96 523.91 327.71	1325.87 767.5 213.54 281.55 184.38	1001.15 601.79 173.19					٠. د. د.
42.38767 70.82400 34.0 16-AUG-98 \$93030122 1122.95 767.5 601.79 459.89 362.51 216.73 42.38767 70.82400 34.0 16-AUG-98 \$93030103 523.91 281.55 173.19 125.04 87.12 47.08 42.38767 70.82400 34.0 16-AUG-98 \$93030103 523.91 281.55 221.82 162.36 104.88 62.9 42.38767 70.83800 34.0 19-AUG-98 \$93030398 327.71 184.38 145.01 11.25 79.79 47.34 42.38767 70.83800 34.0 19-AUG-98 \$93030308 327.71 184.38 1.59 f 1.54 f 1.31 f 200.58 42.38769 70.81467 32.0 16-AUG-98 \$93030308 11.37 7.83 4.13 3.22 2.95 f 3.71 f 3.25 42.38769 70.81467 32.5 16-AUG-98 \$93030307 13.76 10.4 4.78 3.87 3.85 3.35 42.33763 70.82883 30.0 19-AUG-98 \$93030070 13.76 10.4 4.78 3.78 3.85 3.85	42.39033 42.38767 42.37767 42.37767 42.38150 42.38150 42.33783	70.83083 70.82400 70.82400 70.83800 70.83800 70.81467	34.0 16 34.0 11 34.5 14 34.0 13 32.0 1	6-AUG-93 (6-AUG-93 (6-AUG-93 (9-AUG-94 (9-AUG-	S93030122 S93030105 S93030103 S93030393 S93030397	1122.95 356.96 523.91 327.71	767.5 213.54 281.55 184.38	601.79	714.3	600.71	347.58	166.84	4.6 <
42.38767 70.82400 34.0 16-AUG-93 \$93030105 356.96 213.54 173.19 125.04 87.12 47.08 42.38767 70.82400 34.5 16-AUG-93 \$93030103 523.91 281.55 221.82 162.35 104.88 62.9 42.37767 70.83800 34.0 19-AUG-93 \$93030393 1239.79 145.01 112.55 79.79 47.34 42.37767 70.83800 34.0 19-AUG-93 \$93030393 1239.79 897.08 698.29 484.66 374.31 200.58 42.38150 70.81467 32.0 16-AUG-93 \$930303037 13.76 10.4 4.78 3.87 3.85 3.91 42.33783 70.82883 29.5 19-AUG-93 \$93030075 13.76 10.4 4.78 3.87 3.85 3.85 42.41550 70.80600 38.0 15-AUG-93 \$93030075 14.71 9.78 4.79 3.78 5.96 4.19 42.41550 70.80600 38.0 15-AUG-93 \$93030002 15.35 14.83 7.83 6.93 5.96 4.19 42.40017 70.806383 </td <td>42.38767 42.38767 42.37767 42.38150 42.38150 42.33783</td> <td>70.82400 70.82400 70.83800 70.81467 70.81467</td> <td>34.0 16 34.5 16 34.0 13 34.0 13</td> <td>6-AUG-93 (6-AUG-93 (9-AUG-93 (9-AUG-93 (9-4-94 (9-4-93 (9-4-93 (9-4-93 (9-4-94 (9-4-93 (9-4-94</td> <td>S93030105 S93030103 S93030393 S93030397</td> <td>356.96 523.91 327.71</td> <td>213.54 281.55 184.38</td> <td>173.19</td> <td>459.89</td> <td>362.51</td> <td>216.75</td> <td>111.95</td> <td>4.51 <</td>	42.38767 42.38767 42.37767 42.38150 42.38150 42.33783	70.82400 70.82400 70.83800 70.81467 70.81467	34.0 16 34.5 16 34.0 13 34.0 13	6-AUG-93 (6-AUG-93 (9-AUG-93 (9-AUG-93 (9-4-94 (9-4-93 (9-4-93 (9-4-93 (9-4-94 (9-4-93 (9-4-94	S93030105 S93030103 S93030393 S93030397	356.96 523.91 327.71	213.54 281.55 184.38	173.19	459.89	362.51	216.75	111.95	4.51 <
42.37767 70.82400 34.5 16-AUG-93 S93030103 523.91 281.55 221.82 162.35 104.88 62.9 42.37767 70.83800 34.0 19-AUG-93 S93030393 327.71 184.38 145.01 112.55 79.79 47.34 42.37767 70.83800 34.0 19-AUG-93 S93030397 1239.79 897.08 698.29 484.66 374.31 200.58 42.38150 70.81467 32.0 16-AUG-93 S93030098 11.37 7.83 4.13 3.22 2.95 f 3.01 42.33763 70.81467 32.5 16-AUG-93 S93030072 13.76 10.4 4.78 3.87 3.85 3.91 3.85 42.33763 70.82883 30.0 19-AUG-93 S93030072 13.76 10.4 4.78 3.78 3.85 3.85 42.41550 70.80600 38.0 15-AUG-93 S93030012 23.57 19.22 9.52 8.14 8.15 5.86 42.41550 70.80600 38.0 15-AUG-93 S93030012 23.57 1316.8 7.83 6.93 5.98 4.19 <t< td=""><td>42.38767 42.37767 42.38150 42.38150 42.33783</td><td>70.82400 70.83800 70.83800 70.81467</td><td>34.5 16 34.0 13 34.0 13 32.0 1</td><td>6-AUG-93 (9-AUG-93 (9-AUG-93 (</td><td>S93030103 S93030393 S93030397</td><td>523.91 327.71</td><td>281.55 184.38</td><td></td><td>125.04</td><td>87.12</td><td>47.08</td><td>23.9</td><td>2.9 <</td></t<>	42.38767 42.37767 42.38150 42.38150 42.33783	70.82400 70.83800 70.83800 70.81467	34.5 16 34.0 13 34.0 13 32.0 1	6-AUG-93 (9-AUG-93 (9-AUG-93 (S93030103 S93030393 S93030397	523.91 327.71	281.55 184.38		125.04	87.12	47.08	23.9	2.9 <
42.37767 70.83800 34.0 19-AUG-93 S93030393 327.71 184.38 145.01 112.55 79.79 47.34 42.37767 70.83800 34.0 19-AUG-93 S93030397 1239.79 897.08 698.29 484.66 374.31 200.58 42.38150 70.81467 32.0 16-AUG-93 S93030392 11.37 7.83 4.13 3.22 2.95 f 3.01 42.33783 70.82883 29.5 19-AUG-93 S93030372 13.76 10.4 4.78 3.87 3.85 3.33 42.33783 70.82883 20.0 19-AUG-93 S93030075 14.71 9.78 4.79 3.78 3.91 3.65 42.41550 70.80600 38.0 15-AUG-93 S93030012 23.57 19.22 9.52 8.14 8.15 5.87 42.40017 70.86583 30.5 15-AUG-93 S93030029 153.07 131.6 714.04 687.82 413.44 42.4010 70.86583 30.5 15-AUG-93 S93030031 3015.58 2528.71 2014.21 1392.4 1394.66 829.8 413.4 42.4010 </td <td>42.37767 42.37767 42.38150 42.33783 42.33783</td> <td>70.83800 70.83800 70.81467</td> <td>34.0 19</td> <td>9AUG-93 9AUG-93</td> <td>S93030393 S93030397</td> <td>327.71</td> <td>184.38</td> <td>221.82</td> <td>162.35</td> <td>104.88</td> <td>67.9</td> <td>32.12</td> <td>2.75 <</td>	42.37767 42.37767 42.38150 42.33783 42.33783	70.83800 70.83800 70.81467	34.0 19	9AUG-93 9AUG-93	S93030393 S93030397	327.71	184.38	221.82	162.35	104.88	67.9	32.12	2.75 <
42.38150 70.83800 34.0 19-AUG-93 S930300397 1239.79 897.08 698.29 484.66 374.31 200.58 42.38150 70.81467 32.0 16-AUG-93 S93030039 3.57 f 3.45 1.59 f 1.34 f 1.31 f 3.12 42.38150 70.81467 32.5 16-AUG-93 S930300372 11.37 7.83 4.13 3.22 2.95 f 3.01 42.33783 70.82883 29.5 19-AUG-93 S930300372 13.76 10.4 4.78 3.87 3.85 3.35 42.41550 70.80600 38.0 15-AUG-93 S93030010 23.57 19.22 9.52 8.14 8.15 5.87 42.40017 70.86383 30.5 15-AUG-93 S93030029 153.07 1316.8 976.45 714.04 687.82 413.44 42.40017 70.86383 30.5 15-AUG-93 S93030031 3015.58 2528.71 2014.21 1392.4 1394.66 829.44 42.4010 70.86383 30.5 15-AUG-93 S93030043 354.16 265.87 165.53 124.04 1394.66 829.44	42.37767 42.38150 42.38150 42.33783	70.83800 70.81467 70.81467	34.0 19	9-AUG-93	893030397			145.01	112.55	79.79	47.34	23.83	3.34 <
42.38150 70.81467 32.0 16—AUG—93 \$93030099 3.57 1 3.45 1.59 1 1.34 1 1.31 1 3.12 42.38150 70.81467 32.5 16—AUG—93 \$93030088 11.37 7.83 4.13 3.22 2.95 1 3.01 42.33783 70.82883 29.5 19—AUG—93 \$93030375 13.76 10.4 4.78 3.87 3.85 3.33 42.41550 70.80600 38.0 15—AUG—93 \$93030010 23.57 19.22 9.52 8.14 8.15 5.87 42.41550 70.80600 38.0 15—AUG—93 \$93030012 20.65 14.83 7.83 6.93 5.98 4.19 42.40017 70.86383 30.5 15—AUG—93 \$93030029 1533.07 1316.8 976.45 714.04 687.82 413.44 42.4010 70.86383 30.5 15—AUG—93 \$93030042 355.71 2014.21 1392.4 1394.66 829.44 42.4010 70.84550 30.5 15—AUG—93 \$93030045 354.16 252.87 166.53 129.24 1394.66 829.49	42.38150 42.38150 42.33783	70.81467	32.0 1			1239.79	897.08	638.29	484.66	374.31	200.58	94.08	3.47 <
42.38150 70.81467 32.5 16—AUG—93 \$99030088 11.37 7.83 4.13 3.22 2.95 1 3.01 42.33783 70.82883 29.5 19—AUG—93 \$99030375 13.76 10.4 4.78 3.87 3.85 3.33 42.41550 70.82883 30.0 19—AUG—93 \$93030010 23.57 19.22 9.52 8.14 8.15 5.87 42.41550 70.80600 38.0 15—AUG—93 \$93030012 20.65 14.83 7.83 6.93 5.98 4.19 42.40017 70.86383 30.5 15—AUG—93 \$93030029 1533.07 1316.8 976.45 714.04 687.82 413.44 42.40017 70.86383 30.5 15—AUG—93 \$93030043 3015.58 2528.71 2014.21 1392.4 1394.66 829.44 42.40100 70.84550 70.84550 30.5 15—AUG—93 \$93030045 354.16 2528.71 2014.21 1392.4 1394.66 829.44 42.40100 70.84550 30.5 15—AUG—93 \$93030045 354.16 274.4 1394.66 829.44	42.38150 42.33783 42.33783	70 81 467		6-AUG-93	293030090	3.57 f	3.45	1.59 f	1.34 f	1.31 f	3.12 <	3.12 <	3.12 <
42.33783 70.82883 295 19-AUG-93 \$93030372 13.76 10.4 4.78 3.87 3.85 42.33783 70.82883 30.0 19-AUG-93 \$93030375 14.71 9.78 4.79 3.78 3.91 42.41550 70.80600 38.0 15-AUG-93 \$93030012 23.57 19.22 9.52 8.14 8.15 42.40017 70.86383 30.5 15-AUG-93 \$93030029 1533.07 1316.8 976.45 714.04 687.82 41 42.4010 70.86383 30.5 15-AUG-93 \$93030031 3015.6 2528.71 2014.21 1392.4 1394.66 85 42.4010 70.84550 30.5 15-AUG-93 \$93030045 354.16 268.7 166.53 129.82 111.29 6	42.33783	5	32.5 1	6-AUG-93	893030088	11.37	7.83	4.13	3.22	2.95 f	3.01 <	3.01 <	3.01 <
42.33783 70.82883 30.0 19-AUG-93 \$93030375 14.71 9.78 4.79 3.78 3.91 42.41550 70.80600 38.0 15-AUG-93 \$93030012 23.57 19.22 9.52 8.14 8.15 42.40017 70.86383 30.5 15-AUG-93 \$93030029 1533.07 1316.8 976.45 714.04 687.82 41 42.40017 70.86383 30.5 15-AUG-93 \$93030031 3015.58 2528.71 2014.21 1392.4 1394.66 82 42.40100 70.84550 30.5 15-AUG-93 \$93030043 354.16 268.7 166.53 129.82 111.29 6	42.33783	70.82883	29.5 1	9AUG-93	S93030372	13.76	10.4	4.78	3.87	3.85	3.33	2.29 f	3.11 <
42.41550 70.80600 38.0 15-AUG-93 S93030010 23.57 19.22 9.52 8.14 8.15 42.41550 70.80600 38.0 15-AUG-93 S93030012 20.65 14.83 7.83 6.93 5.98 42.40017 70.86383 30.5 15-AUG-93 S93030029 1533.07 1316.8 976.45 714.04 687.82 41 42.4010 70.86383 30.5 15-AUG-93 S93030031 3015.6 268.7 166.53 129.82 111.29 6 42.4010 70.84550 30.5 15-AUG-93 S93030048 354.16 268.7 166.53 129.82 111.29 6	j	70.82883	30.0	9-AUG-93	S93030375	14.71	9.78	4.79	3.78	3.91	3.65	2.66 f	3.08 <
42.41550 70.80600 38.0 15-AUG-93 S93030012 20.65 14.83 7.83 6.93 5.98 42.40017 70.86383 30.5 15-AUG-93 S93030031 1533.07 1316.8 976.45 714.04 687.82 41 42.40017 70.86383 30.5 15-AUG-93 S93030031 3015.58 2528.71 2014.21 1392.4 1394.66 85 42.40100 70.84550 30.5 15-AUG-93 S93030043 354.16 268.7 166.53 129.82 111.29 6	42.41550	70.80600	38.0 1	5AUG93	S93030010	23.57	19.22	9.52	8.14	8.15	5.87	2.96 f	3.12 <
42.40017 70.86383 30.5 15-AUG-93 S93030029 1533.07 1316.8 976.45 714.04 687.82 42.40017 70.86383 30.5 15-AUG-93 S93030031 3015.58 2528.71 2014.21 1392.4 1394.66 42.40100 70.84550 30.5 15-AUG-93 S93030043 354.16 268.7 166.53 129.82 111.29		20.80600	38.0 1	5AUG-93	S93030012	20.65	14.83	7.83	6.93	5.98	4.19	2.93 <	2.93 <
42.40017 70.86383 30.5 15-AUG-93 S93030031 3015.58 2528.71 2014.21 1392.4 1394.66 42.40100 70.84550 30.5 15-AUG-93 S93030043 354.16 268.7 166.53 129.82 111.29	42.40017	70.86383	30.5 1	5-AUG-93	893030029	1533.07	1316.8	976.45	714.04	687.82	413.44	204.52	3.98 <
42.40100 70.84550 30.5 15-AUG-93 \$93030043 354.16 268.7 166.53 129.82 111.29	42.40017	70.86383	30.5 1	5AUG-93	S93030031	3015.58	2528.71	2014.21	1392.4	1394.66	829.44	405.7	5.4 <
119 F7 119 00 0000000 900 40 000 119 F7	42.40100	70.84550	30.5	5-AUG-93	S93030043	354.16	268.7	166.53	129.82	111.29	68.39	35.93	3.5 <
42.40100 70.84550 31.0 13-A0G-83 585050045 568.16 27.41 17.48 156.37 116.37	NF9 42.40100 7	70.84550	31.0 1	5-AUG-93	S93030045	369.16	277.41	174.49	138.97	113.57	70.71	36.02	3.36 <

Description of Qualifiers (tabulated to right of data):

f = reported value below method detection limit

< = reported value is the method detection limit</p>

x = matrix interference

Massachusetts Water Resources Authority 1993 Sediment Chemistry – Task 12 Product Number S9398PAH.WK1 PAH Data reported in ng/g.

