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Executive Summary

This report updates a previous synthesis report on nutrients and eutrophication issues for
Massachusetts Bay (Kelly, 1991). A considerable body of information gathered in the last
several years has added significantly to understanding of the Bay’s ecology. In particular,
the water column monitoring program initiated for the MWRA by Battelle Ocean Sciences
in 1992 has provided an extensive data set on nutrients, plankton, and water quality in
Massachusetts and Cape Cod Bay. The data have been reported in three volumes for 1992 .
(Kelly et al., 1992; Kelly et al., 1993a,b) and as an annual report (Kelly e al., 1993c).
The 1992 data, along with additional special studies of water column and benthic processes
sponsored by the MWRA and by the Massachusetts Bays Program during the 1991-1993
period, are synthesized in this report to explore three principal eutrophication issues that
were identified and recognized in the development of the MWRA monitoring program.

Key parameters chosen as indicators for water column enrichment were nutrients,
chlorophyll, plankton species, dissolved oxygen, and metabolism (MWRA, 1991). In this
report, the monitoring data on these parameters are used to (1) confirm previously described
gradients and patterns, (2) aid a search for new patterns, potentially to develop empirical
models useful in making predictions, and (3) allow new or improved calculations on
ecological and nutrient dynamics relative to the eutrophication issues that are central to the
monitoring program.

The principal themes examined in this report focus on three issues described below. For
each, the specific data and topics explored are listed, then the main conclusions highlighted.
Many notions raised in the previous synthesis report are reinforced by the recent data
collected by the monitoring program.

Issue (1) How would diversion of the MWRA effluent affect nitrogen distribution and
nitrogen flux in Massachusetts Bay? Kelly (1991) proposed the notion that
most of the nutrients in MWRA effluent discharged to the Harbor is not
retained in the Harbor and probably goes to the Bay quite rapidly. A variety
of data is summarized and calculations are presented to provide perspective
on the present situation, the scales of change anticipated, and the proper
monitoring design to detect future change in Massachusetts Bay.



This first issue centers on the present and future influence of the MWRA outfall effluent on
nitrogen distribution in Massachusetts Bay. Evaluation of this influence includes examination

of

the budget for nitrogen input to Boston Harbor as related to the present
nitrogen export,

the present distribution of nutrients in the Bay, particularly as it reflects the
role of Boston Harbor as the strongest source in the region near the proposed

~ outfall site, and

the present and possible future role of various sources in structuring nutrient
distributions in the Bays and in the region near the proposed outfall site.

» The main conclusions drawn from the examination of the data are:

The available evidence strongly and consistently supports the concept that
most of the nitrogen in the MWRA effluent presently discharged to Boston
Harbor is exported to the Bay. :

There are sharp differences in the form of nitrogen exported seasonally from
the Harbor to the Bay. The implication from a variety of data is that organic
N dominates the N exported from the Harbor during the summer, whereas
DIN export is high and dominant in winter.

Presently, the nutrients exported into the area surrounding the future diffuser
track are delivered directly to the surface layers, especially during the
stratified period and, thus, are completely available to the phytoplankton. In
the future, the initial dilution will be faster than that presently occurring at the
edge of the Harbor. Also, in the nearfield, vertical flux of nutrients to the
surface productive layers is constrained during stratification by vertical density
gradients. With the new outfall the vertical nutrient flux will increase:
however, calculations suggest that the increased flux from bottom waters will
still be much less than the present horizontal transport from inshore to surface
layers surrounding the outfall diffuser. Thus, the overall nutrient supply to
surface productive layers may decrease. ‘

From these conclusions one can argue that the principal scale of monitoring for change is-
more local than regional. At the regional scale, the nutrients being discharged today are
circulated throughout the Bays, just as they will be in the future. While monitoring efforts
principally need to focus on local ecological changes that are likely and detectable, research
and monitoring should also continue to identify factors that could influence broad-scale
variability in nutrients in Massachusetts and Cape Cod Bays.
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Issue (2)

What is the response of plankton to nutrients? This issue is multifaceted and
involves the question of how changes in nutrient distributions will affect
accumulation of chlorophyll, an indicator of plankton biomass, an excessive
amount of which can alter water quality in an undesirable manner. A second,
related, question is whether changes in nutrient distributions will promote
growth of certain plankton species that directly alter water quality and/or
produce toxins that may accumulate in food chains, including those affecting
commercial fish or shellfish.

This issue was addressed with recent monitoring data on chlorophyll and plankton taxonomy.
Two major topics were approached with the following emphases:

An examination of annual, seasonal, and fine-scale trends in data on
chlorophyll concentrations was conducted to describe patterns in chlorophyll
concentrations relative to nitrogen concentrations.

The complexity of predicting phytoplankton species change was reviewed,
incorporating historical perspectives on Massachusetts Bay and Cape Cod Bay
and presenting broad spatial trends in the plankton species and communities
documented in 1992 monitoring data. The possible influence of nutrient
concentrations and ratios (nitrogen/silicate) are briefly explored.

More data are available to assess chlorophyll responses to nutrients than to determine
possible nutrient effects on species. Therefore, more conclusions from the data relate to the
question of stimulation of chlorophyll by nutrients:

For 1992, the range in annual average surface chlorophyll fluorescence was
about 1.4 to 4.3 pug L'! at 46 stations in Massachusetts and Cape Cod Bays.
The higher chlorophyll concentrations were found at the edge of Boston
Harbor and, as with nutrients, there was a gradient of decreasing
concentration of chlorophyll concentration with distance away from the
Harbor into Massachusetts Bay.

Significant linear regressions were obtained using the annual average
chlorophyll concentrations versus the annual average concentration of different
forms of nitrogen in the water column. Similarly strong trends were also
evident at a seasonal scale, using data summarized for the surface layer of 21
nearfield stations sampled intensively during the stratified period of 1992.
The regressions provide some predictive capability of the influence of
nutrients on chlorophyll, but the capability is restricted because factors other
than nutrients also influence chlorophyll along the Harbor-Bay gradient.

Stations near the Harbor have, on average, chlorophyll concentrations that are
less than might be predicted for their high nutrient concentrations. High
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turbidity may influence light availability near the Harbor and thus limit
“ chlorophyll relative to clearer offshore waters.

Some thought experiments were conducted to consider the nutrient-chlorophyll
response around the new outfall. These employ regressions developed from
the 1992 data, including one that, in principle, provides for possible
interactive effects of nutrients and light upon chlorophyll. Results suggest
that upon transfer of the present nutrient concentration within the Harbor to
the middle of the nearfield, the chlorophyll concentration, on average, could
increase by about a factor of two, but this does not consider the additional
dilution imparted at the offshore discharge site. Moreover, since we now can
project that a decrease in surface nutrient flux from Harbor export will
accompany the effluent diversion, the projections of surface chlorophyll
change include the possibility of a decrease, on average, throughout the
nearfield. Therefore, the principal change due to relocation of the outfall may
not be the average chlorophyll concentration, but a shift in the vertical
distribution of chlorophyll to a lower depth. Such a shift would accompany
the projected sharp decrease in the present supply from inshore to surface
waters offshore, an increase in the future nutrient supply from nearfield
bottom-waters, and presence of a relatively deep photic zone in the nearfield.

Patterns between chlorophyll and salinity were revealed from analysis of the
summer season and higher-resolution sampling in the nearfield/Harbor area.
Several lines of evidence suggest there is stimulation of chlorophyll
concentration (perhaps 1-2 ug L) in immediate receiving waters several
kilometers outside the Harbor, a phenomenon which may relate to export of
nutrients into an area with increased water clarity.

Review of the influence of nutrients on plankton species indicates that the
present capacity to formulate predictions is limited. The results from the few
experimental studies that have examined the response of plankton communities
to long-term nutrient enrichment have been complex, but blooms of noxious
species and shifts in relative proportions of diatoms to flagellates have been
infrequent and often have not followed scenarios inferred from short-term,
simple experiments. 1992 monitoring data provide information relevant to the
potential alteration of nitrogen/silicate ratios in the future nearfield area.
Initial comparisons of stations with differing nutrient concentrations- or ratios
suggest that the relatively small changes in nearfield nutrient levels that are
projected are within the bounds already experienced within the Bay. Thus,
it would be difficult to conclude from the data that projected nutrient changes
will yield major species composition shifts to nuisance/noxious forms.
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Issue (3)

What are present rates of metabolism in the Bay under existing nutrient
conditions? What are the current trends in bottom-water dissolved oxygen
(DO) concentrations and how do these relate to metabolism and the fate of

pelagic production in Massachusetts Bay?

The 1992 monitoring data provide information on seasonal patterns in primary production,
benthic respiration, and bottom-water dissolved oxygen (DO) fluctuations. Data analyses
were performed to describe rates of change for bottom-water DO concentrations in
Massachusetts Bay during 1992 and to identify factors affecting DO concentrations.

The main conclusions reached relative to this third issue are:

Variability in primary production is high and small changes in time and space
will be difficult to detect. Rates of benthic metabolism do not indicate a
major role for the benthos in the consumption of primary production within
the nearfield region of the Bay.

An analysis of the nutrient sources supporting primary production in the
nearfield shows that nitrogen presently exported from the Harbor
quantitatively dominates nitrogen input to the surface layers and could support
virtually all the primary production. In contrast, benthic regeneration and
diffusive fluxes across the pycnocline into euphotic surface layers supply only
on the order of 10% of the needs of primary producers. In the future, the
flux from inshore will be curtailed and the flux from bottom-waters to the
surface layer will increase. Calculations suggest that the overall nitrogen to
the surface layer will be substantially diminished and primary production may
therefore decline in much of the nearfield.