Massachusetts Water Resources Authority

	benzo[g,h,i	86.64	461.06	68.25	73.81	108.18	73.81	290.97	1.51 f	2.98 f	3.62 f	3.92 f	7.7	6.47	461.93	871.05	94.64	96.71
	dibenz[a,h] be	25.08	143.62	82.76	20.83	30.38	18.9	85.49	0.48 f	0.81 f	1.02 f	0.93 f	1.76 f	1.41 f	139.53	272.96	26.9	27.8
	indeno[1,2, d	103.57	574.26	322.59	84.59	130.77	85.82	342.22	1.4 f	3.12 f	4.66	4.59	8.37	7.08	524.1	1057.02	111.25	112.23
	perylene	40.95	230.41	133.85	35.99	53.9	33.72	134.82	0.59 f	1.13 f	1.8 f	2.7 f	2.91 f	2.51 f	227.78	393.47	43.7	44.57
	benzo[a]pyr	157.21	913.84	529.2	142.06	215.85	130.43	612.15	1.42 f	3.74	4.98	4.94	10.17	8.32	880.11	1899.88	181.14	171.13
	benzo[e]pyr benzo[a]pyr	94.73	510.34	311.08	78.04	120.15	76.14	320.18	1.26 f	2.9	3.75	3.81	7.68	6.52	515.97	1007.55	96.78	103.71
8**	benzo[k]flu	6.69	389.16	229.93	61.1	83.1	61.62	240.38	0.88 1	2.15 f	2.65	2.91	6.48	5.34	419.68	854.1	79.51	84.97
	penzo[b]flu	198.92	1128.73	682.61	178.09	253.41	168.45	706.12	2.66	5.81	8.15	8.38	2.18 <	13.04	1065.44	2087.33	215.25	224.04
Sample	O	S93030136	S93030120	S93030122	S93030105	S93030103	S93030393	S93030397	S93030090	S93030088	S93030372	S93030375	S93030010	\$93030012	S93030029	S93030031	S93030043	S93030045
Sample	Date	32.0 16-AUG-93 S93030136	34.0 16-AUG-93 S93030120	34.0 16-AUG-93 S93030122	34.0 16-AUG-93 S93030105	34.5 16-AUG-93 S93030103	34.0 19-AUG-93 S93030393	34.0 19-AUG-93 S93030397	32.0 16-AUG-93 S93030090	32.5 16-AUG-93 S93030088	29.5 19-AUG-93 S93030372	30.0 19-AUG-93 S93030375	38.0 15-AUG-93 S93030010	38.0 15-AUG-93 S93030012	30.5 15-AUG-93 S93030029	30.5 15-AUG-93 S93030031	30.5 15-AUG-93 S9	31.0 15-AUG-93 S93030045
Sample	Jepth(m)	32.0	34.0	34.0	34.0	34.5	34.0	34.0	32.0	32.5	29.5	30.0	38.0	38.0	30.5	30.5	30.5	31.0
	Station Latitude Longitude Depth(m)	70.83833	70.83083	70.83083	70.82400	70.82400	70.83800	70.83800	70.81467	70.81467	70.82883	70.82883	70,80600	70.80600	70.86383		70.84550	70.84550
12	Latitude	42.39317 70.83833	42.39033	42.39033	42.38767	42.38767	42.37767	42.37767	42.38150	42.38150	42.33783	42.33783	42.41550	42.41550	42.40017	42.40017	42.40100	42.40100
	Station	NF10	NF12	NF12	NF14	NF14	NF16	NF16		NF17				NF4	NF8			9 5 1

Description of Qualifiers (tabulated to right of data):

¹⁹⁹³ Sediment Chemistry - Task 12

Product Number S9398PAH.WK1

f = reported value below method detection limit

< = reported value is the method detection limit</p>

x = matrix interference

Massachusetts Water Resources Authority 1993 Sediment Chemistry – Task 12 Product Number S9398PAH.WK1

	41		aduas	Sample	og III og					
Station	Latitude	Latitude Longitude Depth(m)	Jepth(m)	Date	Ω	phenyl deca	phenyl deca phenyl unde phenyl dode phenyl trid	phenyl dode	phenyl trid	phenyl tetr
E.	42.46650	70.62233	84.0 1	84.0 17-AUG-93 S93030200	S93030200	15.142 <	15.142 <	15.142 <	15.142 <	15.142 <
E.	42.46650	70.62233	84.5 1	84.5 17-AUG-93 S93030198	S93030198	17.527 <	17.527 <	17.527 <	17.527 <	17.527 <
FF10	42.41383	70.87917	29.0 1	29.0 16-AUG-93 S93030151	S93030151	8.683 <	8.683 <	8.683 <	8.683 <	8,683 <
FF10	42,41383	70.87917	29.0 1	29.0 16-AUG-93 S93030153	S93030153	8.714 <	8.714 <	8.714 <	8.714 <	8.714 <
FF11	42.65883	70.49967	89.5 1	89.5 17-AUG-93 S93030179	S93030179	12.268 <	12.268 <	12.268 <	12.268 <	12.268 <
FF11	42.65883	70.49967	90.0	90.0 17-AUG-93 S93030182	S93030182	11.957 <	11.957 <	11.957 <	11.957 <	11.957 <
FF12	42.38933	70.90000	26.0 1	26.0 16-AUG-93 S93030072	S93030072	12.900	43.980	72.920	53.150	41.070
FF12	42.38933	70.90000	26.0 1	26.0 16AUG-93 S93030074	S93030074	14.880	64.130	75.290	63.770	75.140
FF13	42.31917	70.82267	21.5	21.5 19-AUG-93 \$93030352	\$93030352	72.750	238.560	360.400	330.830	417.960
FF13	42.31917	70.82267	21.5	21.5 19-AUG-93 S93030354	S93030354	41.700	125.800	268.010	182.160	233.890
FF14	42.41717	70.65350	76.0 1	76.0 17-AUG-93 S93030214	S93030214	11.086 <	11.086 <	11.086 <	11.086 <	11.086 <
FF14	42.41717	70.65350	76.5	76.5 17-AUG-93 S93030216	S93030216	12,631 <	12.631 <	12.631 <	12.631 <	12.631 <
FF4	42.28983	70.42550	89.0	89.0 17-AUG-93 S93030234	S93030234	14.208 <	14.208 <	14.208 <	14.208 <	14.208 <
FF4	42.28983	70.42550	89.0	89.0 17-AUG-93 S93030237	S93030237	18.003 <	18.003 <	18.003 <	18.003 <	18.003 <
F.	42.13333	70.42233	64.5	64.5 18-AUG-93 S93030312	S93030312	9.755 <	9.755 <	9.755 <	9.755 <	9.755 <
FF5	42.13333	70.42233	. 0'39	65.0 18-AUG-93 S93030310	S93030310	9.982 <	9.982 <	9.982 <	9.982 <	9.982 <
FF6	41.89783	70.40417	37.0	37.0 18-AUG-93 S93030292	S93030292	38.690	84.620	146.500	11.797 <	11.797 <
PF6	41.89783	70,40417	37.0	37.0 18-AUG-93 S93030294	S93030294	10.134 <	10.134 <	10.134 <	10.134 <	10.134 <
FF7	41.95767	70.26700	40.0	40.0 18-AUG-93 S93030269	893030269	17.983 <	17.983 <	17.983 <	17.983 <	17.983 <
FF7	41.95767	70.26700	40.5	40.5 18-AUG-93 S93030277	S93030277	13.837 <	13.837 <	13.837 <	13.837 <	13.837 <
FF9	42.31217	70.65683	49.0	49.0 18-AUG-93 S93030326	S93030326	8.397 <	8.397 <	8.397 <	8.397 <	8.397 <
FF9	42,31217	70.65683	49.0	49.0 18-AUG-93 S93030328	S93030328	8.134 <	8.134 <	8,134 <	8.134 <	8.134 <
NF10	42.39317	70.83833	32.0	32.0 16-AUG-93 S93030134	S93030134	8.850	44.340	44.390	39.030	30.520

Massachusetts Water Resources Authority

			Sample	Sample	Sample					
Station	Latitude	Longitude	Longitude Depth(m)	Date	Ω	phenyl deca	phenyl deca phenyl unde	phenyl dode phenyl trid	phenyl trid	phenyl tetr
NF10	42.39317	70.83833		32.0 16-AUG-93 S93030136	393030136	12.120	42,430	70.290	48.220	26.890
NF12	42.39033	70.83083		34.0 16-AUG-93 S93030120	393030120	65.340	195,500	226.690	143.370	145.840
NF12	42.39033	70.83083		34,0 16-AUG-93 S93030122	593030122	68.250	192.860	227.700	166.930	140.080
NF14	42.38767	70.82400		34.0 16-AUG-93 S93030105	393030105	3.710 f	14.970	6.870 f	8.920	7.262 <
NF14	42.38767	70.82400		34.5 16-AUG-93 S93030103	593030103	7.480	27.230	27.070	23.400	6.883 <
NF16	42.37767	70.83800		34.0 19-AUG-93 S93030393	393030393	11.980	47,590	64.080	42.110	23.290
NF16	42.37767	70.83800		34.0 19-AUG-93 S93030397	593030397	18.730	86.430	105.750	62.510	44.520
NF17	42.38150	70.81467		32.0 16-AUG-93 S93030090	293030090	> 067.2	7.790 <	> 062.2	> 062.2	> 062.2
NF17	42.38150	70.81467		32.5 16-AUG-93 S93030088	880080868	7.533 <	7.533 <	7.533 <	7.533 <	7.533 <
NF2	42.33783	70.82883		29.5 19-AUG-93 S93030372	593030372	3.330 f	9.140	17.410	14.010	14.480
NF2	42.33783	70.82883		30.0 19-AUG-93 S93030375	593030375	> 689.2	9.440	14.770	12.800	> 689.2
NF4	42.41550	70.80600		38.0 15-AUG-93 S93030010	593030010	> 96.7	7.796 <	> 96.7	> 96.7	> 967.2
NF4	42.41550	70.80600		38.0 15AUG-93 S93030012	593030012	7.328 <	7.328 <	7.328 <	7.328 <	7.328 <
NF8	42.40017	70.86383		30.5 15-AUG-93 S93030029	S93030029	122.160	263.980	327.860	262.750	351.770
NF8	42.40017	70.86383		30.5 15-AUG-93 S93030031	593030031	186.870	493.590	710.580	450.300	378.030
NF9	42.40100	70.84550		30.5 15-AUG-93 S93030043	S93030043	13.190	43.150	60.070	32.330	28.490
NF9	42.40100	70.84550		31.0 15-AUG-93 S93030045	S93030045	16.380	54.840	79.760	50.840	34.570

Description of Qualifiers (tabulated to right of data):

¹⁹⁹³ Sediment Chemistry - Task 12

Product Number S9398PAH.WK1

f = reported value below method detection limit

< = reported value is the method detection limit</p>

x = matrix interference

Massachusetts Water Resources Authority 1993 Sediment Chemistry – Task 12 Product Number S9398PST.WK1

		٧	v	v	٧	٧	٧	v	٧	٧	٧	٧	٧	٧	, V	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
ALDRIN	ng/g dry wt	1.26	1.46	0.72	0.73	1.02	1.00	0.67	0.72	0.82	0.72	0.92	1.05	1.18	1.50	0.81	0.83	0.98	0.84	1.50	1.15	0.70	0.68	0.71	0.71	96:0
	c			٧	٧	v		٧	.							-	-	-	-			-	-	٧	٧	-
CL4(52)	ng/g dry wt	0.98	1.22	0.45	0.45	0.63	0.92	0.42	0.19	1.45	0.97	0.67	0.73	0.85	96.0	0.26	0.29	09:0	0.28	1.29	0.89	0.33	0.12	0. 4	0. 44.	0.34
Æ		٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	-
HEPTACHLOR	ng/g dry wt	1.62	1.90	0.94	0.94	1.33	1.29	0.88	0.94	1.07	0.93	1.20	1.37	1.54	1.95	1.06	1.08	1.28	1.10	1.95	1.50	0.91	0.88	0.92	0.92	0.47
		٧	٧	٧	٧	٧	٧	٧	٠	٧	٧	•	•	•	٧	٠	٧	٠	٧	•	٧	•	-	•	٧	•
CL3(28)	ng/g dry wt	0.71	0.82	0.40	0.41	0.57	0.56	0.38	0.94	0.46	0.40	1.65	0.93	1.23	0.84	0.60	0.47	1.56	0.47	2.22	0.65	0.65	0.26	0.82	0.39	1.06
		٧	٧	٧	٧	٧	٧	٧	4 -	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	-
CL3(18)	ng/g dry wt	1.44	1.67	0.83	0.83	1.17	1.14	0.77	0.22	0.94	0.82	1.06	1.20	1.35	1.7	0.93	0.95	1.12	0.96	1.7	1.32	0.80	0.77	0.81	0.81	0.93
	_	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
LINDANE	ng/g dry wt	0.60	0.70	0.35	0.35	0.49	0.48	0.32	0.34	0.39	0.34	0.44	0.50	0.57	0.72	0.39	0.40	0.47	0.40	0.72	0.55	0.33	0.32	0.34	0.34	0.46
æ	_					-		٧	٧	-	-		-		-	-			-		-		-		-	-
HEXACHLOROB	ng/g dry wt	1.56	2.52	1.19	0.73	0.23	0.85	0.45	0.48	0.26	0.40	0.63	0.54	0.93	0.45	0.48	1.81	2.27	0.36	4.31	0.47	99.0	0.25	0.64	60.00	. 0.14
2	. 5		٠.		ω.	ო	4	-	2		4	ъ.		თ	α.	ω	ω	o,	_	QI	0	ľΩ	· .	rὑ	ω	Q.
CL2(08)	ng/g dry wt	7.80	6.85	2.07	2.18	2.83	6.64	1.01	1.22	4.75	5.04	4.25	3.82	6.9	5.72	3.58	2.88	6.52	2.11	12.02	6.10	1.95	1.47	1.45	1.38	5.20
Sample	₽	S93030200	S93030198	\$93030151	S93030153	S93030179	S93030182	S93030072	\$93030074	S93030352	S93030354	S93030214	\$93030216	\$93030234	\$93030237	S93030312	S93030310	S93030292	S93030294	S93030269	S93030277	S93030326	S93030328	S93030134	S93030136	S93030120
Sample	Date	84 17-AUG-93	84.5 17-AUG-93	29 16-AUG-93	29 16-AUG-93	89.5 17-AUG-93	90 17-AUG-93	26 16-AUG-93	26 16-AUG-93	21.5 19-AUG-93	21.5 19-AUG-93	76 17-AUG-93	76.5 17-AUG-93	89 17-AUG-93	89 17-AUG-93	64.5 18-AUG-93	65 18-AUG-93	37 18-AUG-93	37 18-AUG-93	40 18-AUG-93	40.5 18-AUG-93	49 18-AUG-93	49 18-AUG-93	32 16-AUG-93	32 16-AUG-93	34 16-AUG-93
Sample	Depth(m)	84 17	84.5 17	29 16	29 16	89.5 1	90	26 16	26 1	21.5 19	21.5 19	76 1	76.5 1	89 1	89 1	64.5	65 1	37 1	37 1	40 1	40.5 1	49 1	49 1	32 1	32 1	8
	Longitude Depth(m)	70.62233	70.62233	70.87917	70.87917	70.49967	70.49967	70.90000	70.90000	70.82267	70.82267	70.65350	70.65350	70.42550	70.42550	70.42233	70.42233	70.40417	70.40417	70.26700	70.26700	70.65683	70.65683	70.83833	70.83833	70.83083
	Latitude	42.46650	42.46650	42.41383	42.41383	42.65883	42.65883	42.38933	42.38933	42.31917	42.31917	42.41717	42.41717	42.28983	42.28983	42.13333	42.13333	41.89783	41.89783	41.95767	41.95767	42.31217	42.31217	42.39317	42.39317	42.39033
	Station	Æ	Æ	FF10	FF10	FF11	FF11	FF12	FF12	FF13	FF13	FF14	FF14	FF4	FF4	FF	FF5	FF6	FF6	FF7	FF7	FF9	FF9	NF10	NF10	NF12

Massachusetts Water Resources Authority

1993 Sediment Chemistry - Task 12

Product Number S9398PST.WK1

,	9	34 16-AUG-93	S93030122	3.56		0.13	—	0.45 <	v	0.84	•-	. 22	0.23	-	0.25 f	0.94
34 16-AUG-93 S93030105 0	S93030105		0	0.50	-	0.14	—	0.29	.,	> 69'0		0.43	0.79	٧	0.37 <	0.60
34.5 16-AUG-93 S93030103 0	S93030103		0	0.80	—	0.07	-	0.27	.,	> 99.0	_	0.53	0.75	٧	0.35 <	0.57
34 19-AUG-93 S93030393	S93030393			96.0	—	90.0	—	0.33	V	0.67 f	_	0.70	0.90	٧	0.43 <	0.70
34 19-AUG-93 S93030397		S93030397		2.00		0.10	.	0.35	V	0.34	_	0.74	0.04	-	0.09 f	0.72
32 16-AUG-93 S93030090		293030090		0.12	—	0.02	_	0.31	V	0.74 <	_	0.18 f	0.84	٧	0.03 f	0.65
32.5 16-AUG-93 S93030088		893030088		0.18	-	0.02	—	0.30	V	0.72 <	_	0.26 f	0.82	٧	> 66.0	0.63
29.5 19-AUG-93 S93030372		S93030372		0.22	_	0.01	-	0.31	V	0.31 f	_	0.36	0.84	٧	0.29 f	0.65
30 19-AUG-93 S93030375		S93030375		0.27	-	0.04	—	0.31	V	0.08	_	0.31 f	0.83	٧	0.13 f	0.64
38 15-AUG-93 S93030010		S93030010		1.96	-	90.0	-	0.31	V	0.05 f	_	. 68.0	0.84	٧	0.40	0.65
38 15-AUG-93 S93030012		S93030012		0.56	-	0.19	-	0.29	v	> 0.70	_	0.50	0.79	٧	0.04 f	0.61
30.5 15-AUG-93 S93030029		S93030029		3.50		60.0	-	0.40	V	0.60		1.65	0.23	-	5.42	0.83
30.5 15-AUG-93 S93030031		S93030031		5.90		0.17	-	0.54	v	0.37 f		. 1.61	0.71	-	1.64	1.12
30.5 15-AUG-93 S93030043		S93030043		1.52	-	0.49	•	0.35	V	> 88.0		90:	0.95	٧	0.17 f	0.73
31 15-AUG-93 S93030045		S93030045		<u>-</u>		0.45	.	0.33	v	0.23 f		1.11	0.91	٧	0.43	0.70

Description of Qualifiers:

f = reported value below method detection limit

< = reported value is the method detection limit</p>

x = matrix interference

Massachusetts Water Resources Authority 1993 Sediment Chemistry – Task 12 Product Number S9398PST.WK1

			-	-	-			٧	٧	-	—	—				—	—			-		-	-		-	
DIELDRIN	ng/g dry wt	1.35	1.2	0.65	99.0	2.37	1.02	0.64	0.69	0.78	0.68	0.85	1.02	1.14	1.46	0.52	0.52	1.15	1.25	1.42	1.10	0. 44	0.45	1.00	0.67	1.97
ACL	_	٧	v	•	٧	٧	٧	٧	.	-	-	v	v	v	٧	٧	٧	٧	٧	٧	v	٧	٧	-	-	-
TRANS-NONACL DIELDRIN	ng/g dry wt	1.27	1.47	0.34	0.73	1.03	1.00	0.68	0.0	0.34	0.29	0.93	1.06	1.19	1.5	0.82	0.83	0.99	0.85	1.50	1.16	0.70	0.68	0.04	0.08	0.22
¥ Q		٧	•-	٧	٧	٧	٧	٧	-	-	—	٧	•	—	٧	٧	٧	٧	٧	٧	٧	٧	٧	-	—	-
CIS-CHLORDA	ng/g dry wt	1.18	1.0	0.68	0.68	96.0	0.93	0.63	0.20	0. 44.	0.25	0.87	0.31	0.67	1.41	0.76	0.78	0.92	0.79	1.41	1.08	99'0	0.64	0.25	0.20	0 [.] 89
		•	•	•	-	•	•	•-	-	•	٠	•	—	+	—	—	•	—	—	—	—	—	—	—	-	-
CL5(101)	ng/g dry wt	1.39	1.03	0.49	0.34	0.50	0.94	0.44	0.56	1.92	2.71	1.05	0.85	0.69	0.94	0.32	0.28	0.66	0.51	0.52	0.72	0:30	0.10	0.56	0.58	2.03
		—	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	-	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
2.4-DDE	ng/g dry wt	0.82	1.13	0.56	0.56	0.79	0.77	0.52	0.56	0.64	0.56	0.71	0.81	0.91	1.16	0.52	0.64	0.76	0.65	1.16	0.89	0.54	0.52	0.55	0.55	0.74
	_	-	—	٧	٧	٧	.	.	-		-	-	-	•	-	-	-	-	-	٧	-	—	•	—	-	
CL4(66)	ng/g dry wt	0.81	0.86	0.75	92.0	1.07	0.65	0.16	0.41	1.10	0.65	0.54	0.45	0.43	0.54	0.18	0.17	0.58	0.52	1.56	0.41	0.13	0.15	0.33	0.24	1.49
E S	_	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	v	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	-	٧	V
HEPTACHLOREPC	ng/g dry wt	1.39	1.61	0.80	0.80	1.13	1.10	0.74	0.80	0.91	0.79	1.02	1.16	1.31	1.66	0.00	0.92	1.09	0.93	1.66	1.27	0.77	0.75	0.49	0.78	1.06
		•-	•	٧	٧	٧	•	٧	•	•	•	-	—	-	-	-	—	•	-	-	-	•	-	-	٧	-
CL4(44)	ng/g dry wt	0.51	0.70	1.17	1.17	1.65	0.40	1.09	0.15	0.48	1.39	0.41	0.41	0.36	0.43	0.10	0.14	0.35	0.25	0.42	0.36	0.10	0.04	0.10	1.14	0.27
Sample	₽	893030200	\$93030198	S93030151	S93030153	S93030179	S93030182	S93030072	\$93030074	S93030352	S93030354	S93030214	S93030216	S93030234	S93030237	S93030312	S93030310	S93030292	\$93030294	S93030269	S93030277	\$93030326	S93030328	\$93030134	S93030136	\$93030120
Sample Sample	th(m) Date	84 17-AUG-93	84.5 17-AUG-93	29 16-AUG-93	29 16-AUG-93	89.5 17-AUG-93	90 17-AUG-93	26 16-AUG-93	26 16-AUG-93	21.5 19-AUG-93	21.5 19-AUG-93	76 17-AUG-93	76.5 17-AUG-93	89 17-AUG-93	89 17-AUG-93	64.5 18-AUG-93	65 18-AUG-93	37 18-AUG-93	37 18-AUG-93	40 18-AUG-93	40.5 18-AUG-93	49 18-AUG-93	49 18-AUG-93	32 16-AUG-93	32 16-AUG-93	34 16-AUG-93
Sar	Longitude Depth(m)	70.62233	70.62233	70.87917	70.87917	70.49967	70.49967	70.90000	00006:02	70.82267	70.82267	70.65350	70.65350	70.42550	70.42550	70.42233	70.42233	70,40417	70.40417	70.26700	70.26700	70,65683	70.65683	70.83833	70.83833	70.83083
	Long	70.6	70.6	70.8	70.8	70.4	70.4	70.5	70.5	3.07	70.8	70.6	70.6	70.4	70.	70.	70.4	70,	70,7	70,	70,	70,6	70.6	30.	70 8	70.
٠,	Latitude	42.46650	42.46650	42.41383	42.41383	42.65883	42.65883	42.38933	42.38933	42.31917	42.31917	42.41717	42.41717	42.28983	42.28983	42.13333	42.13333	41.89783	41.89783	41.95767	41.95767	42.31217	42.31217	42.39317	42.39317	42.39033
	Station	Æ	Ħ	FF10	FF10	FF11	FF11	FF12	FF12	FF13	FF13	FF14	FF14	FF4	FF4	FF5	FF5	FF6	FF6	FF7	FF7	FF9	FF9	NF10	NF10	NF12

Massachusetts Water Resources Authority

Product Number S9398PST.WK1

																			11
NF12	42.39033 70.83083	70.83083	34 16-AUG-93	S93030122	0.17	—	1.04	v	0.62 f	Ü	0.73 <	1.05	-	0.65	٠.	0.17	-	1.12	
NF14	42.38767	70.82400	34 16-AUG-93	S93030105	0.98	٧	0.67	v	0.27 f	Ü	0.47 <	0.22	-	99.0		0.03	.	1.17	
NF14	42.38767	70.82400	34.5 16-AUG-93	S93030103	0.93	v	0.63	v	0.49 f	Ü	> 44	0.37	•	0.33	—	0.21	-	1.23	
NF16	42.37767	70.83800	34 19-AUG-93	893030393	1.12	V	0.77	v	0.31 f	Ü	0.54 <	0.42	-	0.11	•	0.07	.	0.78	
NF16	42.37767	70.83800	34 19-AUG-93	293030397	0.15	—	0.80	v	0.65 f	Ü	0.56 <	0.70	-	0.30	—	0.11	-	1.22	
NF17	42.38150	70.81467	32 16-AUG-93	060080868	0.11	.	0.72	v	0.06 f	Ŭ	0.50 <	0.10	.	0.61	v	0.65	v	0.21	
NF17	42.38150	70.81467	32.5 16-AUG-93	893030088	1.01	٧	69.0	v	0.11 f	Ŭ	0.48 <	90.0	+	0.59	v	0.63	v	0.28	
NF2	42.33783	70.82883	29.5 19-AUG-93	S93030372	0.07	.	0.72	v	> 89.0		0.11 f	0.08	.	0.05	.	0.65	v	0.62	v
NF2	42.33783	70.82883	30 19-AUG-93	893030375	0.07	-	0.71	v	> 29.0		0.06 f	0.08	-	0.03	—	0.64	v	0.61	v
NF4	42.41550	70.80600	38 15-AUG-93	893030010	0.08	.	0.72	v	0.68 <		0.13 f	0.10	-	0.07	-	0.03	.	0.62	v
NF4	42.41550	70.80600	38 15-AUG-93	S93030012	0.03	-	29.0	v	0.64 <		0.39 f	0.11	-	0.03	-	0.61	v	0.58	V
NF8	42.40017	70.86383	30.5 15-AUG-93	893030029	0.46	-	0.92	v	1.20	Ū	> 49.0	2.38		0.82		0.26	.	96.0	
NF8	42.40017	70.86383	30.5 15-AUG-93	S93030031	0.95	.	1.24	v	2.72	J	> 78.0	5.28		1.43		0.65	.	4.04	
NF9	42.40100	70.84550	30.5 15-AUG-93	S93030043	0.20	-	0.81	V	0.32 f	Ū	0.56 <	0.64	-	0.68	v	90.0	.	0.95	
PF9		42.40100 70.84550	31 15-AUG-93	S93030045	0.14	-	0.61	.	0.29 f	Ū	0.54 <	0.63	-	99.0	v	0.70	v	1.10	
									1										