Bottom-water DO declines during the stratified season in the nearfield and in
Stellwagen Basin. Sustained rates of consumption appear to be about 0.01-
0.06 mg O, Ll dl. These rates were estimated from gradual changes
monitored over weeks to months, and may imperfectly estimate respiration
rates. Unfortunately, attempts to measure water column respiration directly
in bottle incubations were unsatisfactory. In 1992, rates were often below
limits of detection using a short-term (hours) incubation method.
Nonetheless, the data suggest that a relatively small fraction of primary
production is presently consumed within the bottom waters of Massachusetts
Bay. Preliminary calculations suggest that much of the organic matter
produced in the surface layers may be consumed within the upper water
column.



L Because changes occur slowly, DO concentration trends across surveys should
suffice as a principal tool to unambiguously record DO and monitor its rate
of change.

Even though bottom-water DO concentrations change slowly enough to be monitored by the
present frequency of summer and early fall surveys, it is argued that improved estimates of
water column rates of oxygen consumption would be beneficial to understand the ecosystem.
Precise respiration rate estimates would enable us to confirm or refute the notion that
consumption of organic matter presently occurs rapidly within the upper water column and
would also provide data useful to validate or improve water-quality modeling and
predictions.
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Preface

This report draws largely upon water column studies that were conducted in 1992 as part of
the Massachusetts Water Resources Authority’s (MWRA) Baseline Monitoring Program for
the offshore effluent outfall. Such an effort requires the talent and dedication of many
people. The 1992 water quality studies were performed by researchers from Battelle Ocean
Sciences (BOS), the University of Rhode Island (URI), and the University of Massachusetts
at Dartmouth (UMD). From BOS, Carl Albro, Chip Ryther, Jack Bechtold, Kevin King,
and Paul Dragos carried out the surveys and maintained the instruments. Carl Albro, John -
Hennessy, Ellie Baptiste, and Rosanna Buhl were responsible for processing, management,
and QA review of an enormous volume of data. From URI, Peter Doering coordinated all
aspects of sampling for the nutrient and metabolism studies, the data processing and
management, and contributed to data interpretation. Peter, Laura Reed, and Edwin
Requintina were the mainstays of field sampling; they processed and analyzed literally
thousands of laboratory samples. From UMD, Jeff Turner and Dave Borkman sampled,
identified, and counted the phytoplankton and zooplankton; provided succinct interpretive
guidance; and expended extra effort to provide quantitative results for samples that were
“slimed” by colony-forming species. Numerous other individuals from each institution also
assisted at various critical times.

Individual survey results have been reported to the MWRA in survey reports and key
monitoring parameters have been summarized in an annual report. The data from the
MWRA monitoring program were intended to serve a dual purpose: (1) to establish a
baseline against which meaningful changes could be measured in Massachusetts and Cape
Cod Bays and (2) to enhance the understanding of the ecosystem and improve predictability
of change due to offshore effluent discharge. A small measure of the success of the 1992
data collection efforts is, hopefully, reflected in this report.
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1.0 Introduction

This report updates a previous report (Kelly, 1991) and uses it, in part, as a template to
relate some of the progress that has been made on several eutrophication issues in the past
two years. Over the last five years there have been numerous surveys, data summaries, and
modeling efforts that have helped to describe the environment and ecological features of the
Massachusetts and Cape Cod Bays ecosystems; some studies have also attempted to predict
the consequences of nutrient enrichment and diversion of the MWRA effluent (e.g., EPA,
1988; MWRA, 1990; Townsend ef al., 1991; Cura, 1991; Smayda, 1992; EPA, 1993).

The most recent data from the 1992 MWRA water quality monitoring studies (Turner, 1993;
Kelly et al., 1993), as well other recent studies funded by the Massachusetts Bays Program
(Geyer et al., 1992; Becker, 1992), add to the growing body of information that enhances
understanding of the Bays’ ecology. In this report, the monitoring data are used to (1)
confirm previously described nutrient patterns, (2) aid a search for new patterns, potentially
to develop empirical models useful in making predictions, and (3) allow new or improved
calculations on ecological and nutrient dynamics relative to the eutrophication issues that are

central to the monitoring program.

Several key issues related to eutrophication were recognized in the development of the
MWRA monitoring program. The key parameters chosen as indicators for water column
enrichment were nutrients, chlorophyll, dissolved oxygen and metabolism, and plankton

species (MWRA, 1991). Interactions among these parameters are examined in this report.
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The principal issues examined in this report include the following:

€y

@

€))

How would diversion of the MWRA effluent affect nitrogen distribution and nitrogen
flux in Massachusetts Bay? This issue is discussed in Section 2. The examination
focuses on three types of information relevant to the issue:

L] the budget for nitrogen input to Boston Harbor as related to the present
potential for export,

= the present distribution of nutrients in the Bay, particularly as reflective of
Boston Harbor as the strong source in the region near the proposed outfall
site, and

] the present role of northern river sources in structuring nutrient distributions

in the Bays and in the region near the proposed outfall site.

A variety of data is summarized and calculations are presented to provide perspective
on the present situation, the scales of change anticipated, and the proper monitoring
design to detect future change in Massachusetts Bay.

‘What is the response of plankton to nutrients? This issue is multifaceted and is

addressed in Sections 3 and 4. Section 3 discusses present spatial and temporal
trends in chlorophyll, a measure of plankton biomass, relative to nitrogen
concentrations. From these patterns, simple projections of change in chlorophyll are
provide in light of expected changes in nutrients discussed in Section 2. Further,
scales of measurement for chlorophyll and suitable indicators for monitoring relative
to those scales are briefly discussed. Section 4 reviews the complex issue of plankton
species composition as related to nutrients, and centers on the issue of “nuisance” or
“noxious” species that might be anticipated in the future. Discussion examines
present trends relative to nutrient distributions, present and expected. Both the
possible influence of nutrient concentrations and ratios (nitrogen/silicate) are explored
briefly.

What are present rates of metabolism in the Bay under existing nutrient conditions?
How do trends in bottom-water dissolved oxygen (DO) concentrations in
Massachusetts Bay relate to metabolism? Section 5 uses the 1992 monitoring data to
examine what can be described in terms of seasonal patterns in production,
respiration, and in bottom-water DO changes. A final focus is to review the ability
of the monitoring program to assess changes in DO concentrations and certain
process rates related to this important endpoint.

A final section summarizes major findings and relates scientific progress on these
major eutrophication issues.



2.0 Nitrogen Loading and Distribution in Massachusetts Bay

A prime issue related to diversion of the MWRA effluent to an offshore outfall centers on
what role present discharges to the Harbor play in nutrient budgets and ecological dynamics
of Massachusetts Bay. Boston Harbor has received extremely high nutrient loads for decades
and approximately 88% of the total nitrogen input comes from MWRA effluent discharge |
(Alber and Chan, 1994). The topics examined in this section start with a synthesis of the
. qualitative and quantitative understanding of what happens to the nitrogen presently put into
the Harbor, particularly with respect to nitrogen export. To corroborate a main conclusion
of the synthesis — that a high percentage of nitrogen input to the Harbor is rapidly exported
— the distribution of nitrogen in Bay receiving waters is examined. Chemical gradients'are
described using water-column monitoring data collected in the area extending from the
Harbor and including a 100 km® (10 x 10 km) region surrounding the future outfall in
western Massachusetts Bay, referred to as the “nearfield” in the context of MWRA
monitoring. Brief consideration is then given to another possible source of nutrients — flow
from rivers to the north into Massachusetts Bay. Such a source, if strong, could also play
a role in the ecological dynamics in the nearfield. Finally, some features‘ of nutrient
dynamics in the nearfield area are examined and a perspective offered on expected scales of

change with effluent diversion.
2.1 Export of Nitrogen to the Bay

When the predecessor to this report was prepared, a logical focus for nutrienfs in
Massachusetts Bay was nitrogen (N) and the logical starting point for discussion was Boston
Harbor (Kelly, 1991). Historical data on water quality indicated that, despite the high
nutrient loads, nitrogen concentrations of the Harbor water were not particularly high.

Flushing characteristics, gradients into Massachusetts Bay, and other observations supported
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the notion that much of the input nitrogen was quickly transported to the Bay. However, as
stated then ... “Firm quantification of nitrogen export may await budgeting of nitrogen buried
in Harbor sediments, dredged and removed, or lost to the atmosphere through
denitriﬁcation” (Kelly, 1991). Although there was some information to make rough
estimates of organic matter burial in Boston Harbor sediments, the lack of information on
denitrification processes was recognized. @ MWRA responded by supporting direct
measurements of sediment denitrification and benthic flux of nutrients, which were initiated

in September 1991.

Initial benthic flux data reports were available later in the year when Christensen (1991)
speculated that denitrification might remove at least 25%, and perhaps as high as 70%, of
the nitrogen entering the Harbor. Benthic flux studies and denitrification measurements
conducted in 1991 (Giblin et al., 1992; Kelly and Nowicki, 1992; Nowicki, 1994) led to a
more comprehensive set of measurements throughout 1992 (Giblin ef al., 1993; Kelly and
Nowicki, 1993). Measurements of denitrification at several Harbor stations, as well as at

several Massachusetts Bay stations, continued in 1993 and 1994.