Description of Qualifiers:

f = reported value below method detection limit

< = reported value is the method detection limit</p>

x = matrix interference

¹⁹⁹³ Sediment Chemistry - Task 12

Massachusetts Water Resources Authority 1993 Sediment Chemistry – Task 12 Product Number S9398PST WK1

		-	-	-	-	-	-	-	-			-	-	-	-	.	.	.	-	.	-	-	-	.	-	
CL6(153)	ng/g dry wt	1.80	1.19	. =	0.77	0.84	0.94	0.64	Ξ.	3.21	4.87	1.67	<u>4</u>	1.40	1.4 4	0.43	0.61	1.62	96.0	1.0	1.60	0.39	0.27	0.78	0.93	4.66
0	ß.																							.,	.,	.,
_	5	_	v ~	v ~	٧	٧	V ~	٧	v m	V	٧ س	_	۷ ۵	٧	۷ ۵	v _	٧ س	٧	٧ 	_	_	_	ν •	۷	۷ ۵	۷
2,4-007	ng/g dry w	1.1	1.28	0.63	0.64	0.90	0.87	0.59	0.63	0.72	0.63	0.81	0.92	9.	1.32	0.71	0.73	0.86	0.74	<u></u>	<u>6</u> .	0.61	0.59	0.62	0.62	9.0
		•	-	-	-			—	-		-					-	-			-		-	-	-	-	•
4,4-000	ng/g dry wt	2.64	1.86	0.77	0.84	2.46	2.75	0.53	0.81	1.27	0.90	1.61	1.90	2.65	2.19	0.70	0.93	2.25	1.55	1.75	2.05	0.71	0.45	0.73	0.86	3.67
		•	•		•	+			•	•				٠	•	-	٠	•	•	•		•	-	٠	٠	•
CLS(118)	ng/g dry wt	2.35	1.72	0.80	0.89	0.98	1.60	0.92	1.29	3.99	5.23	1.61	1.57	1.98	1.97	0.82	±.±	2.92	1.36	1.61	2.82	0.81	0.49	1.13	1.21	5.58
	_	v	٧	v	٧	٧	v	٧	٧	v.	٧	٧	٧	٧	٧	v	v	٧	٧	٧	٧	٧	V	٧	٧	٧
ENDRIN	ng/g dry wt	3.45	3.99	1.98	1.98	2.79	2.72	1.84	1.97	2.25	1.96	2.52	2.87	3.23	4.10	2.25	2.27	2.69	2.31	4.09	3.15	<u>6</u> .	1.85	<u>+</u>	1.93	2.62
_	ğ	.,	.,																	.,			.,			
٥	¥	v	v ص	•	4	7 +	8	•	2	6	2	5	•	4	7	7 +	₽	4	9	ν ω	9	•	0	2	φ	4
2,4-DDD	ng/g dry wt	1.50	1.73	0.40	0.34	0.77	0.98	0.20	0.52	0.69	0.42	0.75	0.60	0.94	0.57	0.17	0.35	0.74	0.36	1.78	1.23	0.50	0.80	0.32	1.08	2.64
		٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
CL4(77)	ng/g dry wt	1.81	2.10	9.	40.	1.47	1.43	0.97	1.03	1.18	1.03	1.33	1.51	1.70	2.15	1.17	1.19	1.41	1.21	2.15	1.65	1.0	0.97	1.02	1.0	1.38
							٠						-			•						-	—			
4,4-DDE	ng/g dry wt	1.63	1.1	0.65	0.50	1.05	1.54	0.48	0.93	1.45	06.0	1.12	1.12	1.48	1.29	0.45	0.59	1.21	0.71	1.13	1.56	0.28	0.20	0.99	1.01	3.85
Sample	۵	93030200	393030198	593030151	593030153	393030179	393030182	593030072	393030074	393030352	393030354	393030214	393030216	393030234	393030237	593030312	593030310	593030292	393030294	393030269	393030277	593030326	593030328	593030134	593030136	393030120
San	=	8930	8930	8930	8930	8930	8930	8930	8930	8930	8930	8930	8930	8930	8930	8930	8930	8930	8930	S930	8930	8930	8930	8930	8930	8930
<u>o</u>	_	-93	-93	-93	-93	-93	-93	-93	-93	-93	-93	-93	-93	-93	-93	-93	-93	-93	-93	-93	-93	-93	-93	-93	-93	-93
Sample	Date	84 17-AUG-93	84.5 17-AUG-93	29 16-AUG-93	29 16-AUG-93	89.5 17-AUG-93	90 17-AUG-93	26 16-AUG-93	26 16-AUG-93	21.5 19-AUG-93	21.5 19-AUG-93	76 17-AUG-93	76.5 17-AUG-93	89 17-AUG-93	89 17-AUG-93	64.5 18-AUG-93	65 18-AUG-93	37 18-AUG-93	37 18-AUG-93	40 18-AUG-93	40.5 18-AUG-93	49 18-AUG-93	49 18-AUG-93	32 16-AUG-93	32 16-AUG-93	34 16-AUG-93
_	~	17.	17	9 16	16	. 17.	. 17	9 16	9 16	9	9	3 17	. 17	17.	17.	9	9 18	48	8	9	8	9 18	9 18	2 16	9	÷ 16
Sample	epth(m	8	84.5	8	83	89.5	8	8	88	21.5	21.5	76	76.5	8	8	64.5	8	37	37	4	40.5	46	46	32	8	8
0,	ص و	83	တ္ထ			37	37	8	8	22	22	ဂ္ဂ	က္က	ဂ္ဂ	ဂ္ဂ	833	က္ထ	17	17	8	8	83	83	33	833	83
	Longitude Depth(m)	70.62233	70.62233	70.87917	70.87917	70.49967	70.49967	70.90000	70.90000	70.82267	70.82267	70.65350	70.65350	70.42550	70.42550	70.42233	70.42233	70.40417	70.40417	70.26700	70.26700	70.65683	70.65683	70.83833	70.83833	70.83083
		20	20	83	83	83	83	33	33	17	17	17	17	83	83	33	33	83	83	29	29	17	17	17	17	83
	Latitude	42.46650	42.46650	42.41383	42.41383	42.65883	42.65883	42.38933	42.38933	42.31917	42.31917	42.41717	42.41717	42.28983	42.28983	42.13333	42.13333	41.89783	41.89783	41.95767	41.95767	42.31217	42.31217	42.39317	42.39317	42.39033
	Station	Ħ	Ħ	FF10	FF10	FF11	FF11	FF12	FF12	FF13	FF13	FF14	FF14	FF4	FF4	FF5	FF5	FF6	FF6	FF7	FF7	FF9	FF9	NF10	NF10	NF12

Massachusetts Water Resources Authority

Product Number S9398PST.WK1

			-		—	-	-	—	-	-			-	-
3,35	0.24	0.38	0.56	1.62	0.11	0.08	0.13	0.15	0.14	0.11	5.33	15.92	1.03	1.04
v	٧	٧	٧	v	٧	٧	v	٧	٧	٧	٧	-	٧	٧
0.82	0.53	0.50	0.61	0.63	0.57	0.55	0.57	0.56	0.57	0.54	0.73	0.36	0.64	0.61
•	-	•-	•	•	-	-	-	-	•	•	٠	•	-	-
2.63	0.40	0.50	0.52	1.36	0.07	0.10	0.10	0.10	0.13	0.16	4.38	10.15	0.92	0.72
٠	-	•	•-	•	-	-	-	—	-	•-	•		•	•
4.87	0.36	0.58	09.0	2.38	0.15	0.15	0.13	0.14	0.34	0.21	6.54	14.46	1.40	0.95
v	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
2.56	1.65	1.57	1.90	1.97	1.77	1.71	1.77	1.75	1.77	1.67	2.26	3.07	1.99	1.91
	-	-	-		—	٧	—	-	—	-			-	-
1.93	0.44	0.46	0.45	1.10	0.10	0.75	0.16	0.09	0.29	0.11	2.56	5.77	0.55	0.35
v	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
1.35	0.87	0.82	1.00	1.04	0.93	0.90	0.93	0.92	0.93	0.88	1.19	1.61	1.05	1.0
	•				-	•	•	•	-	-	•			
2.73	0.47	0.63	0.52	1.47	0.10	0.12	0.09	0.10	0.33	0:30	3.40	6.84	1.21	1.01
S93030122	S93030105	S93030103	893030393	893030397	893030090	893030088	S93030372	S93030375	S93030010	S93030012	S93030029	S93030031	S93030043	S93030045
34 16-AUG-93	34 16-AUG-93	34.5 16-AUG-93	34 19-AUG-93	34 19-AUG-93	32 16-AUG-93	32.5 16-AUG-93	29.5 19-AUG-93	30 19-AUG-93	38 15-AUG-93	38 15-AUG-93	30.5 15-AUG-93	30.5 15-AUG-93	30.5 15-AUG-93	31 15-AUG-93
70.83083	70.82400	70.82400	70.83800	70.83800	70.81467	70.81467	70.82883	70.82883	70.80600	70.80600	70.86383	70.86383	70.84550	70.84550
NF12 42.39033 70.83083	42.38767	42.38767	42.37767	42.37767	42.38150	42.38150	42.33783	NF2 42.33783	42.41550	42.41550	42.40017	42.40017	42.40100	42.40100 70.84550
NF12	NF14	NF14	NF16	NF16	NF17	NF17	NF2	NF2	NF4	NF4	NF8	NF8	9 P	N 5

Description of Qualifiers:

f = reported value below method detection limit

< = reported value is the method detection limit</p>

Massachusetts Water Resources Authority 1993 Sediment Chemistry -- Task 12 Product Number S9398PST.WK1

		v	v	٧	v	v	v	v	٧	٧	٧	٧	٧	v	v	v	٧	v	٧	v	v	v	٧	v	v	v
MIREX	ng/g dry wt	1.50	1.73	98.0	0.86	1.21	1.18	0.80	0.86	0.98	0.85	1.10	1.25	1.	1.78	0.97	0.99	1.17	1 .8	1.78	1.37	0.83	0.80	0.84	0.84	1.14
	5	-	_	_	_			.						—	_		.	—			
ĝ	¥	īΣ	Ξ.	٠ ۲	<u>ი</u>	စ္က	. 25	ရွ	စ္က	<u>6</u> .	ဖွ	Ξ	& &	و و	55	<u></u>	₩	8	0.48	စ္က	0.55	0.23	0.24	92.0	1.21	5.45
CL7(180)	ng/g dry wt	1.05	0.71	0.21	0.43	0.59	0.67	0.59	0.89	<u>.</u>	1.96	1.1	÷.	0.79	0.75	0.19	0.31	06'0	ò	0.30	ö	0.0	ö	0		ις
		-	-	-	-	-		-		-		-	-	-	-	-	—	4	-	٧	-	-	-		•	•
CL6(128)	ng/g dry wt	96.0	0.64	0.40	0.46	0.44	1.19	0.19	1.24	0.55	1.24	0.57	0.53	0.46	0.43	0.14	0.18	0.47	0:30	1.24	0.33	0.14	0.12	1.09	1.08	11.37
		-	-	-	-	+	+ -	-	-		•			-	-	-		-	—	-	-	+	-	+	+	
CL7(187)	ng/g dry wt	0.78	0.51	0.35	0.25	0.20	0.33	0.52	0.54	1.59	1.08	9.0	0.74	0.65	0.57	0.19	0.25	0.79	0.34	0.26	0.39	0.19	0.14	0.55	0.70	4.02
		٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
CL5(126)	ng/g dry wt	1.83	2.11	1.05	. 1.05	1.48	1.44	0.97	40. 40.	1.19	1 .	<u>4</u>	1.52	1.71	2.17	1.18	1.20	1.42	1.22	2.17	1.67	1.01	0.98	1.03	1.02	1.39
	ĝ																									
<u>~</u>	¥	O	æ	ω.	N	_	Q	D		_	თ			٥.	o	4		. ω	-	ი	თ	ις ·	დ	_	ω.	თ
CL6(138)	ng/g dry wt	3.99	3.68	2.88	1.42	<u>1.9</u>	2.22	2.19	3.47	8.91	9.13	2.83	2.68	3.12	3.16	<u>4</u> .	2.20	4.48	2.11	2.69	3.23	1.35	1.03	2.2	2.68	10.09
		٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	-	+	+
둅	₹ ₹	8	2.19	8	8	ξÇ.	49	9	8	83	8	, ဗ္တ	1.58	1.7	2.25	.2	.25	47	.26	2.24	1.73	.05	<u>.</u>	0.40	98.0	8.
4,4-DDT	ng/g dry w	_		_	_	_	_	_	_		<u> </u>	_	_		_	_			_		_	_	_			
<u>.</u>	. \$	0	. 10	4	a	<u>ო</u>	0	0	ω-	Ω.	8	4	4	cu ·	ω	0	თ	_	4		4.	9	თ	ω	۲,	o
CL5(105)	ng/g dry wt	1.90	0.85	0.74	1.12	0.23	0.80	09.0	0.48	4.05	3.63	0.84	0.44	1.82	0.78	0.90	1.69	2.91	0.24	1.27	1.24	0.76	0.19	1.08	1.47	6.70
Sample	₽	893030200	S93030198	S93030151	S93030153	S93030179	93030182	\$93030072	\$93030074	93030352	S93030354	S93030214	\$93030216	93030234	93030237	S93030312	S93030310	93030292	S93030294	893030269	S93030277	S93030326	S93030328	S93030134	S93030136	S93030120
SS		S93(S93(S93	S93(S93(S93(S93(893	S93(893	893	893	893	893	893	Ses	893	893	S93	893	S93	Ses	Ses	893	893
		88	93	83	93	83	83	88	88	93	93	88	88	88	93	88	88	88	93	93	8	89	89	93	89	93
Sample	Date	84 17-AUG-93	84.5 17-AUG-93	29 16-AUG-93	29 16-AUG-93	89.5 17-AUG-93	90 17-AUG-93	26 16-AUG-93	26 16-AUG-93	21.5 19-AUG-93	21.5 19-AUG-93	76 17-AUG-93	76.5 17-AUG-93	89 17AUG-93	89 17-AUG-93	64.5 18-AUG-93	65 18-AUG-93	37 18AUG-93	37 18-AUG-93	40 18-AUG-93	40.5 18-AUG-93	49 18-AUG-93	49 18-AUG-93	32 16-AUG-93	32 16-AUG-93	34 16-AUG-93
SS	_	7-A	7-A	9-A	9-A	7-A	7-A	9-A	9-A	A-6	9-A	7-A	7-A	7A	7-A	8-A	8-A	8A	8-A	8-A	8-A	8-A	8-A	9-`A	9-A	9A
<u>o</u>	Ê	7.	τύ. —	2	50	75.	-	26 1	56 1	5.	5.	.1 9	ιύ —	93	93	ιύ	33	37 1	37 1	5	5.	19	19	32 1	32 1	¥ -
Sample	pth(w	8	.,	.,	8	0,	•	.,	2	2	,-	92	~	~	4	•	•	• • •	•	4	•	•	••	•	••
တ	۵	က	က	2	_	2	2	0	0	2	_	0	0	0	0	က	က	2	7	0	0	က	က	က	က	တ
	jitud	70.62233	70.62233	70.87917	70.87917	70.49967	70.49967	70.90000	70.90000	70.82267	70.82267	70.65350	70.65350	70.42550	70.42550	70.42233	70.42233	70.40417	70.40417	70.26700	70.26700	70.65683	70.65683	70.83833	70.83833	70.83083
	Longitude Depth(m)	70.6	70.6	9.0	70.8	Š	9	9.0	20.5	20.5	õ	6	70.	9	è	è	6	, ,	ò	9	9	9.	6.	6.	8	6
		55	ည်	ထ္ထ	83	83	833	333	333	117	117	۲۲	717	383	983	333	333	783	783	29,	292	712	712	317	317	333
	Latitude	42.46650	42.46650	42.41383	42.41383	42.65883	42.65883	42.38933	42.38933	42.31917	42.31917	42.41717	42.41717	42.28983	42.28983	42.13333	42.13333	41.89783	41.89783	41.95767	41.95767	42.31217	42.31217	42.39317	42.39317	42.39033
					-	-																				
	Station	Æ	Æ	FF10	FF10	FF1	FF	FF12	FF12	FF13	FF13	FF14	FF14	FF4	FF4	FF5	FF	FF6	FF6	FF	FF7	FF9	FF9	NF10	NF10	NF12