The benthic flux data now collected for Boston Harbor are extensive. In terms of spatial and
temporal coverage of sediment denitrification in estuarine ecosystems, the present data set
has few parallels (cf. Seitzinger, 1988; Kemp et al., 1990). The subtidal sediment
communities examined include those near MWRA discharges, at more distant depositional
areas, and at a less depositional reference site. Direct measurements of denitrification using
the method of Nowicki (1994) and indirect stoichiometrically-modeled estimates (Giblin et
al., 1993) agree surprisingly well. Absolute denitrification rates at the depositional sites are
very high for subtidal estuarine sediments, but not compared to N loading to the Harbor.
The most recent annual input-output budget for N in Boston Harbor (circa 1992, after
cessation of MWRA sludge discharges) suggests that sediment denitrification may remove
less than 10% of the N input (Kelly and Nowicki, 1993).
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While the MWRA effluent N load is fairly constant through the year (M. Hall, MWRA,
personal communication), sediment denitrification rates are generally much higher during
warm temperatures. Thus, a greater fraction of N input appears to be denitrified during the
summer months (~ 12% in 1992 — Kelly and Nowicki, 1993). Inpart, this seasonal variation
in the relative importance of denitrification could be a function of time lags — some N, gas
loss may come from degradation of organic nitrogen that was deposited during late winter-

spring but was not metabolized until seasonal warming occurred.

Other studies since 1991 have added to the evidence that suggests tidal flushing exports a
substantial portion of the N input. A rough calculation of sediment burial (Kelly and
Nowicki, 1992) has not yet been improved by direct measurements, but the modeling
exercises of Adams ef al. (1992) estimate that N burial in the Harbor is probably similar to -
the original estimate (i.e., only several percent of the input). Signell and Butman (1992)
have solidified understanding of the flushing dynamics of the whole Harbor; their work
confirms flushing times on the order of days, particularly in the immediate areas of MWRA
discharges. Finally, Adams ef al. (1992) used a simple box model with flushing rates
similar to Signell and Butman; their model predicted that denitrification could account for
only about 5% of the N input to the Harbor. Model sensitivity analyses forecast about 22 %

as an upper bound.

In summary, considerable evidence supports a conclusion that denitrification does not remove
a majority of the N input to Boston Harbor. The amount of N degassed or buried in the
Harbor appears to be approximately 10% of the inputs which, by difference, leaves roughly
90% exported to western Massachusetts Bay. The export flux estimated in this way
incorporates the uncertainties of all other flux estimates in the budget; thus the evidence is
indirect evidence, but it is balanced by evidence of enrichment in the nearshore receiving

system (next Section).

Coda. During 1992, the Harbor appeared to be in transition. The benthos resembled a

macrofaunal community recovering from excessive organic enrichment (cf. Kelly and Kropp,
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1992; Blake et al., 1993). Some changes may be related to sludge abatement, although such
a conclusion is premature. Certain macrofauna, including ampeliscid amphipods which often
are among initial recolonizers of perturbed sediments, can affect sediment denitrification
rates (Kelly and Nowicki, 1993; Nowicki et al., 1994; Pelegri et al., 1994). In 1992
amphipods became abundant in the northern Harbor and have been observed in abundance
in cores from the benthic flux station nearest the old MWRA sludge discharge pipe (ceased
December 1991).

A consequence of benthic organismal recolonization and community change may be increased
denitrification in highly organic sediments where the flow of oxygen, necessary for coupled
nitrification—denitrification, is increased by increased bioturbation as the community
progresses to include more deep-dwelling organisms. As ecological changes progress in the
Harbor, denitrification may temporarily take on greater importance; in part, such a
phenomenon would be related to the metabolism of organic nitrogen temporarily “buried”
in sediments and be uncoupled from current inputs. Therefore, as nitrogen loads to Boston
Harbor are reduced, benthic fluxes in general and denitrification in specific may become
more important in the Harbor nitrogen budget for some period as the water and sediments
adjust to new “steady state” conditions. An increased sediment denitrification conceivably
would act to accelerate the pace of recovery from nutrient-enrichment effects in the Harbor
that are not quickly modulated by rapid tidal flushing. Thus, while the studies now show
denitrification plays a small role in modifying the present export of nitrogen from the
Harbor, denitrification may be ecologically significant to the overall recovery rate of the
Harbor. Continued monitoring of benthic fluxes and denitrification in the Harbor is

therefore warranted.

2.2 The Distribution of Nutrients in the Bay, with a Focus on Western
Massachusetts Bay

There is a strong and consistently-noted environmental gradient stretching out from the

Harbor into the Bay, which provides additional evidence of nitrogen export. For example,
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from extensive sampling during the early 1970’s, Pandan (1937) noted that water-column
dissolved nutrient (NO;, PO,) and suspended solid concentrations usually decreased sharply
from the Boston Harbor to locations in Massachusetts Bay that are presently sampled as the
nearfield for the MWRA program. More recently, data from 1989-1990 (from Townsend
et al., 1991 as summarized by Kelly, 1991) displayed sharp decreases in dissolved and
particulate nitrogen concentrations from the mouth of Boston Harbor into western
'Massachusetts Bay (Figure 2-1). Estuarine-shelf nutrient concentration gradients may be
more the rule than the exception for nutrient-enriched estuaries and physically-stratified inner
shelf receiving waters. For example, a pronounced peak in water column nitrogen
concentration has been measured at the inner shelf seaward of New York Harbor, as well
as near the mouth of Delaware Bay and Chesapeake Bay (e.g., Matte and Waldhauer, 1988;
Battelle, 1992).

Annual patterns for 1992. Sampling for the 1992 MWRA monitoring was conducted at 46
stations throughout Massachusetts and Cape Cod Bays (Figure 2-2). A distinct gradient from
Boston Harbor was evident in annual mean dissolved inorganic nitrogen (DIN = NH, +
NO; + NOZ) concentration for surface water (Figure 2-3). Annual mean calculations are

described and values tabulated in the Appendix (Table 1).

Comparability of 1992 and 1989/1990 data summaries notwithstanding (see Appendix), the
1989/1990 DIN means may have been generally higher because, unlike 1992, the first 1990
survey sampled winter baseline conditions prior to initiation of the winter-spring bloom.
Townsend et al.’s (1991) stations did not extend into Cape Cod Bay, but Figure 2-3 suggests
that in 1992 the surface waters in Massachusetts Bay had more DIN than surface waters in
Cape Cod Bay. For 1992, the lower annual means for DIN in Cape Cod Bay, in part, are
due to the initiation of the winter-spring bloom earlier in that region than in Massachusetts
Bay. Consequently, DIN and other dissolved nutrients were already reduced throughout the
water column by the first survey in late February 1992 (Kelly et al., 1992); note that a
number of seasonal differences in nutrients between the two Bays have been emphasized

recently (Geyer et al., 1992; Kelly et al., 1992). These broad comparisons illustrate that
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Figure 2-3. Annual surface average DIN in the Bays in 1992.
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variability in major seasonal events, both in space (Cape Cod Bay vs. Massachusetts Bay)
and in time (1989/1990 vs. 1992), influence annual mean concentrations that are based on
six seasonal surveys. Regardless, the two annual data summaries compiled to date for
western Massachusetts Bay depict a very similar gradient from Boston Harbor. Mean annual
DIN concentrations decrease roughly 5-7 uM from the edge of the Harbor to the middle of
the nearfield (Figures 2-1 and 2-3), with the gradient appearing slightly sharper in
1989/1990.

The 1992 MWRA monitoring design included select stations in western Massachusetts Bay
where the strong DIN gradient exists. At these, the most comprehensive set of analyses of
" nitrogen forms to date was performed. Particulate nitrogen (essentially particulate organic
nitrogen and hereafter referred to PON) and dissolved organic nitrogen (DON) were
measured at eight “P” stations in the region and at station F25 seaward of Nantasket Roads,
the southern exit from Boston Harbor to Massachusetts Bay (see Figure 2-2). The sum of
DIN + PON + DON, termed total N (TN), thus could be caiculated (Appendix). The
gradient in mean annual N forms from Boston Harbor to western Massachusetts Bay region

is further described in a series of graphs (Figures 2-4 to 2-7).

Mean annual surface PON concentrations show a decrease from Harbor to the nearfield and
southward along the coast (Figure 2-4). A protruding lobe is suggested outside the southern
Harbor (station N10P). There was a protruding lobe of DIN at station F24 outside the
northern Harbor (Figure 2-3). Unfortunately, the full suite of N measurements was not
made at station F24; but the smooth gradation depicted from the northern Harbor to the
nearfield in Figure 2-4 (and subsequent plots) is probably more lobe-like in actuality. The
general PON decrease from Harbor-edge to nearfield was about 3 uM in 1992; this compares
with a slightly smaller decrease, <2 uM [i.e. about 20 ug/L, Figure 2-1] in 1989/1990. -
The relative decrease in PON concentration with distance offshore seems less abrupt than for
DIN, a phenomenon that also was striking in the previous summary (Kelly, 1991).
However, the pattern for PON + DIN for 1992 (Figure 2-5) is essentially the same as the
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1989/1990 gradient (Figure 2-1). The decrease in PON + DIN from Harbor to nearfield

in both cases is on the order of 7-8 uM.

The pattern for total nitrogen is similar to the individual forms (Figure 2-6). Rather than
a lobe at station N10P, the contoured data depict a small local maxima. A decrease of about
10-11 pM total N occurred from the Harbor at President Roads (station F23P) to the east
side of the nearfield almost 20 km away. Interestingly, the present U.S. Geological Survey
(USGS) modeling of the Harbor and Bays suggests that physical dilution processes decrease
nitrogen by about 10 uM from the edge of the Harbor to the nearfield (Signell, personal

communication).

In Figure 2-7, the contours for TN are repeated, but overlain on the map are bold lines that
radiate from the Harbor — these represent some geographical limits of tidal exchange
suggested frém modeling of Signell and Butman (1992). A bold, bi-lobed dotted line
radiates from the two Harbor exit channels, which are separated by the string of outer
Harbor islands. This line depicts, from the model, where seawater comes from as the
Harbor fills during an average flood tide. The bold, bi-lobed solid line depicts where the
ebb-tide water goes back out to the Bay. Signell and Butman (1992) point out how the ebb
flow is more channelized and thus more jet-like; this results in a difference between flood
and ebb flow that will produce net exchange (export) rather than just sloshing of the same
water back and forth with the tide. Interestingly, station N10P appears to be at the ebb-jet
limit, but outside the floodwater return limit. The same comments seem to apply to station
F24, noted above. On average, concentration peaks occur near these stations and high-
resolution studies have noted tidal fronts close to these locations (Kelly and Albro, 1994).
The observations in the receiving system offer indirect evidence that the main features of
tidal flushing are well-captured by Signell’s model. The implication of such a conclusion
strongly reinforces that rapid flushing occurs (Signell and Butman, 1992) with a consequence

being high nutrient export.
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The water quality monitoring has shown that advection of Harbor-type water off Nantasket
Roads at station N10P (east of the southern exit of the Harbor to the Bay) occurs as a
function of the stage of the tide. A combination of wind, density-driven circulation, and
‘tides promote the actual advection, but a shallow surface lens of less dense seawater
regularly has been observed east of station N10P into the nearfield (cf. Kelly ef al. 1993a).
Besides short-term variability, there are distinct seasonal trends in the distribution of

different forms of N in the water of western Massachusetts Bay.

Seasonal aspects — winter versus summer 1992. Water quality gradients away from the
Harbor varied by season. During the colder season, inorganic and organic nitrogen forms
appeared to be mixed “conservatively” from the Harbor edge into western Massachusetts Bay
(Kelly et al. (1992) and Kelly ef al. (1993c)). For example, in February DIN (Figure 2-8)
was correlated with salinity (R?= 0.63, n= 45), as was TN (R?= 0.90, n= 15). The
concentration gradient from the Harbor can be explained by dilution of fresher, high-nutrient
Harbor water into Bay seawater. Thus, in winter before phytoplankton growth typical of a
winter-spring bloom is active, the data show that physical dilution processes largely control

chemical distributions of nitrogen.

In contrast, with warm water temperatures of summer, plankton can utilize dissolved
nutrients and “package” them into organic forms faster than physical mixing processes can
act to regulate distributions. In August (Figure 2-8) there was a low, although significant
(p<0.05), correlation between DIN and salinity (R2= 0.18, n= 30). A more highly
significant (p <0.008) linear relationship was found between salinity with TN (R?= 0.40,
n= 16). Besides individual surveys, for the summer on average (see Appendix Table 3) the
stations from the Harbor to the nearfield had strong trends in organic N forms (PON and
DON) with salinity (Figure 2-9). Thus, there is a general decrease in TN with increasing
salinity as Harbor-Bay mixing occurs, which, as in winter, results in a distance-concentration
gradient from the Harbor; these data support a conclusion that export during summer occurs

primarily in organic forms rather than DIN.
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The TN decrease from the Harbor to the nearfield area may be slightly sharper in winter (a
TN decrease of about 13-15 uM) than in summer (a TN decrease of about 9-10 uM). This
could imply more efficient nutrient export in winter, but there are too few data to assess this
possibility. However, Figure 2-8 shows that there was a seasonal difference in TN
concentrations at all stations (~ 10-15 uM). A lower TN in summer results from the seasonal -
decrease in DIN from winter to summer (Figure 2-8). The annual cycle of dissolved nutrient
assimilation and net production in spring-summer, followed by net dissolved nutrient
remineralization in late fall-winter creates this seasonal difference in the background DIN
concentrations in seawater; this cycle, which temporarily carries N to sediments, happens
independently of inputs to the Harbor and exchange with the Bay. In marked contrast to
DIN, PON and DON concentration ranges, as well as their patterns with salinity (e.g.,
Figure 2-9), were similar between seasons, which leads us to an overall conclusion. Similar
organic N export is suggested in winter and summer and the only the clear difference in
receiving waters is a seasonal change in the gradient of DIN from the Harbor. The
implication is that organic N dominates the N exported from the Harbor during the summer,

whereas DIN export is high and dominant in winter.

The extent to which exported PON and DON, either in summer or winter, can be assimilated
(or decomposed and then assimilated) by phytoplankton has not be assessed and their
importance as an input to Bay nutrient cycles is not well characterized. However, direct
assimilation of organic forms is slower than DIN, and the main pathway from organic N
forms to uptake by phytoplankton may be through remineralization processes that convert
organic to inorganic forms. By this means, organic export in summer could provide a time-

release fertilization compared to inorganic enrichment.

Summary. In spite of much seasonal and short-term variability, the monitoring data reveal
striking and consistent spatial patterns with respect to N in the water column in western
Massachusetts Bay. Total nitrogen was correlated with salinity during both winter and
summer, which suggests conservative dilution and dispersion into the Bay’s surface waters

and adds evidence to confirm rapid, efficient Harbor nitrogen export. From examination of
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different N forms, including relative concentrations and patterns with salinity, a seasonal
difference in the dominance of inorganic (winter) vs. organic (summer) export of N is

implied.

2.3 The Northern River Contribution to Massachusetts Bay and
the Nearfield Region

Harbor budgets and gradients into the receiving waters identify Boston Harbor as a principal
source of nutrients to western Massachusetts Bay. However, other inputs into Massachusetts
Bay have been suggested as significant; in particular, input into the Bay across its northern

boundary deserves mention in this review.

Menzie-Cura (1991) estimated sources of nutrients to Massachusetts and Cape Cod Bays.
They calculated the potential input to the ocean by the Merrimack River was about 1.1 x 10A7
kg N/yr (equivalent to the 1.3 x 107 kg N/yr to the Harbor — Alber and Chan, 1994). If
all the N carried by the Merrimack were transported south around Cape Ann -and into the
Massachusetts Bays, it would represent greater than 30% of the entire N input currently

estimated.

“Loading” rates are diffiéult to estimate in any case, but a prime difficulty for this northern
boundary case is that no estimate has been made of actual transport into the Bay. A second
problem is conceptual: external loading, initially conceived and best applied to relatively
closed, well-mixed water bodies with a defined hydraulic residence time (Vollenweider, 1975
and 1976), is not easily applied to a large, open, and heterogeneous system like
Massachusetts Bay. For this reason, it is difficult to assess potential loading from northern
boundary sources at scales that are meaningful. For example, the transport that occurs
across the northern boundary may meander as a surface current over Stellwagen Bank and
go out the Bay without ever interacting with the nearfield area in any way. Lastly, there is
another is major issue relative to the possible influence of nutrient input: the significance,

to ecological processes, of external loading compared to internal loading at the particular
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scale of interest. Making calculations for the Bay as a whole, even assuming the entire
potential Merrimack contributed to the total N input to the Bay, all estimated external N
sources would furnish only about 18% of the annual N needs for primary production!.
Assuming the external loads are well estimated, the calculation implies that 72% of primary
production needs are supplied by internal loading, i.e. recycling in water and sediments.
Therefore, pelagic responses to nutrients in Bay waters, aside from areas near major point
sources, will be less influenced by total Baywide external “loading” than they are by local
and mesoscale processes (physical and biological) which regulate “internal” nutrient cycles
(see also Kelly, 1991; Kelly and Levin, 1986). With these practical and conceptual problems
highlighted, one must recognize that the influence of the Merrimack River on Massachusetts
Bays’ nutrient dynamics is very poorly known, no matter how well discharges from the

Merrimack River into the ocean are quantified.

Knowledge of water quality at the most northerly water column stations in the 1992 MWRA
monitoring program, relative to the nearfield, allows some insight on the potential influence
of flow from the north into the nearfield. Throughout the year there were times when a
shallow and slight fresher surface layer was observed in the northern area of Massachusetts
Bay, and this could indicate transport of a body of river-influenced water. The average DIN
within the surface 10 m for stations F20, F21, and F22 (the “Northern Transect”, see Figure
2-2) was 1.55 uM for the year, with a concentration range of 0-5 pM (n=30). Sixty-three
percent of the samples had less than 1 uM DIN. In contrast, the mean DIN concentration
was less than 1.5 uM for only two of the twenty-one nearfield stations. Thus, the nearfield
 was generally more enriched in DIN than the northern stations; flow of water from the north

into the nearfield would dilute higher dissolved nutrient water with lower nutrient water.

Unfortunately, there are no data on PON at the Northern Transect stations, and TN cannot

be evaluated. However, the northeast corner of the nearfield, station NO4P, was intended

1The percentage is calculated using the input of 3.5 x 107 kg N/yr and the area of
Massachusetts and Cape Cod Bays as 3,500 km? (Menzie-Cura, 1991), relative to an average
net primary production of 300 gC m2 yr!, assuming a C/N ratio of 6.625 (by atoms).
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to serve as an indicator for waters moving from the north into the nearfield that is
“upstream” of the outfall diffuser, and TN was measured here. Occasjonal transport of
water from the north to this corner of the nearfield has been implied by examination of
temperature, salinity, and other water characteristics (e.g., Kelly et al., 1992). Figure 2-10
shows that TN at this station within the surface layer was consistently low compared to other
“P” stations (refer to Figure 2-2 for locations). Of the 10 “P” stations in the Bays, Station
NO4P had the lowest average TN (12.2 uM) in 1992. As with DIN, the implication is that
water from this corner flowing into the nearfield would generally dilute nearfield TN

concentrations.