Massachusetts Water Resources Authority

Product Number S9398PST.WK1

NF12	NF12 42.39033 70.83083	70.83083	34 16AUG-93 SS	S93030122	99.6		0.46 f	ത്	9.76	1.36	v	1.70	2.50		3.05	1.1	v	
NF14	42.38767	70.82400	34 16-AUG-93	S93030105	0.12	<u>_</u>	> 16.0	õ	. 08.0	0.88	٧	0.45 f	0.23	+	0.16 f	0.72	v	
NF14	NF14 42.38767	70.82400	34.5 16-AUG-93	\$93030103	0.20	_	> 98.0	÷	. 22	0.83	٧	0.32 f	0.38	+	0.30 f	0.87		
NF16	NF16 42.37767	70,83800	34 19AUG-93 SS	893030393	1.12		<u>8</u> .	÷	. 96.1	1.0	٧	0.25 f	0.37	-	0.48 f	0.83	v ~	
NF16	42.37767	70.83800	34 19-AUG-93	293030397	4.89		0.45 f	4.	. 29.4	1.05	٧	0.76 f	2.47		1.43	0.94		
NF17	NF17 42.38150	70.81467	32 16-AUG-93	060080868	90.0	<u> </u>	0.08	o'	0.32 f	0.94	٧	0.02 f	0.04	-	0.02 f	0.77	v _	
NF17	42.38150	70.81467	32.5 16-AUG-93	893030088	0.02		0.94	Ö	0.31 f	0.91	٧	0.02 f	0.04	-	0.03 f	0.75	v 10	
NF2	42.33783	70.82883	29.5 19-AUG-93	S93030372	0.05	-	> 76.0	Ö	0.48 f	0.94	٧	0.05 f	0.02	+	0.08 f	0.77	v	
NF2	42.33783	70.82883	30 19~AUG-93	S93030375	90.0	<u>_</u>	0.15 f	Ö	0.47 f	0.93	٧	0.07 f	0.03	+	0.12 f	0.76	٧	
NF4	42.41550	70.80600	38 15 AUG-93	S93030010	0.03	-	0.13 f	Ö	0.48 f	0.94	٧	0.11 f	0.07	.	0.14 f	0.77	v ~	
NF4	42.41550	70.80600	38 15-AUG-93	S93030012	0.87	v	0.12 f	Ö	0.61 f	0.88	٧	0.05 f	0.0	-	0.11 f	0.72	٧ ۵	
NF8	42.40017	70.86383	30.5 15-AUG-93	S93030029	6.49		0.94 f	13.	3.41	1.20	v	2.36	4.56		4.21	0.98	٧ «	
NF8	42.40017	70.86383	30.5 15AUG-93	S93030031	9.89		1.83	32.	32.34	1.63	٧	7.34	10.15		12.12	48.	٧	
N F9	NF9 42.40100	70.84550	30.5 15~AUG-93	S93030043	1.35		0.20 f	2	2.58	1.05	v	0.62 f	1.24		1.09	0.87	> 2	
NF9	NF9 42.40100 70.84550	70.84550	31 15-AUG-93 SS	S93030045	0.93	-	0.39 f	κi	2.49	1.0	v	0.56 f	1.16		0.97	0.83	٧ «	

Description of Qualifiers:

f = reported value below method detection limit

< = reported value is the method detection limit</p>

Massachusetts Water Resources Authority 1993 Sediment Chemistry – Task 12 Product Number S9398PST.WK1

		—	-	٧	٧	٧	-	—	-	—	—	-	.	-	—	-	-		v	v	.	-	v	۰	۰	
CL10(209)	ng/g dry wt	69.0	0.37	1.09	1.09	1.54	0.43	0.28	0.29	0.39	0.22	0.29	0.41	0.47	0.40	0.12	0.15	0.56	1.27	2.26	0.46	90'0	1.02	0.24	0.36	1.04
	_	—	_	v	v	v	-	-	—	_	-	-	-		-	-	-	-	v	v	-	—	٧	-	٠	
CL9(206)	ng/g dry wt	0.40	0.21	1.67	1.67	2.36	0.28	0.08	0.15	0.37	0.23	0.22	0.26	0.34	0.33	90.0	0.11	0.31	1.95	3.45	0.21	0.10	1.56	0.32	0.87	3.89
		-	٧	٧	V	٧		+	-	-	-	٧	-	-	٧	-	٧	-	٧	٧	٧	٧	٧	-	-	•
CL8(195)	ng/g dry wt	0.25	2.11	1.05	1.05	1.48	0.09	0.04	0.07	0.33	0.17	1.34	0.24	0.11	2.17	0.07	1.20	0.17	1.22	2.17	1.67	1.01	0.98	0.18	0.38	1.55
		-	-	-	-	-	-	×	×	•	—	—	-	-	—	-	-	-	-	-	-	-	4-	×	×	×
CL7(170)	ng/g dry wit	1.23	0.97	0.45	0.77	0.83	0.85	5.41	7.65	1.36	1.04	1.07	1.12	1.62	0.93	0.42	0.42	1.05	0.57	0.74	0.64	0.34	0.27	4.79	5.57	18.87
Sample	₽	S93030200	S93030198	S93030151	S93030153	S93030179	S93030182	\$93030072	S93030074	S93030352	S93030354	S93030214	S93030216	S93030234	S93030237	S93030312	S93030310	S93030292	S93030294	S93030269	S93030277	S93030326	S93030328	S93030134	S93030136	S93030120
Sample	Date	84 17-AUG-93	84.5 17-AUG-93	29 16-AUG-93	29 16-AUG-93	89.5 17-AUG-93	90 17-AUG-93	26 16-AUG-93	26 16-AUG-93	21.5 19-AUG-93	21.5 19-AUG-93	76 17-AUG-93	76.5 17-AUG-93	89 17-AUG-93	89 17-AUG-93	64.5 18-AUG-93	65 18-AUG-93	37 18-AUG-93	37 18-AUG-93	40 18-AUG-93	40.5 18-AUG-93	49 18-AUG-93	49 18-AUG-93	32 16-AUG-93	32 16-AUG-93	34 16-AUG-93
Sample	Depth(m)	8	84.5	8	8	89.5	8	8	28	21.5	21.5	92	76.5	88	88	64.5	65	37	37	4	. 40.5	49	49	32	32	8
	Longitude	70.62233	70.62233	70.87917	70.87917	70.49967	70.49967	70.90000	70.90000	70.82267	70.82267	70.65350	70.65350	70.42550	70.42550	70.42233	70.42233	70.40417	70.40417	70.26700	70.26700	70.65683	70.65683	70,83833	70.83833	70.83083
	Latitude	42.46650	42.46650	42.41383	42.41383	42.65883	42.65883	42.38933	42.38933	42.31917	42.31917	42.41717	42.41717	42.28983	42.28983	42.13333	42.13333	41.89783	41.89783	41.95767	41.95767	42.31217	42.31217	42.39317	42.39317	42.39033
	Station	Æ	Æ	FF10	FF10	FF11	FF11	FF12	FF12	FF13	FF13	FF14	FF14	FF4	FF4	FF	FF5	FF6	FF6	FF7	FF7	FF9	FF9	NF10	NF10	NF12

B - 22

Massachusetts Water Resources Authority

Product Number S9398PST.WK1

-	-	-	-	-	٧	٧	—	—	—	—	٠		-	-
0.54	0.12	0.12	0.17	0.45	0.98	0.94	0.02	0.02	0.05	0.03	1.78	5.80	0.30	0.28
-	-	-	-	-	-	-	-	-	-	-	-		-	-
96:0	0.03	90.0	0.11	0.36	0.01	0.10	90.0	0.03	90.0	0.07	0.83	2.93	0.42	0.44
-	-	—	-	-	٧	٧	٧	٧	-	-	-		—	ţ
0.79	0.03	90.0	0.10	0.25	0.94	0.91	0.94	0.93	0.01	0.01	0.94	2.40	0.21	0.23
×	×	×	×	×	¥	*	×	×	×	×	×	×	×	×
14.38	2.09	3.06	4.79	8.59	0.83	0.62	1.11	1.17	1.29	1.73	21.35	43.50	5.56	5.45
\$93030122	\$93030105	\$93030103	S93030393	S93030397	0600000668	893030088	\$93030372	S93030375	\$93030010	\$93030012	S93030029	S93030031	\$93030043	S93030045
34 16-AUG-93	34 16 AUG-93	34.5 16-AUG-93	34 19AUG-93	34 19-AUG-93	32 16-AUG-93	32.5 16-AUG-93	29.5 19~AUG-93	30 19-AUG-93	38 15-AUG-93	38 15-AUG-93	30.5 15-AUG-93	30.5 15-AUG-93	30.5 15-AUG-93	31 15-AUG-93
70.83083	70.82400	70.82400	70.83800	70.83800	70.81467	70.81467	70.82883	70.82883	70.80600	70.80600	70.86383	70.86383	70.84550	70.84550
42.39033	42.38767	42.38767	42.37767	42.37767	42.38150	42.38150	42.33783	42.33783	42.41550	42.41550	42.40017	42.40017	42.40100	42.40100
NF12	NF14	NF14	NF16	NF16	NF17	NF17	NF2	NF2	NF4	NF4	NF8	NF8	OFN	NF9

Description of Qualifiers:

¹⁹⁹³ Sediment Chemistry - Task 12

f = reported value below method detection limit

< = reported value is the method detection limit</p>

x = matrix interference

Massachusetts Water Resources Authority 1993 Sediment Chemistry – Task 12 Product Number S9398PST.WK1

		v	v	v	v	v	v	v	v	v	v	v	v	v	v	v	٧	v	v	v	v	v	٧	٧	٧	٧
ALDRIN	ng/g dry wt	1.26	1.46	0.72	0.73	1.02	8.	0.67	0.72	0.82	0.72	0.92	1.05	1.18	1.50	0.81	0.83	0.98	0.84	1.50	1.15	0.70	0.68	0.71	0.71	96:0
	5,			v	v	v		v	—							-	-	-	—			.	-	v	v	-
52)	¥	96.0	23	0.45	0.45	0.63	0.92	0.45	0.19	1.45	26'0	0.67	0.73	0.85	96.0	0.26	0.29	09.0	0.28	1.29	0.89	0.33	0.12	0.44	0.44	0.34
CL4(52)	ng/g dry wt	ö	÷	ö	ö	ö	ö	Ö	Ö	-	Ö	Ö	Ö	o	o	o	o	o	o	-	0	0	0	0	0	•
뜐	ŧ.	v 	v ~	٧ -	٧ -	~	٧ ٧	v m	٧	٧ _	٧ س	۷	٧ ~	Α.	N N	V W	ν ω	ν ω	0	ιο V	0	·	ν Φ	۷ ور	۷ ي	,
HEPTACHLOR	ng/g dry wt	1 .	1.90	0.94	9.0	1.33	1.29	0.88	0.94	1.07	0.93	1.20	1.37	<u>1</u> .5	1.95	1.06	1.08	1.28	1.10	1.95	1.50	0.91	0.88	0.92	0.92	0.47
-		٧	٧	٧	٧	٧	٧	٧		٧	٧	٠			٧	•	٧	•	٧	•	٧	٠	-	٠	٧	•
CL3(28)	ng/g dry wt	0.71	0.82	0.40	0.41	0.57	0.56	0.38	0.94	0.46	0.40	1.65	0.93	1.23	0.84	0.60	0.47	1.56	0.47	2.25	0.65	0.65	0.26	0.82	0.39	1.06
	_	v	v	٧	٧	٧	٧	٧	-	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	-
CL3(18)	ng/g dry wt	<u>4</u> .	1.67	0.83	0.83	1.17	1.14	0.77	0.22	0.94	0.82	9.1	1.20	1.35	1.71	0.93	0.95	1.12	96.0	1.71	1.32	0.80	0.77	0.81	0.81	0.93
	Ş,	v	v	v	v	v	v	V	v	v	V	v	v	v	v	v	v	v	v	v	V	v	v	v	v	٧
ų.	¥	-	o O	ñδ	ιδ	٠ 9	Θ	٠ ي	¥	დ	4	4	B		2	0.39	0.40	0.47	0.40	0.72	0.55	0.33	0.32	0.34	934	0.46
LINDANE	ng/g dry wt	09.0	0.70	0.35	0.35	0.49	0.48	0.32	0.34	0.39	0.34	0.44	0.50	0.57	0.72	ö	ŏ	ò	ò	Ö	ö	ö	ö	ö	ö	ò
80					•	-		٧	٧	-	+	•	-	•	+	—	•	-	—	•	-		-	•	-	-
HEXACHLOROB	ng/g dry wt	1.56	2.52	1.19	0.73	0.23	0.85	0.45	0.48	0.26	0.40	0.63	0.54	0.93	0.45	0.48	1.8	2.27	0.36	4.31	0.47	99.0	0.25	0.64	0.09	0.14
						•	•	•	-	•	•					•	•	•	•	•	•	•	•	-	-	٠
CL2(08)	ng/g dry wt	7.80	6.85	2.07	2.18	2.83	6.64	<u>1</u> .0	1.22	4.75	5.04	4.25	3.82	6.9	5.72	3.58	2.88	6.52	2.11	12.02	6.10	1.95	1.47	1,45	1.38	5.20
Sample	٥	893030200	S93030198	S93030151	S93030153	S93030179	S93030182	S93030072	S93030074	S93030352	S93030354	S93030214	S93030216	S93030234	S93030237	S93030312	S93030310	S93030292	S93030294	S93030269	S93030277	S93030326	S93030328	S93030134	S93030136	S93030120
S		S93	S93	Ses	893	893	893	893	893	S	Ses	S	S	S	Ses	S	SS.	SS	S	SS	SS	S	89	S	S	SS
Sample	Date	84 17-AUG-93	84.5 17-AUG-93	29 16-AUG-93	29 16-AUG-93	89.5 17-AUG-93	90 17-AUG-93	26 16-AUG-93	26 16-AUG-93	21.5 19-AUG-93	21.5 19-AUG-93	76 17-AUG-93	76.5 17-AUG-93	89 17-AUG-93	89 17-AUG-93	64.5 18-AUG-93	65 18-AUG-93	37 18-AUG-93	37 18-AUG-93	40 18-AUG-93	40.5 18-AUG-93	49 18-AUG-93	49 18-AUG-93	32 16-AUG-93	32 16-AUG-93	34 16-AUG-93
Sample	pth(m)	17	84.5 17	83	83	89.5 17	90	26 16	26 16	21.5 18	21.5 18	76 1	76.5 1	89 1	.1	64.5 1	65	37 1	37 1	4	40.5	49 1	49 1	32 1	32 1	8
B	Longitude Depth(m)	70.62233	70.62233	70.87917	70.87917	70.49967	70.49967	00006:02	70.90000	70.82267	70.82267	70.65350	70.65350	70.42550	70.42550	70.42233	70.42233	70.40417	70.40417	70.26700	70.26700	70.65683	70.65683	70.83833	70.83833	70.83083
	Long	70.6			70.8	70.4	70.4	70.5	70.9	70.8	70.8	70.E	70.6		70.4											
	Latitude	42.46650	42.46650	42.41383	42.41383	42.65883	42.65883	42.38933	42.38933	42.31917	42.31917	42.41717	42.41717	42.28983	42.28983	42.13333	42.13333	41.89783	41.89783	41.95767	41.95767	42.31217	42.31217	42.39317	42.39317	42.39033
	Station	Æ	Æ	FF10	FF10	FF11	FF11	FF12	FF12	FF13	FF13	FF14	FF14	FF4	FF4	FF	FF5	PF6	PF6	FF7	FF7	FF9	FF9	NF10	NF10	NF12