While nutrient concentration does not describe flux or loading (sensu Vollenweider 1975,
1976), these data certainly refute any notion that flow of surface water from the north would “
enrich nearfield N concentrations. Indeed, the gradient shown in Figure 2-9 implies
overwhelming dominance of inshore sources, and Boston Harbor, on the present nearfield’s
nutrient concentrations. It may be demonstrated in the future that the northern rivers do play
an important role in surface transport of water into Massachusetts Bay, but it is possible that
they are more significant for transport of biological organisms than for nutrients (e.g. Franks
and Anderson, 1992).

2.4 Scales of Change Expected with Proposed Offshore Outfall

The available evidence strongly and consistently supports the concept that most nitrogen
discharged with MWRA effluent is exported from Boston Harbor (Kelly, 1991). From this,
one may argue that a principal scale of monitoring is local rather than regional, because the
nutrients now being discharged are circulated throughout the Bays, much as they will be in
the future. With respect to the local scale, the monitoring data enable new understanding
of nutrient dynamics in the nearfield area, as.illustrated by the calculations below, focused

on the stratified period.
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The 1992 data suggest nearly conservative mixing of total nitrogen across nearfield surface
waters during summer (e.g. Figure 2-9). While this implies a large horizontal nutrient flux
it suggests little ner vertical exchange as loss or gain of N to bottoin waters during
stratification. ~ Note that to maintain the observed relationship with salinity, gross
sedimentation of organic matter (PON) could occur if on average it were balanced by a
continuous vertical diffusive flux of dissolved nitrogen across the pycnocline, or sporadic
upwelling of bottom waters. Neither sedimentation nor upwelling is easily quantified, but
the vertical diffusive flux can be estimated. Comparison of vertical and horizontal fluxes
estimated for present and projected conditions next provides a strong sense of how nutrient

dynamics in the nearfield may be altered with the effluent diverted directly to the nearfield.

A diffusive flux from bottom to surface waters is implied because there is a vertical gradient :
in DIN concentration within the nearfield during stratification. A simplé calculation of the
diffusive flux of nitrogen can be made, following a Fickian diffusion model and assuming

a three-layer system (e.g., Okubo, 1971):
F =KW, -N)/b (Equation 2-1)

where, F= vertical flux (umol m?2 d), N, and N, represent seasonal averages for DIN in
surface and bottom waters, K is the coefficient of eddy diffusivity (cm? sec’)), and b =
thermocline thickness. Note that X is not molecular diffusion (which is much slower) and

is difficult to measure accurately.

Using the samples bracketing the subsurface chlorophyll maximum, near the bottom and top
of the pycnocline, N, = 2.77 and N; = 0.55 uM of DIN for the period of June to October
1992 at the nearfield stations. The mean sampling depths for N, and N; were 22 m and
7 m, respectively. Thus, b was generally less than 15 m and a range of 10 to 15 m will be
assumed. Studies of shelf waters suggest K values of about 0.03 to 0.44 cm? sec’!, using

a variety of estimation methods (cf. Sharp and Church, 1981). Note that K is not molecular
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diffusion (which is much slower) and is quite difficult to measure. Geyer et al. (1992)
estimated K of 0.11-0.14 cm? sec™! for relatively stagnant bottom water in Stellwagen Basin.
One might expect a higher K in the nearfield, which is more dynamic. Dye studies by
Rocky Geyer (WHOI) were conducted to quantify this process during August 1993; results
are not completed, but K seems lower than 0.1 cm? sec! for the few days of the study
(Geyer, personal communication). To calculate a reasonable average upper bound for
vertical flux during the stratified season, K was assumed to range from 0.1 to 0.2 cm? sec’l.
Using this range, the diffusive (i.e., not including advective upwelling) nutrient flux? from

nearfield bottom waters to the surface layer could be 127-384 pmol N m? d1.

An equivalent, balancing sedimentation flux would account for only 3% of the approximate
1gCm?2d?! (~12.5mmol N m? d"!) primary production occurring during the period (Cura,
1991; Kelly et al., 1993). A value closer to 20% might be expected for seasonally stratified
coastal systems of similar depth (e.g. Hargrave and Phillips, 1986). It is also likely that
vertical advection (upwelling) infuses additional nutrients to the surface layers. The presence
of fronts, surfacing thermoclines, and noticeable expansion/contraction of the thermocline
thickness and position within the nearfield during summer 1992 (Kelly ez al., 1993a) suggests
some bottom water venting. Moreover, Geyer et al. (1992) stressed that their surface
temperature data suggested that upwelling and disruption of stratification occurs on a

sporadic basis.

For comparison to vertical flux, assume that during the stratified period, as much as 88%
of the 1992 input to Boston Harbor (cf. Kelly and Nowicki, 1993), or 2.16 x 10° mmol N

d!, is exported®. Export occurs to surface waters extending into at least the middle of the

2The estimated flux range is derived from Equation 2-1, using N; =0.55 uM and N, =2.77 uM.
The lower estimate of 127 umols N m?2 d! is derived from K=0.1 cm? sec’! and b=15 m (i.e., slow
diffusion across a wide boundary layer) and the higher estimate of 384 pumols N m2 d™! is derived
from K=0.2 cm? sec’! and =10 m (i.e., faster diffusion across a thinner boundary layer).

3Input is 1.3 x 107 kg N yr'! or slightly below 9 x 10'! mmol N yr!. Divide by 365 days and
multiply by 88% to get 2.16 x 10° mmol N d"! as a potential horizontal flux.

2-24



nearfield (about 175 km?). Thus*, the average horizontal surface flux for this region would
be 12.3 mmol N m? d! — more than 30 times the calculated diffusive flux but equivalent
to the primary production demand (above). If one assumed that only 50% of the Harbor N
was exported to the nearfield, the associated average horizontal flux across the area would

be 6.2 mmol N m? d'!, which is still more than 16 times the calculated diffusive flux.

These simple calculations suggest that the present export from the higher-nutrient waters
inshore is the major nutrient flow into nearfield surface layers. A fundamental change in the
delivery of nutrients will take place with diversion of effluent to the Massachusetts 'Béy
outfall since nutrients will be input to bottom waters. Under stratified conditions, the present
horizontal flux will be strongly limited because the source to the Harbor will be curtailed,
but the vertical flux in the nearfield will increase. If the difference in TN (<15 uM) between
the Harbor edge and the nearfield is indicative of the maximum increase in nearfield bottom
waters, the diffusive flux calculation (Equation 2-1) can be repeated. The result is a
diffusive flux® on the order of 1-2 mmol N m? d"!. When stratification is persistent, this
flux will be a major input to the surface waters; but note that it represents a flux that is only

about 10-16% of the horizontal flux to the surface waters that occurs now.

Summary. In the present situation, MWRA effluent-derived N flows into the nearfield area
surrounding the future diffuser. It is delivered directly to the surface layers, especially
during the stratified period, and therefore is available to the plankton. In the future, the
initial dilution will be faster than at the edge of the Harbor and, thereafter, the delivery to
the productive surface layers will be more highly constrained by vertical density gradients
that restrict exchange. Therefore, monitoring and research efforts should focus on

understanding local ecological changes, predicting response to the nutrient flux changes such

42.16 x 10° mmol N d!, divided by 175 x 10 m? = 12.3 mmol N m2 d!

SUsing Equation 2-1, with N,-N; = 15 uM, K=0.1 cm? sec’!, and b=15 m, then F= 987 ymol
m?2 d1.
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as are estimated here, and on how well the monitoring program will be able to determine

both local and regional change in the Harbor and the Bay.
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3.0 Influence of Nutrients on Chlorophyll

Chlorophyll, a measure of phytoplankton biomass, is one of the most variable parameters
in the MWRA mohitoring program. In spite of its variability, chlorophyll is a prime
indicator of the response of phytoplankton to nutrients. After a brief review of time-space
variability of chlorophyll observed during 1992, this section explores patterns that may be -

derived between chlorophyll and nutrients on annual and seasonal timescales.

| Kelly (1991) presented a summary of average conditions of chlorophyll and dissolved
inorganic nitrogen (DIN) in Massachusetts Bay surface waters. Perhaps because of
preoccupation with the issue of Harbor flushing and nutrient export, there has been little
emphasis on his observation that the average chlorophyll concentrations in western
Massachusetts Bay were not high and, moreover, that only modest changes in chlorophyll
might result from the new outfall. A main objective of this section is to use monitoring
results to focus a discussion on the chlorophyll response expected with effluent diversion to

Massachusetts Bay.
3.1 Spatial and Temporal Scales of Chlorophyll Variability

At fine scales of measurement, chlorophyll distributions often have a high degree of
patchiness. Patches exist at the scale of meters to kilometers over both horizontal and
vertical space throughout the nearfield (e.g., Figure 3-1). Kelly and Albro (1994) used high-
resolution profiling to describe how some small-scale chlorophyll variability at the western
edge of the nearfield may be due to tidal action, resulting in water and material exchanges
between the Harbor and the Bay. The 1992 monitoring program has also shown that
fluctuations in concentrations of chlorophyll from near zero to bloom levels can be detected

at fixed locations over periods of hours to days.
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Figure 3-1. An example of chlorophyll variability from Station NO1P to Station
N10P in mid-July 1992. The transect is about 10 km in length.
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At intermediate scales of observation, monitoring has demonstrated that chlorophyll
concentration gradients from shore are persistent in some areas of the Bay. For example,
shallow inshore stations (particularly near Boston Harbor) and deeper offshore stations
characteristically have different annual cycles (e.g., Figure 3-2). Differences in part reflect
differences in the general level and seasonal availability of nutrients as a function of
proximity to nutrient sources in conjunction with mixing of the water column. In shallow
coastal areas near an inshore nutrient source, the surface layer often has the highest summer
chlorophyll concentrations, whereas in deeper, more stratified water, highest chlorophyll

concentrations are frequently found within or near the pycnocline.

At a geographic scale, the broadest included in the monitoring program, the 1992 chlorophyll
data show clear differences between Massachusetts and Cape Cod Bays, some of which 1
parallel differences in nutrient concentrations (cf. Kelly ef al., 1993c). For example, the
winter-spring peak in chlorophyll occurred earlier, was more intense, and more prolonged
in surface waters of Cape Cod Bay stations than at stations in Massachusetts Bay. The
prolonged spring bloom virtually depleted both nitrogen and silicate in Cape Cod Bay but
not silicate in Massachusetts Bay. From April through October, surface chlorophyll
concentrations were consistently higher in Massachusetts Bay, particularly western
Massachusetts Bay, than in Cape Cod Bay. In spite of seasonal differences in near-surface
trends, both Bays experienced sporadic mid-water chlorophyll blooms during the summer
stratified period. Both Bays also had a sharp autumn peak in chlorophyll as water column

stratification weakened, but before complete re-mixing occurred.

One way to observe gradients and patterns over the backdrop of high local variability, broad
inshore-offshore trends, and regional-level distinctions is to examine averages over time and
space. Indeed, the monitoring plan was designed, in its frequency and timing of sampling,
to collect data suitable for calculating annual and seasonal averages. Using the 1992 data,
annual means for chlorophyll (using chlorophyll a-calibrated fluorescence readings) were
calculated from surface readings (about 2-5 m deep) at all 46 stations occupied on the

sixfarfield/nearfield surveys (see Appendix Table 1).
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Figure 3-2. Seasonal cycle of chlorophyll along a transect from Broad Sound to
Stellwagen Basin. Note different depth scales. [Source Kelly et al.
1993c]
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The range for 1992 annual surface averages was about 1.4 to 4.3 pg/L. This range is
similar that calculated for the surface layer in 1989/1990 from the data of Townsend et al.
(1991) by Kelly (1991) [see Appendix]. Figure 3-3 shows the Bays-wide chlorophyll pattern
- for 1992, as contoured over all nearfield and farfield stations. The greater small-scale
variability implied for the nearfield can be attributed to a higher density of stations in the
nearfield and is not necessarily a reflection of variability in western Massachusetts Bay
comparéd to other areas. Highest average chlorophyll concentrations occurred westward of
the coastal arc from Nahant Bay to Cohasset. On average, surface chlorophyll
concentrations at Cape Cod Bay stations were similar to those of the nearfield stations, m
spite of the striking differences in timing of seasonal production events that was mentioned

above.

Focusing on the western Massachusetts Bay region emphasizes a gradient in chlorophyll
concentration with distance from the Harbor (Figure 3-4). Highest average concentrations
are associated with locations that are strongly tidally regulated (stations F23P and F25) or
lie within the zone of direct tidal influence (stations F24 and N10P). Outside the area of the
direct tidal influence, on average there was an apparent plume from the western edge of the
nearfield almost to the middle of the field (Figure 3-4). A variety of individual observations
have identified patches, if not a coherent plume, of water that are enriched in chlorophyll,
and found along the western edge of the nearfield; a body of data support the concept that
patches represent release of water temporarily entrained in the Harbor-Bay tidal ebb and flow
cycle (cf. Kelly ez al., 1993a; Kelly and Albro, 1994). The exact location and intensity of
such chlorophyll-enriched water parcels varies with season, winds, and perhaps other factors.
Thus, the average picture of a plume may be misleading; for example, chlorophyll plumes
extending several kilometers southward along the coast have been suggested at times.
Finally, both Nahant Bay (station F18, see Figure 2-3) and the northwest corner of the
nearfield off Nahant (station NO1P) had relatively high average chlorophyll values. The

occurrence near Nahant Bay may relate to something other than tidal dynamics, such as

upwelling or a coastal nutrient source from the north.
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3.2 Annual Surface Water Nutrient—Chlorophyll Relationships in the Bays

A prediction by Kelly (1991) that annual mean chlorophyll would rise as much as 1 pg L}
for each 1 uM increase in annual mean DIN concentration is revisited here using 1992
survey datal. The prediction was not based solely on data from Massachusetts Bay, and
relied more on field data from a variety of other natural systems, as well as experimental
data on marine eutrophication studies in the MERL mesocosms. The range of concentrations
encompassed by those studies was from very oligotrophic to quite eutrophic, spanning annual
mean DIN concentrations from <1 pM to about 400 yM and annual mean chlorophyll

concentrations from about 0.5 to nearly 80 pg L.

~ For all stations sampled during combined nearfield/farfield surveys in 1992 (n=6), the mean
annual surface chlorophyll and DIN concentrations were compared (Figure 3-5). The figure
shows much scatter, but the results broadly parallel those derived with the Townsend et al.
(1991) data (cf., Figure 10 of Kelly, 1991) and in particular repeat the observation that
stations near the Harbor (in this case, stations F23P and F24) have chlorophyll well below
that predicted by a 1:1 trend. The pattern for 1992 data shows slightly higher chlorophyll
“yield” at a given DIN concentration than observed using the averages derived for
1989/1990. This makes the 1992 data more consistent with data previously compiled for
other shallow marine ecosystems (cf. Figure 12 of Kelly, 1991). Interestingly, those stations
in this 1992 summary which seem to have especially higher “yield” (e.g. chlorophyll above
2 ug L'l at DIN <2 uM) include all four Cape Cod Bay stations, as well as several in
Massachusetts Bay north of the nearfield — all of which had higher chlorophyll than the
nearfield—Harbor area early in the year in February (Kelly et al., 1992).

1A 1:1 increase conforms to common observations on chemical composition of marine plankton

and is consistent with monitoring data. Assuming a Redfield ratio for C/N (6.625, by atoms), then 1
pg Chl L per 1 uM N would predict an average C/Chl ratio of 80:1 (by weight). POC/PON trends
from monitoring data are consistent with the Redfield model. POC/Chl ratios are variable, but the
range includes 80:1.
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A regression for chlorophyll on DIN for all station data in Figure 3-5 was significant at the
95% level (R®= 0.30, n= 46). The slope of the regression was 0.34 + 0.08 (£ stnd.
error). The slope was largely determined by the two near Harbor stations (F23P and F24)
with higher mean DIN concentration. Inclusion of near-Harbor stations in 1992 (as well as
in 1989/1990 — Kelly, 1991) suggests that a chlorophyll rise due to higher nutrients would
be far less than 1:1. Excluding those two stations there was a small range in chlorophyll and -

DIN and a weak correlation between them (R?= 0.15, n= 44).

A more striking pattern was observed between chlorophyll and DIN (Figure 3-5) when data
was limited to the select stations of the Harbor-nearfield area where additional wet chemistry
is conducted (see below). In this case, the regression (without stations F23P and F24) was
significant at the 95% level (R%2= 0.66, n= 8), with a slope estimate not different from 1
(1.31 + 0.38, zstnd.error). Stations F23P and F24 fell well below this trend and their

inclusion lead to a weaker correlation (R*= 0.49, n= 10) and lower slope (0.39 + 0.14).

At the select group of stations in Figure 3-5, chlorophyll concentrations were examined
relative to other forms of nitrogen. Significant linear relationships with PON and Total N
(TN) were found (Figure 3-6). In both cases, station F23P fell slightly below the trend line
for the other stations; station F24 was omitted because organic N was not measured there.
Without station F23P, the regression for chlorophyll and PON was significant at the 95%
level R?= 0.66, n= 8), with a slope of 1.0 (40.29, stnd. error). Including station F23P,
the slope was not significantly lower (R?= 0.72, n= 9, slope = 0.81 + 0.19). The
relationship between chlorophyll and PON thus suggested that roughly 1 ug L' chlorophyll

is created for each 1 uM N assimilated into tissue (Figure 3-6).

The relationship between TN and chlorophyll differs from DIN, but it also may be a more
robust predictor of chlorophyll than DIN. Chlorophyll and TN had the highest correlation
for all the N forms at the select group of stations (R?= 0.73, n=8 without station F23P;
R%= 0.71, n=9, with station F23P) (Figure 3-6). The slope estimated for chlorophyll and
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TN was low: 0.35+0.09 (stnd. error) without, and 0.2340.05 (stnd. error) without station
F23P. High frequency fluctuations (relative to sampling) between active chlorophyll growth
and DIN concentrations could create some scatter in annual means due to timing of
measurements; by using TN and incorporating that labile N within organic forms, such
effects may be partially buffered. TN includes both PON and DON; only a portion of DON
is likely to be used and recycled by plankton. DIN and DON, having sharper concentration
gradients than PON across the stations, strongly influence (and lower) the overall slope of
TN and chlorophyll. In any event, TN was strongly related to chlorophyll, the pattern may
be useful as a predictor, and the premise that chlorophyll may rise no more than about 1 ug

| L! for a nitrogen increase (DIN, PON, or TN) of 1 pM is applicable.

Reviewing the above regression analyses, the inclusion of high-nutrient concentration
Harbor-edge stations often lowered the slope estimate and decreased the R? value. This
finding obviously suggests that the two higher-nutrient stations are not fully described by the
empirical relationships derived for the remaining stations. Interestingly, their inclusion
affected cases when dissolved nutrients were included in the N form, but not the case with
PON alone; this additionally suggests that the deviation at stations F23P and F24 may be
more from altered linkages between dissolved nutrients and chlorophyll than from a
fundamental change in the chlorophyll/PON ratio. Thus, while significant regressions were
obtained using data for all stations, their predictive capacity for enriched conditions is
uncertain because the higher nutrient conditions presently occur at locations that may have

different factors limiting chlorophyil.