Massachusetts Water Resources Authority

Product Number S9398PST.WK1

NF14 42.38767 70.82400 34.16-AUG-98 S993030165 0.50 1 0.49 0.49 0.69 0.49 0.49 0.69 0.49 0.49 0.49 0.69 0.49 0.49 0.69 0.49 0.69 0.	NF12	NF12 42.39033 70.83083	70.83083	34 16-AUG-93	S93030122	3.56		0.13 f	Ö	0.45 <	o.	0.84 f	7	1.25	0.23	æ	0.25	-	> 96.0
42.38T67 70.82400 34.5 Ie-AUG-93 S93030103 0.80 4 0.07 4 0.27 6 0.65 6 0.53 6 0.35 6 0.67 7 0.67 7 0.07 0 0.07 7 0.05 7 0 <t< td=""><td>NF14</td><td>42.38767</td><td></td><td>34 16-AUG-93</td><td>S93030105</td><td>0.50</td><td>-</td><td>).14 f</td><td>Ö</td><td>۷ 8</td><td>O</td><td>۷ %</td><td>ö</td><td></td><td>0.7</td><td>٧ ص</td><td>0.37</td><td>٧</td><td>> 09:0</td></t<>	NF14	42.38767		34 16-AUG-93	S93030105	0.50	-).14 f	Ö	۷ 8	O	۷ %	ö		0.7	٧ ص	0.37	٧	> 09:0
42.37767 70.88800 34 19-AUG-93 5930303939 0.96 4 0.06 6 6.67 6 7 0.70 0.09 6 0.43 6 6.67 6 0.74 0.09 6 0.43 6 0.44 6 0.44 0.09 6 0.49 6 0.44 0.09 6 0.44 0.09 6 0.44 0.09 6 0.44 0.09 6 0.44 0.09 6 0.44 0.09 6 0.44 0.09 6 0.44 0.09 6 0.44 0.09 6 0.44 0.09 6 0.44 0.09 6 0.44 0.09 6 0.09 6 0.09 6 0.09 6 0.09 6 0.09 6 0.09 6 0.09 6 0.09 6 0.09 6 0.09 6 0.09 6 0.09 6 0.09 0.09 0.09 0.09 0.09 0.09 <	NF14		70.82400	34.5 16-AUG-93	S93030103	0.80	-).07 f	0	27 <	Ö	v 99	ö	23	0.7	٧	0.35	٧	0.57 <
42.38T67 70.88800 34 19-AUG-93 593030397 2.00 1 0.35 4 0.74 0.04 6 6 6 6 6 7 7 7 0.04 7 0.03 6 0.74 6 0.74 6 0.74 6 0.74 7 0.04 7 6 0.74 7 0.74	NF16		70.83800	34 19-AUG-93	S93030393	96.0	-).06 f	0	33 <	Ó	67 f	Ö	2	0.0	۷	0.43	v	0.70
42.38150 70.81467 32 16—AUG—93 S93030090 0.12 f 0.31 c 0.74 c 0.18 f 0.82 c 0.73 c 0.74 c 0.74 c 0.74 c 0.74 c 0.74 c 0.72 c 0.73 c 0.72 c 0.73 c 0.73 c 0.73 c 0.73 c 0.73 c 0.73 c 0.73 c 0.73 c 0.73 c 0.73 c 0.73 c 0.73 c 0.73 c	NF16		70.83800	34 19-AUG-93	S93030397	2:00		5.10 f	Ö	35 <	Ó	34 +	Ö		0.0	4	0.09	-	0.72 <
42.38150 70.81467 32.5 16—AUG—93 S983030372 0.18 1 0.02 1 0.31 0.72 0.26 1 0.26 1 0.31 0.31 1 0.26 1 0.32 0.31 1 0.32 1 0.31 1 0.36 1 0.34 2 0.31 1 0.31 1 0.36 1 0.31 1 0.35 1 0.34 2 0.34 2 0.34 2 0.31 1 0.31 1 0.31 1 0.31 1 0.31 1 0.31 1 0.34 1 0.34 1 0.34 1 0.34 1 0.34 1 0.34 1 0.35 1 0.35 1 0.34 1 0.34 1 0.34 1 0.34 1 0.34 1 0.34 1 0.35 1 0.35 1 0.35 1 0.35 1 0.35 1 0.35 <	NF17			32 16-AUG-93	293030090	0.12	-	5.02 f	Ö	31 ^	Ö	74 <	o	18 f	9.0	4 \	0.03	-	0.65 <
42.33783 70.82883 29.5 19-AUG-93 593030375 0.27 7 0.04 7 0.31 6 0.31 7 0.33 7 0.34 7 0.31 7 0.31 7 0.31 7 0.31 7 0.31 7 0.31 7 0.31 7 0.31 7 0.31 7 0.31 7 0.31 7 0.31 7 0.31 7 0.31 7 0.31 7 0.31 7 0.31 7 0.32 7 0.33 7 0.33 7 0.33 7 0.33 7 0.33 7 0.34 7 0.35 7 0.34 7 0.35 7 0.34 7 0.35 7 0.34 7 0.35 7 0.34 7 0.35 7 0.34 7 0.35 7 0.35 7 0.35 7 0.35 7 0.35 7 0.35 7 0.35 7 <td>NF17</td> <td></td> <td>70.81467</td> <td>32.5 16-AUG-93</td> <td>89000068</td> <td>0.18</td> <td>-</td> <td>5.02 f</td> <td>Ö</td> <td>30 <</td> <td>Ö</td> <td>72 <</td> <td>ö</td> <td>56 →</td> <td>0.8</td> <td>۷</td> <td>0.39</td> <td>٧</td> <td>0.63 <</td>	NF17		70.81467	32.5 16-AUG-93	89000068	0.18	-	5.02 f	Ö	30 <	Ö	72 <	ö	56 →	0.8	۷	0.39	٧	0.63 <
42.41550 70.82883 70.82883 30.19-AUG-93 593030375 0.27 1 0.04 1 0.031 0.031 0.08 1 0.08 1 0.83 0.13 1 0.08 1 0.08 1 0.03 1 0.03 1 0.03 1 0.03 1 0.03 1 0.03 1 0.03 1 0.04 1 0.03 1 0.04 1 0.03	NF2	42.33783	70.82883	29.5 19-AUG-93	S93030372	0.22	-	5.01 f	Ö	3	Ö	.31 ↑	ö	92	0.8	4	0.29	-	0.65 <
42.41550 70.80600 38 15-AUG-93 S93030010 1.96 0.08 7 0.05 7 0.89 0.84 0.40 4 42.41550 70.80600 38 15-AUG-93 S93030012 0.56 6.09 7 0.70	NF2			30 19-AUG-93	S93030375	0.27	-	5.04 f	Ö	31 ^	Ö	-	o	31 +	0.8	٧ 8	0.13	-	0.64 <
42.4055 70.86383 30.5 15-AUG-93 593030012 0.56 7 0.09 7 0.70<	NF4		70.80600	38 15-AUG-93	S93030010	1.96		5.08 f	Ö	31 ^	Ö	.05 +	Ö	68	0.8	4	0.40	٧	0.65 <
42.40017 70.86383 30.5 15-AUG-93 S93030029 3.50 0.09 f 0.40 6 0.60 f 1.65 0.23 f 5.42 . 42.40017 70.86383 30.5 15-AUG-93 S93030031 5.90 0.17 f 0.54 6 0.37 f 1.61 . 0.71 f 1.64 . 42.40100 70.84550 30.5 15-AUG-93 S93030045 1.63 0.45 f 0.33 c 0.23 f 1.11 . 0.91 c 0.43 c	NF4			38 15-AUG-93	S93030012	0.56	<u> </u>	5.19 f	Ö	× 83	O	v 02:	Ö	. 20	0.7	٧ 6	0.04	-	> 19.0
42.40100 70.86383 30.5 15-AUG-93 S93030031 5.90 . 0.17 f 0.54 < 0.37 f 1.61 . 0.71 f 1.64 . 42.40100 70.84550 30.5 15-AUG-93 S93030045 1.63 . 0.45 f 0.33 < 0.23 f 1.11 . 0.91 < 0.43 < 0.43 < 0.45 f 0.33 < 0.23 f 1.11 . 0.91 < 0.43 < 0.43 < 0.45 f	NF8			30.5 15-AUG-93	893030029	3.50		5.09	Ö	6. A	O	+ 09:	÷		0.2	3 +	5.45		0.83
42.40100 70.84550 30.5 15-AUG-93 S93030043 1.52 0.49 0.35 0.83 1.06 0.95 0.17 f 42.40100 70.84550 31 15-AUG-93 S93030045 1.63 0.45 f 0.33 0.23 f 1.11 0.91 0.43	NF8			30.5 15-AUG-93	S93030031	5.90		0.17	Ö	54 <	O	.37 +	Ť		0.7	-	<u>-</u> .		1.12 <
42.40100 70.84550 31 15-AUG-93 S93030045 1.63 . 0.45 f 0.33 < 0.23 f 1.11 . 0.91 < 0.43 <	SEN PE	42.40100	70.84550	30.5 15-AUG-93	S93030043	1.52		0.49	o	35	O	83	÷	8	0.9	ري ۷	0.17	-	0.73 <
	NF9		70.84550	31 15-AUG-93	S93030045	1.63		0.45 1	Ö			.23 +	- -	=	6.0	v -	0.43	٧	0.70 <

Description of Qualifiers:

f = reported value below method detection limit

< = reported value is the method detection limit</p>

x = matrix interference

Massachusetts Water Resources Authority 1993 Sediment Chemistry – Task 12 Product Number S9398PST.WK1