Before describing some thought experiments to predict the magnitude of chlorophyll changes
in the nearfield, it is helpful to have a short examination of environmental controls relevant
to the difference between shallow near-Harbor locations and nearfield waters. The basic
question is why station F23P generally does not réach chlorophyll levels that could be
expected for its nitrogen level. There are a number of factors that can affect the relationship
between chlorophyll and nutrients, e.g., grazing, light, and toxicity (cf. Kelly, 1991). From

the monitoring program, we have no information on grazing or toxicity, but we do know that
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a light gradient exists along the nutrient-chlorophyll gradient from the Harbor. Townsend
et al. (1991) advanced the concept that chlorophyll was limited by both nutrients and light
along the gradiént from the Harbor into the Bay — nutrients being more limiting offshore
and light, because of increased turbidity, being more limiting inshore. The 1992
transmissometry readings (attenuation of a beam of transmitted light over a 25-cm
pathlength), which are correlated to total suspended solids (and thus turbidity), indicated a
gradient from the Harbor to the Bay (Figure 3-7). Coincident with this gradient is a general
increase in vertical mixing as well as the depth of the euphotic zone (where light is
sufficiently high to allow phytoplankton growth, usually taken from the surface to the depth
having 0.5 to 1% of surface-incident photosynthetically active radiation). 1992 data confirm
that the euphotic zone graded from about 10 m or less at the edge of the Harbor to 25-30 m
at the eastern edge of the nearfield. Moreover, results of Kelly (1993) and Kelly et al.
(1994) confirm other empirical formulations (e.g., Cole and Cloern, 1987) which provide
strong indirect evidence that variations in integrated water column primary production and
chlorophyll biomass in the Harbor-Bay region of western Massachusetts Bay are related to
light availability. In sum, the notion that chlorophyll near the Harbor is, in part, restricted

by light is a viable hypothesis.

To adciress the interaction of nutrients and light a sophisticated approach involves explicit
modeling of light, nutrients, etc. as linked, complex mathematical functions that are based
in physical and physiological theory and have a variety of assumptions. The approach
generally decrements a theoretical “maximum” production or biomass for sub-maximal
conditions of the various factors. Such an approach has been adopted in developing a water-
quality model for the Bay (Hydroqual, 1993). Simulations being conducted will soon
provide predictions for a number of effluent discharge scenarios (MWRA, personal
communication); these will be interesting to compare against the patterns and simple linear
regression model results presented here. A simple approach used here jointly considered the
light (beam attenuation as proxy, Figure 3-7), chlorophyll, and nutrient gradients to see if
one could describe data from all stations by one set of rules. For the 1992 station summary,

a composite variable, the average chlorophyll multiplied by average beam attenuation
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Figure 3-7. Annual surface average beam attenuation in the region in 1992.
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(turbidity), was related strongly to average nitrogen concentrations. For DIN, using all
stations (n=46, R2=0.52) or TN at select stations (n=9, R?=0.79), linear regressions were
stronger using the composite variable than chlorophyll alone. In contrast to the analyses
-above, when stations F23P and F24 were included, each regression had a higher R? but no
change in the estimated slope. This finding suggests that all stations may indeed follow some
generalizable rules, but a principle attractiveness of the formulation lies in the inclusion of
a relative turbidity term, which is hypothesized to be the essence of why F23P is lower in
chlorophyll. The composite variable suggests that if nitrogen in the nearfield increased, but
turbidity did not, a higher chlorophyll would be predicted than if turbidity increased also.
This formulation absolutely needs testing against more data as they become available and also
needs founding relative to theory; nevertheless it is used a series of thought experiments that

next provide a range of predictions of chlorophyll concentration in the nearfield in the future.

There are two parallel series of thought experiments. The first assumes an unamended
transfer, to the surface water in the middle of nearfield, of the concentration of DIN or TN
measured in 1992 at the Harbor edge. If no light or other compensation actually exists for
the present environment near the Harbor (relative to the Bay), the average chlorophyll
concentration at F23P would directly provide a prediction (4.26 ug L!). If regression
models for the select stations without F23P are used (see Figure 3-6), the predicted range’
is 5.9 to 8.1 ug Chl L1, If regression models with the composite variable are used, the
predicted range is 3.74 to 4.43 ug Chl L! if nearfield turbidity increased to the level of
station F23P, or 8.3 t0 9.83 ug Chl L'! if turbidity remained at the level presently measured
at the middle of the nearfield®.

2Based on least squares linear predictive regression models for DIN and TN from select stations:

Chlorophyll = 1.31 (DIN) - 0.72 and Chlorophyll = 0.35 (TN) - 2.55. Chlorophyll was predicted
using nutrient concentrations of station F23P, DIN = 6.77 uM and TN = 24.11 uM.

3Based on the least squares regression model for DIN (n=46) and the model for TN at select

stations (n=9) as described in text. The models are: (Chlorophyll * Beam attenuation) = 1.06 (DIN)
+ 0.71 and (Chlorophyll * Beam attenuation) = 0.65 (TN) - 6.33. Calculated ranges are based on
DIN= 6.77 uM, TN= 24.11 pyM, and Beam attenuation= 2.11 m™! (F23P) or 0.95 m'! (nearfield).
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The second thought experiment simulates the outfall diversion: move the nutrient source,
but increase dilution and during summer, trap nutrients below the thermocline, while
curtailing the present nutrient export to nearfield surface water from the Harbor (see Section
2). A variety of modeling and calculations suggest there will be a substantial increase in
effluent dilution (conservatively, a two- to four-fold increase for the nearfield on average
compared to the present immediate receiving area) and trapping below the thermocline will
reduce surface summer concentrations further (see Sections 2 and 5). For the calculation,
assume that average nearfield nutrient concentrations are 1/4 of station F23P; then DIN
would be the same as the mid-nearfield at present, about 1.75 uM. Assume TN will be
similar to mid-nearfield concentrations also, about 14.5 pM. Using the same chlorophyll-
nutrient regressions as above, the predictions of the average chlorophyll are 1.57 to 2.53 ug
Chl L*!, or within the present range of the nearfield. Using the composite variable, the
predicted range is 2.7 to 3.25 ug Chl L'! if turbidity is unchanged or 0.83 to 1.5 ug Chl L]

if turbidity increases to Harbor-edge levels.

Although simplistic, these thought experiments provide a conceptual guide and numerical
bounds of prediction of average annual chlorophyll concentrations. Removal of apparent
light limitation at the Harbor would by itself allow increase chlorophyll, but as embodied in
the composite variable formulation, increased turbidity and self-shading from increased
plankton could moderate chlorophyll increases. If there were sustained chlorophyll levels
as high as 8-9 ug Chl L'! — still not high compared to eutrophic systems (e.g. Kelly, 1991;
Nixon ez al., 1986) — these would be easily detected. While such a 400% increase in
surface chlorophyll concentration in the nearfield is possible, it seems less likely than a slight
decrease on average. With future surface nutrient concentrations likely to be less than near
the Harbor now, the nutrient-chlorophyll response, even with lessening of light limitation,

could be difficult to detect.

In summary, even with the present strong nutrient source and a sharp gradient in nitrogen
concentrations away from the Harbor, the accompanying chiorophyll gradient, although

shown clearly in the data, encompasses a limited range in average chlorophyll concentrations
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and there is only a factor of 2-3 difference from minimum to maximum (Figure 3-4). A
chlorophyll enrichment, even at the most nutrient-enriched monitoring location at the edge
of the Harbor, is persistent and detectable, but it is not large relative to the overall time and
space variability in chlorophyll. In other words, the apparent nutrient-induced signal-to-noise
ratio in this parameter is low. Neglecting the nutrient-enriched stations F23P and F24, the
remaining patternless cloud of points in Figure 3-5a is testament to a low signal-to-noise
ratio. This observation is undoubtedly promulgated by the data summary, which used the
farfield sampling frequency (six per year) for all stations. Indeed, high-resolution profiling
and extensive hydrocast bottle sampling in space and time within the nearfield region were
instituted with recognition of this signal-to-noise issue. Appropriate statistical analyses of
the extensive monitoring data are planned for the purpose of defining the detectable scales
of change for chlorophyll and will be reported elsewhere, but patterns derived from frequent

sampling in the nearfield during 1992 next illustrate some resolvable trends.
3.3 The Nearfield Region in the Summer Stratified Period

The stratified season is of special interest because bottom waters become sealed from the
atmosphere and dissolved oxygen may decrease, in part as a consequence of surface
production of organic matter that settles to the bottom. Also, this season is when nitrogen
presently exported from the Harbor appears to be dispersed directly into surface productive

layers of the nearfield.

The nearfield itself is of special interest, not only for its expected response to the upcoming
changes in effluent discharging (above), but also from the perspective of the monitoring’s
sampling design. Frequent nearfield sampling was intended to provide a higher power to
detect change. Thus, it is of substantial interest to investigate whether the higher frequency
and intensity of meésurements in the nearfield provide a picture of variability that seemingly
represents more “noise” than “signal” of response to the gradient of conditions from the
Harbor.
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Temporal Variability in the nearfield was described in the annual report for 1992 (Kelly et
al., 1993c). Briefly, the water column was only weakly stratified in April, a thermal
gradient had begun by May, and a fairly stable stratification was evident from June to mid-
October. There were seven intensive nearfield surveys during this stratified period (June,
mid-July, late July, mid-August, late August, mid-September, mid-October). For the period,
mean concentrations for various parameters were calculated for the surface “layer” (surface
to subsurface chlorophyll maximum) for each of the twenty-one stations (Appendix Table 2).
A subsurface chlorophyll maximum was usually within the pycnocline and was found at

about 12 m inshore and 17-18 m offshore.