			-	-	•			v	v	-	-	-				-	-		•	-	•	-	-		-	-
DIELDRIN	ng/g dry wt	1.35	1.21	0.65	99.0	2.37	1.02	0.64	0.69	0.78	0.68	0.85	1.02	1.14	1.46	0.52	0.52	1.15	1.25	1.42	1.10	0.44	0.45	9.	0.67	1.97
√ CΓ	_	v	٧	.	v	v	v	v	-	-	-	v	٧	٧	v	v	v	v	v	v	v	v	٧	-	-	-
CIS-CHLORDA TRANS-NONACL(DIELDRIN	ng/g dry wt	1.27	1.47	0.34	0.73	1.03	1.00	0.68	0.07	0.34	0.29	0.93	1.06	1.19	1.51	0.82	0.83	0.99	0.85	1.50	1.16	0.70	0.68	0.0	0.08	0.22
L AO		٧	-	٧	٧	٧	٧	٧	-	-	-	٧	-	-	٧	٧	٧	٧	٧	٧	٧	٧	٧	•	-	-
SS-CHLOR	ng/g dry wt	1.18	1.0	0.68	0.68	0.96	0.93	0.63	0.20	0.44	0.25	0.87	0.31	0.67	1.41	0.76	0.78	0.92	0.79	1.41	1.08	99.0	0.64	0.25	0.20	0.89
		-	-	-	-	-	-	-	-	•	•	-	+	+	-	-	-	-	+	-	-	—	+	-	-	•
CL5(101)	ng/g dry wt	1.39	1.03	0.49	0.34	0.50	0.94	0.44	0.56	1.92	2.71	1.05	0.85	0.69	0.94	0.32	0.28	99.0	0.51	0.52	0.72	0:30	0.10	0.56	0.58	2.03
		-	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	-	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
2,4-DDE	ng/g dry wt	0.82	1.13	0.56	0.56	0.79	0.77	0.52	0.56	0.64	0.56	0.71	0.81	0.91	1.16	0.52	0.64	0.76	0.65	1.16	0.89	0.54	0.52	0.55	0.55	0.74
	_	-	-	v	٧	٧	-	—	-		-	-	-	-	4 -	-	-	—	—	٧	-	-	-	-	-	•
CL4(66)	ng/g dry wt	0.81	98.0	0.75	92.0	1.07	0.65	0.16	0.41	1.10	0.65	0.54	0.45	0.43	0.54	0.18	0.17	0.58	0.52	1.56	0.41	0.13	0.15	0.33	0.24	1.49
EPC	_	v	٧	٧	v	v	٧	٧	٧	v	٧	٧	٧	٧	v	٧	٧	٧	٧	v	v	٧	٧	-	٧	٧
HEPTACHLOREPC	ng/g dry wt	1.39	1.61	0.80	08.0	1.13	1.10	0.74	0.80	0.91	0.79	1.02	1.16	1.31	1.66	06.0	0.92	1.09	0.93	1.66	1.27	0.77	0.75	0.49	0.78	1.06
-		-	—	٧	٧	٧	-	٧	-	-		-	-	-	-	-	•	-	+	-	-	+	-	-	٧	- 4-
CL4(44)	ng/g dry wt	0.51	0.70	1.17	1.17	1.65	0.40	1.09	0.15	0.48	1.39	0.41	0.41	0.36	0.43	0.10	0.14	0.35	0.25	0.42	0.36	0.10	0.04	0.10	1.14	0.27
Sample	₽	893030200	S93030198	S93030151	S93030153	S93030179	\$93030182	\$93030072	\$93030074	\$93030352	893030354	S93030214	\$93030216	S93030234	S93030237	S93030312	S93030310	S93030292	S93030294	S93030269	S93030277	\$93030326	S93030328	\$93030134	\$93030136	S93030120
Sample	Date	84 17-AUG-93	84.5 17-AUG-93	29 16-AUG-93	29 16-AUG-93	89.5 17-AUG-93	90 17-AUG-93	26 16-AUG-93	26 16-AUG-93	21.5 19-AUG-93	21.5 19-AUG-93	76 17-AUG-93	76.5 17-AUG-93	89 17-AUG-93	89 17-AUG-93	64.5 18-AUG-93	65 18-AUG-93	37 18-AUG-93	37 18-AUG-93	40 18-AUG-93	40.5 18-AUG-93	49 18-AUG-93	49 18-AUG-93	32 16-AUG-93	32 16-AUG-93	34 16-AUG-93
Sample	Depth(m)	84 17	84.5 17	29 16	29 16	89.5 17	90 17	26 16	26 16	21.5 19	21.5 19	76 17	76.5 1	.1 68	89 1.	64.5 18	65 1	37 1	37 1	40 1	40.5 1	49 1	49 1	32 1	32 1	34
	Longitude Depth(m)	70.62233	70.62233	70.87917	70.87917	70.49967	70.49967	70.90000	70.90000	70.82267	70.82267	70.65350	70.65350	70.42550	70.42550	70.42233	70.42233	70.40417	70.40417	70.26700	70.26700	70.65683	70.65683	70.83833	70.83833	70.83083
	Latitude	42.46650	42.46650	42.41383	42.41383	42.65883	42.65883	42.38933	42.38933	42.31917	42.31917	42.41717	42.41717	42.28983	42.28983	42.13333	42.13333	41.89783	41.89783	41.95767	41.95767	42.31217	42.31217	42.39317	42.39317	42.39033
	Station	Ħ	Æ	FF10	FF10	FF11	FF11	FF12	FF12	FF13	FF13	FF14	FF14	FF4	FF4	FF5	FF5	FF6	FF6	FF7	FF7	FF9	FF9	NF10	NF10	NF12

Massachusetts Water Resources Authority

Product Number S9398PST.WK1

													1				•	
42.39033	70.83083	34 16~AUG-93	S93030122	0.17 +	-	<u>₹</u>	0.62	-	0.73	v ~	1.05	-	0.65	-	0.17	-	1.12	_
42.38767	70.82400	34 16-AUG-93	S93030105	> 86.0	0.67	× ×	. 0.27	-	0.47	٧	0.22	-	99.0		0.03	-	1.17	
NF14 42.38767	70.82400	34.5 16-AUG-93	S93030103	> 56.0	0.63	8 8	0.49	—	0.44	٧	0.37	-	0.33	-	0.21	—	1.23	
42.37767	70.83800	34 19-AUG-93	S93030393	1.12 <	0.77	2	0.31	-	0.54	٧	0.42	+	0.11	-	0.07	—	0.78	
42.37767	70.83800	34 19-AUG-93	S93030397	0.15 f	0.80	· &	: 0.65	+	0.56	٧	0.70	+	0.30	—	0.11	—	1.22	
42.38150	70.81467	32 16-AUG-93	293030090	0.11	0.72	2	90:0	+	0.50	v 0	0.10	-	0.61	v	0.65	v	0.21	L.
42.38150	70.81467	32.5 16-AUG-93	89008088	1.01	0.69	v დ.	. 0.11	-	0.48	٧	90.0	-	0.59	v	0.63	v	0.28	u _
42.33783	70.82883	29.5 19-AUG-93	S93030372	0.07	0.72	2	99.0	٧	0.11	+	0.08	-	0.05	-	0.65	v	0.62	v
42.33783	70.82883	30 19-AUG-93	S93030375	0.07	0.71	· E	29.0	٧	90.0	4	0.08	-	0.03	-	0.64	v	0.61	W
42.41550	70.80600	38 15-AUG-93	S93030010	0.08	0.72	22	99.0	٧	0.13	~	0.10	-	0.07	—	0.03	-	0.62	W
42.41550	70.80600	38 15-AUG-93	S93030012	0.03	0.67	.22	0.64	v -	0.39	+	0.11	-	0.03	-	0.61	٧	0.58	v
42.40017	70.86383	30.5 15-AUG-93	S93030029	0.46 f	0.92	, K	1.20		0.64	٧	2.38		0.82		0.26	-	96.0	
42.40017	70.86383	30.5 15-AUG-93	S93030031	0.95	` ; `	1.24	2.72		0.87	>	5.28		1.43		0.65	-	40.4	
42.40100	70.84550	30.5 15-AUG-93	S93030043	0.20	0.81	<u>۳</u>	0.32	~	0.56	٧	0.64	+	0.68	v	0.08	-	0.95	
42.40100	70.84550	31 15-AUG-93	S93030045	0.14 f	0.61	<u>ب</u>	0.29	+	0.54	۸	0.63	-	99.0	٧	0.70	٧	1.10	

Description of Qualifiers:

f = reported value below method detection limit

< = reported value is the method detection limit</p>

Massachusetts Water Resources Authority 1993 Sediment Chemistry – Task 12 Product Number S9398PST.WK1

		-	—	-	—	-	-	-	-	•		-	-	-	-	-	-	-	-	-	-	-	-	-	-	•
CL6(153)	ng/g dry wt	1.80	1.19	1.11	0.77	0.84	0.94	0.64	- -	3.21	4.87	1.67	<u>4</u>	1.40	1.44	0.43	0.61	1.62	96.0	1.0	1.60	0.39	0.27	0.78	0.93	4.66
	Ē.	v	v	v	v	v	٧	٧	٧	v	v	v	v	v	v	٧	v	٧	٧	٧	٧	٧	٧	٧	٧	V
2,4-DDT	ng/g dry wt	1.1	1.28	0.63	0.64	0.90	0.87	0.59	0.63	0.72	0.63	0.81	0.92	1.04	1.32	0.71	0.73	0.86	0.74	1.31	1.01	0.61	0.59	0.62	0.62	0.84
		•	-	-	—	•	٠	•	-	٠	-	٠	•	•		-	-	٠	•	-	٠	-	-	-	-	•
4,4-DDD	ng/g dry wt	2.64	1.86	0.77	0.84	2.46	2.75	0.53	0.81	1.27	0.90	1.61	1.90	2.65	2.19	0.70	0.93	2.25	1.55	1.75	2.05	0.71	0.45	0.73	0.86	3.67
		•	•	•		•-	٠	•		٠	•	•	•		٠	-		•	•	٠	•	•	-	•	•	•
CL5(118)	ng/g dry wt	2.35	1.72	0.80	0.89	0.98	1.60	0.92	1.29	3.99	5.23	1.61	1.57	1.98	1.97	0.82	1.11	2:92	1.36	1.61	2.82	0.81	0.49	1.13	1.21	5.58
		٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
ENDRIN	ng/g dry wt	3.45	3.99	1.98	1.98	2.79	2.72	1.84	1.97	2.25	1.96	2.52	2.87	3.23	4.10	2.22	2.27	2.69	2.31	4.09	3.15	<u>е</u> .	. 58.	<u>4</u>	1.93	2.62
	_	v	٧	.	-	-	•	-	—	-	-	-	-	-	-	4-	—	•	•	٧	-	-	٧	•		
2,4-000	ng/g dry wt	1.50	1.73	0.40	0.34	0.77	0.98	0.20	0.52	0.69	0.42	0.75	09.0	0.94	0.57	0.17	0.35	0.74	0.36	1.78	1.23	0.50	0.80	0.32	1.08	2.64
	-	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
CL4(77)	ng/g dry wt	1.81	2.10	40.	1.04	1.47	1.43	0.97	1.03	1.18	1.03	.83 -	1.51	1.70	2.15	1.17	1.19	1.41	1.21	2.15	1.65	1.00	0.97	1.02	1.01	1.38
4,4-DDE	ng/g dry wt	1.63	1.11	0.65	0.50	1.05	1.54	0.48	0.93	1.45	06'0	1.12	1.12	1.48	1.29	0.45 f	0.59	1.21	0.71	1.13	1.56	0.28	0.20	0.99	1.01	3.85
Sample	₽	893030200	S93030198	S93030151	S93030153	S93030179	\$93030182	\$93030072	\$93030074	S93030352	S93030354	S93030214	\$93030216	S93030234	S93030237	\$93030312	S93030310	S93030292	S93030294	S93030269	S93030277	S93030326	S93030328	\$93030134	\$93030136	S93030120
Sample	Date	84 17-AUG-93	84.5 17~AUG-93	29 16-AUG-93	29 16-AUG-93	89.5 17-AUG-93	90 17-AUG-93	26 16-AUG-93	26 16~AUG-93	21.5 19-AUG-93	21.5 19-AUG-93	76 17-AUG-93	76.5 17-AUG-93	89 17-AUG-93	89 17-AUG-93	64.5 18-AUG-93	65 18-AUG-93	37 18-AUG-93	37 18-AUG-93	40 18-AUG-93	40.5 18-AUG-93	49 18-AUG-93	49 18-AUG-93	32 16-AUG-93	32 16-AUG-93	34 16-AUG-93
Sample	Depth(m)	84 17	84.5 17	29 16	29 16	89.5 17	90 17	26 16	26 16	21.5 18	21.5 18	76 17	76.5 17	89 17	89 17	64.5 18	65 18	37 18	37 18	40 18	40.5 18	49 1	49 1	32 1	32 1	34
	Longitude Depth(m)	70.62233	70.62233	70.87917	70.87917	70.49967	70.49967	70.90000	70.90000	70.82267	70.82267	70.65350	70.65350	70.42550	70.42550	70.42233	70.42233	70.40417	70.40417	70.26700	70.26700	70.65683	70.65683	70.83833	70.83833	70.83083
	Latitude	42.46650	42.46650	42.41383	42.41383	42.65883	42.65883	42.38933	42.38933	42.31917	42.31917	42.41717	42.41717	42.28983	42.28983	42.13333	42.13333	41.89783	41.89783	41.95767	41.95767	42.31217	42.31217	42.39317	42.39317	42.39033
	Station	Æ	FF	FF10	FF10	FF11	FF11	FF12	FF12	FF13	FF13	FF14	FF14	FF4	FF4	FFS	FF5	FF6	FF6	FF7	FF7	FF9	FF9	NF10	NF10	NF12

B - 18

Massachusetts Water Resources Authority

Product Number S9398PST.WK1

NE10	NE12 42 39033 70 83083	70.83083	34 16-AUG-93	S93030122	2.73	1.35		1.93	2.56	۷ (9	4.87	2.63	-	0.82	v	3.35	
NF1 A	42.38767	70.82400	34 16-AUG-93	S93030105	0.47	0.87	v	0.44 f	1.65	۷	0.36	0.40	-	0.53	V	0.24	. _
NF14		70.82400	34.5 16-AUG-93	S93030103	0.63	0.82	v	0.46 f	1.57	> 2	0.58 f	0.50	-	0.50	v	0.38	.
NF16	42.37767	70.83800	34 19 AUG-93	893030393	0.52	1.00	v	0.45 f	1.90	۷	0.60	0.52	-	0.61	v	0.56	_
NF16		70.83800	34 19-AUG-93	S93030397	1.47	40.1	v	1.10	1.97	> /	2.38	1.36		0.63	٧	1.62	
NF17		70.81467	32 16-AUG-93	893030090	0.10	0.93	v	0.10 f	1.77	> 2	0.15 f	0.07	-	0.57	v	0.11	
NF17	42.38150		32.5 16-AUG-93	890030088	0.12 f	06.0	v	0.75 <	1.71	٧ -	0.15 f	0.10	-	0.55	v	0.08	-
NF2		70.82883	29.5 19-AUG-93	S93030372	0.09 f	0.93	v	0.16 f	1.77	> 2	0.13 f	0.10	-	0.57	v	0.13	-
NF2		70.82883	30 19-AUG-93	S93030375	0.10 f	0.92	V	0.09	1.75	ر د	0.14 f	0.10	—	0.56	v	0.15	—
N F4			38 15-AUG-93	893030010	0.33 f	0.93	V	0.29 f	1.77	> 2	0.34 f	0.13	—	0.57	v	0.14	.
NF4		70.80600	38 15-AUG-93	S93030012	0.30 f	0.88	V	0.11 f	1.67	> 2	0.21 f	0.16	-	0.54	v	0.11	.
. N		70.86383	30.5 15-AUG-93	S93030029	3.40	1.19	v	2.56	2.26	۷ 9	6.54	4.38		0.73	v	5.33	
NF8		70.86383	30.5 15-AUG-93	S93030031	6.84	1.61	v	5.77	3.07	> 2	14.46	10.15		0.36	-	15.92	
0 0 1		70.84550	30.5 15-AUG-93	S93030043	1.21	1.05	V	0.55 f	1.99	۷ وه	1.40	0.92	-	0.64	V	1.03	-
NF9		42,40100 70,84550	31 15-AUG-93	S93030045	1.01	0.1	V	0.35 f	1.91	٧ -	0.95	0.72	-	0.61	v	<u>4</u>	—
	- 1																

Description of Qualifiers:

f = reported value below method detection limit

< = reported value is the method detection limit

¹⁹⁹³ Sediment Chemistry - Task 12

Massachusetts Water Resources Authority 1993 Sediment Chemistry – Task 12 Product Number S9398PST.WK1

		٧	٧	٧	٧	٧	٧	٧	v	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	·V	٧	٧	٧	٧	V
MIREX	ng/g dry wt	1.50	1.73	0.86	0.86	1.2	1.18	0.80	0.86	0.98	0.85	1.10	1.25	1.41	1.78	0.97	0.99	1.17	1.8	1.78	1.37	0.83	0.80	0.84	0.84	1.14
	c	—	—	-	_	_	_	.						—	-	-	-	—	-	-	—	-	-	-		•
CL7(180)	ng/g dry wt	1.05	0.71	0.21	0.43	0.59	0.67	0.59	0.89	1.90	1.96	1.1	1.39	0.79	0.75	0.19	0.31	0.90	0.48	0:30	0.55	0.23	0.24	0.78	1.21	5.45
		-	-	-	4 -	-	•	•-	•	-	•	+	+	-	-	-	-	-	-	٧	-	-	-	•	•	•
CL6(128)	ng/g dry wt	96.0	0.64	0.40	0.46	0.44	1.19	0.19	1.24	0.55	1.24	0.57	0.53	0.46	0.43	0.14	0.18	0.47	0:30	1.24	0.33	0.14	0.12	1.09	1.08	11.37
		-	-	-	-	•-	-	-	-	٠	•	-	-	-	—	—	-	-	+	+	-	—	-	-	—	
CL7(187)	ng/g dry wt	0.78	0.51	0.35	0.25	0.20	0.33	0.52	0.54	1.59	1.08	0.64	0.74	0.65	0.57	0.19	0.25	0.79	0.34	0.26	0.39	0.19	0.14	0.55	0.70	4.02
		٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
CL5(126)	ng/g dry wt	1.83	2.11	1.05	1.05	1.48	1.44	0.97	1.04	1.19	1.04	±.8	1.52	1.71	2.17	1.18	1.20	1.42	1.22	2.17	1.67	1.01	0.98	1.03	1.02	1.39
		•	•			•				•						_			_		m	٠.	m	_	m	ω.
CL6(138)	ng/g dry wt	3.99	3.68	2.88	1.42	1.91	2.22	2.19	3.47	8.91	9.13	2.83	2.68	3.12	3.16	1.34	2.20	4.48	2.11	2.69	3.23	1.35	1.03	2.21	2.68	10.09
		٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	-	—	-
4.4-DDT	ng/g dry wt	1.89	2.19	1.08	1.09	1.53	1.49	1.01	1.08	1.23	8	1.38	1.58	1.77	2.25	1.22	1.25	1.47	1.26	2.24	1.73	1.05	1.01	0.40	. 0.36	
	5		٠,	+	٠	Ψ-	-	<u>+</u>	~		m	4	+	٠.	8	-	G	_	4	7	4	9	о Т	80	7	0
CL5(105)	ng/g dry 🕶	1.90	0.85	0.74	1.12	0.23	0.80	0.60	0.48	4.05	3.63	0.84	0.44	1.82	0.78	06:0	1.69	2.91	0.24	1.27	1.24	0.76	0.19	1.08	1.47	6.70
Sample	<u>Q</u>	S93030200	S93030198	S93030151	S93030153	S93030179	S93030182	S93030072	S93030074	S93030352	S93030354	S93030214	S93030216	S93030234	S93030237	S93030312	S93030310	S93030292	S93030294	S93030269	S93030277	S93030326	S93030328	\$93030134	\$93030136	S93030120
Sample	Date	84 17-AUG-93	84.5 17-AUG-93	29 16-AUG-93	29 16-AUG-93	89,5 17-AUG-93	90 17-AUG-93	26 16-AUG-93	26 16-AUG-93	21.5 19-AUG-93	21.5 19-AUG-93	76 17-AUG-93	76.5 17-AUG-93	89 17-AUG-93	89 17-AUG-93	64.5 18-AUG-93	65 18-AUG-93	37 18-AUG-93	37 18-AUG-93	40 18-AUG-93	40.5 18-AUG-93	49 18-AUG-93	49 18-AUG-93	32 16-AUG-93	32 16-AUG-93	34 16-AUG-93
Sample	Depth(m)	22	84.5 17	29 16	29 16	89.5 17	90	26 16	26 16	21.5 19	21.5 19	76 1	76.5 1	89	89	64.5 1	65 1	37 1	37 1	40 1	40.5	49 1				
	Longitude Depth(m)	70.62233	70.62233	70.87917	70.87917	70.49967	70.49967	70.90000	70.90000	70.82267	70.82267	70.65350	70.65350	70.42550	70.42550	70.42233	70.42233	70.40417	70.40417	70.26700	70.26700	70.65683	70.65683	70.83833	70.83833	70.83083
	Latitude	42.46650	42.46650	42.41383	42.41383	42.65883	42.65883	42.38933	42.38933	42.31917	42.31917	42.41717	42.41717	42.28983	42.28983	42.13333	42.13333	41.89783	41.89783	41.95767	41.95767	42.31217	42.31217	42.39317	42.39317	42.39033
	Station	Æ	Ħ	FF10	FF10	FF11	FF11	FF12	FF12	FF13	FF13	FF14	FF14	FF4	FF4	FF5	FF5	FF6	FF6	FF7	FF7	FF9	FF9	NF10	NF10	NF12

Massachusetts Water Resources Authority

Product Number S9398PST.WK1

v	٧	-	٧		٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
1.1	0.72	0.87	0.83	0.94	0.77	0.75	0.77	0.76	0.77	0.72	0.98	1.34	0.87	0.83
	+	-	-		-	-	-	+	-	+				
3.05	0.16	0.30	0.48	1.43	0.02	0.03	0.08	0.12	0.14	0.11	4.21	12.12	1.09	0.97
Q	<u>ჯ</u> -	₩	t 7	. 2	4	¥	7	<u>۲</u>	+ 20	4	92			1.16
2.50	0.23	0.38	0.37	2.47	0.0	0	0.02	9	0.07	0.0	4.56	10.15	1.24	-
•	-	-		-	-	-	-	-	-	-			-	+
1.70	0.45	0.32	0.25	0.76	0.02	0.02	0.05	0.02	0.11	0.05	2.36	7.34	0.62	0.56
٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
1.36	0.88	0.83	1.01	1.05	0.94	0.91	0.94	0.93	0.94	0.88	1.20	1.63	1.05	1.01
		•			—	-	-	-	-	-				
9.76	0.80	1.22	1 .86	4.67	0.32	0.31	0.48	0.47	0.48	0.61	13.41	32.34	2.58	2.49
-	٧	٧	٧	-	-	٧	٧	•-	4 -	4 -	-		-	-
0.46	0.91	0.86	40.	0.45	0.08	0.94	0.97	0.15	0.13	0.12	0.94	.83	0.20	0.39
•	+	-			-	4 -	4-	-	-	٧				<u>.</u>
9.66	0.12	0.20	1.12	4.89	90.0	0.02	0.05	90.0	0.03	0.87	6.49	9.83	1.35	0.93
S93030122	S93030105	S93030103	S93030393	293030397	893030090	893030088	S93030372	893030375	\$93030010	S93030012	893030029	S93030031	S93030043	S93030045
34 16-AUG-93 S93030122	34 16-AUG-93	34.5 16-AUG-93	34 19-AUG-93	34 19-AUG-93	32 16-AUG-93	32.5 16-AUG-93	29.5 19-AUG-93	30 19-AUG-93	38 15-AUG-93	38 15-AUG-93	30.5 15-AUG-93	30.5 15-AUG-93 S93	30.5 15-AUG-93	31 15-AUG-93
70,83083	70.82400	70.82400	70.83800	70.83800	70.81467	70.81467	70.82883	70.82883	70.80600	70.80600	70.86383	70.86383	70.84550	70.84550
NF12 42.39033 70.83083	42.38767	42.38767	42.37767	42.37767	42.38150	42.38150	42,33783	42.33783	42.41550	42.41550	42.40017	42.40017	42.40100	42.40100
NF12	NF14	NF14	NF16	NF16	NF17	NF17	NF2	NF2	NF4	NF4	NF8	NF8	NF9	NF9

Description of Qualifiers:

f = reported value below method detection limit

= reported value is the method detection limit

Massachusetts Water Resources Authority 1993 Sediment Chemisty – Task 12 Product Number S9398PST.WK1

			—	v	v	v	-	·	-	.	-	+	.		.	.	-	.	٧	v	-	-	v	-	-	-
CL10(209)	ng/g dry wt	69.0	0.37	1.09	1.09	1.54	0.43	0.28	0.29	0.39	0.22	0.29	0.41	0.47	0.40	0.12	0.15	0.56	1.27	2.26	0.46	0.08	1.02	0.24	0.36	1.04
O	5,	—	Ţ	v	٧	٧	.	—	.	-	.	-	.	—		—	—	.	٧	٧	-	-	v	—	—	
CL9(206)	ng/g dry wt	0.40	0.21	1.67	1.67	2.36	0.28	0.08	0.15	0.37	0.23	0.22	0.26	0.34	0.33	90.0	0.11	0.31	1.95	3.45	0.21	0.10	1.56	0.32	0.87	3.89
		-	٧	٧	٧	٧	—	•	4-	-	+	٧	-	•	٧	•	٧	-	٧	٧	٧	٧	٧	-	-	•
CL8(195)	ng/g dry wt	0.25	2.11	1.05	1.05	1.48	0.09	0.04	0.07	0.33	0.17	1.34	0.24	0.11	2.17	0.07	1.20	0.17	1.22	2.17	1.67	1.01	0.98	0.18	0.38	1.55
		-	-	-	-	-	-	×	×	•	-	-	+	-	—	.	—	+	—	-	-	-	-	×	×	×
CL7(170)	ng/g dry wt	1.23	0.97	0.45	0.77	0.83	0.85	5.41	7.65	1.36	1.04 40.	1.07	1.12	1.62	0.93	0.45	0.42	1.05	0.57	0.74	0.64	0.34	0.27	4.79	5.57	18.87
Sample	₽	893030200	S93030198	S93030151	S93030153	893030179	S93030182	\$93030072	S93030074	S93030352	S93030354	S93030214	S93030216	S93030234	\$93030237	\$93030312	\$93030310	S93030292	\$93030294	893030269	S93030277	S93030326	893030328	\$93030134	S93030136	S93030120
Sample	Date	84 17-AUG-93	84.5 17-AUG-93	29 16-AUG-93	29 16-AUG-93	89.5 17-AUG-93	90 17-AUG-93	26 16-AUG-93	26 16-AUG-93	21.5 19-AUG-93	21.5 19-AUG-93	76 17-AUG-93	76.5 17-AUG-93	89 17-AUG-93	89 17-AUG-93	64.5 18-AUG-93	65 18-AUG-93	37 18-AUG-93	37 18-AUG-93	40 18-AUG-93	40.5 18-AUG-93	49 18-AUG-93	49 18-AUG-93	32 16-AUG-93	32 16-AUG-93	34 16-AUG-93
Sample	Depth(m)	84	84.5	83	83	89.5	6	56	56	21.5	21.5	92	76.5	88	88	64.5	65	37	37	40	40.5	49	49	32		&
:	Longitude Depth(m)	70.62233	70.62233	70.87917	70.87917	70.49967	70.49967	70.90000	70.90000	70.82267	70.82267	70.65350	70.65350	70.42550	70.42550	70.42233	70.42233	70.40417	70.40417	70.26700	70.26700	70.65683	70.65683	70.83833	70.83833	70.83083
	Latitude	42.46650	42.46650	42.41383	42.41383	42.65883	42.65883	42.38933	42.38933	42.31917	42.31917	42.41717	42.41717	42.28983	42.28983	42.13333	42.13333	41.89783	41.89783	41.95767	41.95767	42.31217	42.31217	42.39317	42.39317	42.39033
	Station	Ħ	E	FF10	FF10	FF11	FF11	FF12	FF12	FF13	FF13	FF14	FF14	FF4	FF4	FF5	FF5	FF6	FF6	FF7	FF7	FF9	FF9	NF10	NF10	NF12

B - 22

Massachusetts Water Resources Authority

Product Number S9398PST.WK1

—	-	—	+	—	٧	٧	—	-	Ψ-	—	•	•	-	-
0.54	0.12	0.12	0.17	0.45	0.98	0.94	0.02	0.02	0.05	0.03	1.78	5.80	0.30	0.28
-	—	.	—	-	-	-	-	—	-	-	-		-	-
96.0	0.03	90.0	0.11	0.36	0.01	0.10	90.0	0.03	90.0	0.07	0.83	2.93	0.42	0.44
-	-	-	-	-	٧	٧	٧	٧	—	-	-		-	-
0.79	0.03	90.0	0.10	0.25	0.94	0.91	0.94	0.93	0.01	0.0	0.94	2.40	0.21	0.23
×	×	×	×	×	*	*	×	×	×	×	×	×	×	×
14.38	2.09	3.06	4.79	8.59	0.83	0.62	1.1	1.17	1.29	1.73	21.35	43.50	5.56	5.45
S93030122	S93030105	S93030103	S93030393	S93030397	893030090	890000668	S93030372	S93030375	S93030010	S93030012	S93030029	\$93030031	S93030043	S93030045
34 16-AUG-93	34 16-AUG-93	34.5 16-AUG-93	34 19-AUG-93	34 19-AUG-93	32 16-AUG-93	32.5 16-AUG-93	29.5 19-AUG-93	30 19-AUG-93	38 15-AUG-93	38 15-AUG-93	30.5 15-AUG-93	30.5 15-AUG-93	30.5 15-AUG-93	31 15-AUG-93
70.83083	70.82400	70.82400	70.83800	70.83800	70.81467	70.81467	70.82883	70.82883	70.80600	70.80600	70.86383	70.86383	70.84550	70.84550
42.39033	42.38767	42.38767	42.37767	42.37767	42.38150	42.38150	42.33783	42.33783	42.41550	42,41550	42.40017	42.40017	42.40100	42.40100
NF12	NF14	NF14	NF16	NF16	NF17	NF17	NF2	NF2	NF4	NF4	NF8	NF8	6HN	NF9

Description of Qualifiers:

f = reported value below method detection limit

< = reported value is the method detection limit</p>

The Massachusetts Water Resources Authority
Charlestown Navy Yard
100 First Avenue
Charlestown, MA 02129
(617) 242-6000