Inspection of the nearfield data summarized for the stratified period reveal some striking
spatial trends. The average surface-water chlorophyll concentration uniformly decreased by :
a factor of two from inshore to offshore (Figure 3-8). Values were slightly higher in the
middle of the western transect of stations closest to shore (stations N11 and N12), suggesting
influence from the President Roads area by way of the North and South Channels leading

from there to Broad Sound.

Regardless of the mean chlorophyll concentration, minima <1 ug Chl L1 were detected
everywhere during the period (Figure 3-9). In contrast, maximum chlorophyll values
increased as a function of increasing mean chlorophyll concentration. This feature was also
reported in controlled nutrient enrichment experiments (e.g., Nixon ez al., 1986). While this
point may seem obvious, quantifying the relationship between maxima and means is not
trivial because ecosystems can be sensitive to extreme (i.e., maxima) conditions and
undesirable events like anoxia may result from episodic events as well as from the overall
trophic status implied by mean conditions. Both statistics (mean, maximum) are of interest;
the frequency of summer sampling captured a strong sense of maximum events and provided

meaningful average values.

The inshore-offshore nearfield data for the stratified period showed a linear relationship

between chlorophyll and salinity (R?= 0.73, n= 21) even though the range of mean salinity
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was only slightly more than 0.2 PSU (Figure 3-10a). Stations from the western side of the
nearfield on average had higher chlorophyll and lower salinity. Beam attenuation (Figure
3-10b) was also a linear function of salinity (R?= 0.51, n= 21) and was correlated with
chlorophyll (R>= 0.58, n= 21). Note that beam attenuation was in general much lower
offshore than at the edge of the Harbor (cf. Figure 3-7). Again, the data suggest the present
importance of nutrient export along the transect from Boston Harbor across the nearfield in

western Massachusetts Bay.

The decrease in chlorophyll concentration with distance from the Harbor and the linear trend .
with salinity could indicate conservative export of chlorophyll, and thus an “outwelling” of
organic matter from the Harbor. But to examine this possibility, one must include stations
near the Harbor in the analysis. The Harbor-edge stations have been included in a summer
period comparison in Figure 3-11 by calculating averages for the surface layers in June and
August for the select group of stations that had strong N—salinity patterns (as summarized
in Figure 2-9 and reported in Appendix Table 3). For this comparison, the station averages
and patterns for chlorophyll, nitrogen, and salinity were generally similar to those shown
previously (cf. Figure 3-11 vs. Figure 3-10). However, an extremely interesting feature is
shown in Figure 3-11 which refutes the notion of conservative dispersion of chlorophyll

produced inshore.

Assuming stations F23P and NO4P represent inshore and offshore endmembers, conservative
mixing between the Harbor and eastern edge of the nearfield could produce a straight line
drawn between data points for F23P and NO4P in Figure 3-11. However, stations between
the Harbor and the nearfield that are at intermediate salinity (especially stations F24, F25,
NO1P, and N10P) had average chlorophyll concentrations ’higher than an implied
conservative mixing line. The enhancement could arise from active growth of chlorophyll
between the Harbor and the middle of the nearfield, but still at stations within the exported
water plume that has high total N. In this interpretation, the area where chlorophyll

stimulation occurs need not be extensive. For example, stimulation could occur in the few
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kilometers between the Harbor and stations F25, F24, and N10P, for one can draw a straight

line from F25 to NO4P and include most points.

There could be several mechanisms for chlorophyll stimulation. The western Massachusetts
Bay area receiving that interacts with Boston Harbor by tidal exchange may function as a
temporary trap to accumulate nutrients in surface waters. For example, station N10P
appearsto have a high TN concentration that is not fully commensurate with conservative
mixing (see Figure 2-9). Such data supports the notion of a localized nutrient accumulation
(via recycling or temporary retention of particles) possible because of unique physical mixing
dynamics — this station is located essentially at the tidal front between inshore and offshore
waters (Signell and Butman, 1992; Kelly and Albro, 1994). A second possible mechanism
for chlorophyll stimulation outside the Harbor is an abrupt release from light limitation due
to a turbidity drop, which is essentially the phenomenon addressed in the previous section.
The apparent increase in chlorophyll over conservative mixing at the intermediate statioﬂs
in questions, about 1-2 ug Chl L1, is of the same order as would be predicted by the
composite (chlorophyll-turbidity) variable trend with TN described above, uéing summer

turbidity data for these stations.

Kelly and Albro (1994), in analysis of data from an independent, high-resolution mapping
study of Harbor-nearfield transects in June 1993, were able to show that the Broad Sound
area (station F24) and that east of Nantasket Roads (F25, N10P) had enhanced chlorophyll
that could not result from simple mixing of inshore and offshore waters. The enhanced
chlorophyll occurred where turbidity decreased sharply. Thus, they speculated that the
reduction in turbidity at the edge of the tidal front might allow for growth since nutrients in

Harbor export must still be available at this location.

Regardless of mechanism, there now are two analyses which suggest non-conservative
transport of chlorophyll from the Harbor to the nearfield. Notably, Kelly and Albro (1994)
was based on high-resolution sampling on a single day, but the summer seasonal pattern in

Figure 3-11 suggests sustained occurrence. Stimulation of chlorophyll in western
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Massachusetts Bay occurs under present conditions, at least during summer. Herein lies a
principal notion related to our recurrent theme of chlorophyll response to nutrients. If the
higher chlorophyll concentrations found in waters just outside the Harbor aré indeed
produced because light is more available or some other Harbor-related limitation is removed,
the interesting fact is that the increase is not very large, perhaps 1-2 ug Chl L, and is
similar to the more conservative annual average predictions made above. The summer
chlorophyll “enhancement,” presumably a consequence of the present nutrient export, is less
than the present difference in chlorophyll concentrations between stations on the western and
eastern sides of the nearfield area. Thus, the nearfield as a whole may exhibit little change -
in average chlorophyll concentration, but the cross-nearfield gradient should diminish with
effluent diversion and the resulting chlorophyll gradient could become centered in the

nearfield rather than along its western edge.

3.4 Summary Prospectus on Chlorophyll as an Indicator of Change: Scales of

Response to Nutrients

Across stations in 1992, there were relatively small but well-ordered differences in annual
average surface chlorophyll fluorescence. Moreover, the differences seemed to follow
nitrogenous nutrients, but perhaps indicate a modest limitation on chlorophyll exists at higher
nutrient levels near the Harbor. Annual averaging is clearly a useful scale for measuring
change related to nutrient enrichment and it is a proper scale for addressing some of the
major energy flows which, in part, follow from plankton biomass distributions. At this
scale, meaningful change, in the context of the monitoring program, might be an average
chlorophyll concentration above the present observed range observed or predicted for the
Harbor-nearfield area or for other healthy shelf systems. Predictions that can be made at
present generally suggest modest changes in chlorophyll concentration within most of the
nearfield area around the proposed outfall. In fact, the average concentration could decrease,
because much of the present export of MWRA-origin nutrients now sustains chlorophyll
concentrations across much of the nearfield; at a minimum, the existing chlorophyll gradient

from shore should be altered. More than the average chlorophyll in the nearfield surface

3-26



layer, the most noticeable change in chlorophyll distribution in response to the new outfall
location may be a change in vertical distribution: one can anticipate uniform deepening of
the position of a chlorophyll concentration maxima in the water column towards the interface
between the surface and bottom water layer, which will function as a prime nutrient source

to euphotic layers during stratification.

The stratified period is, of course, a critical one for the Bay. It is encouraging to
demonstrate that patterns of nutrients and chlorophyll, and gradients with distance and
salinity, are readily discernible with the present intensive summer monitoring strategy in the
nearfield.

At finer scales of resolution, the notion that extreme events, as well as mean conditions, are
a function of higher nutrient supply merits further investigation, but in any case it provides
an argument for continuation of frequent sampling in space and time. High-resolution in situ
tow data (Figure 3-1, also Kelly and Albro, 1994), have revealed the scales of spatial and
temporal patchiness in chlorophyll. Earlier efforts (e.g., Kelly et al., 1992; 1993a,b) have
illustrated that temporal variability in chlorophyll is often rapid; because of this,
concentrations are unpredictable (even without including uncertainties of predicting nutrient-
related responses) at any fixed station within the dynamic, three-dimensional fluid that is the
Massachusetts Bay nearfield water column. A notion that chlorophyll patch size, persistence,
and position in the water column are related to differences in nutrient supply (location and
intensity) may be advanced from inspection of the patterns at different locations in the Bays
(Figure 3-2 and Kelly ez al., 1993c); changes in patch characteristics are a potential indicator
of response along the Harbor-Bay gradient which may add to the ability to detect and
describe subtle changes in the ecosystem. Large and persistent chlorophyll patches, perhaps
as much as any localized or acute event, are relevant to eutrophication and promotion of low

oxygen.events in western Massachusetts Bay.

Given limited scientific understanding, and no explicit regulatory guidance, on those

chlorophyll levels that might be considered undesirable in an ecosystem context, it is helpful
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to maintain a hierarchy of sampling scales in the monitoring program to ensure that any
relevant changes are detected and evaluated. Development of scale-dependent and
independent indicators should continue as data gathering efforts continue, with the goal of
offering predictive guidance (as to the types of changes that need to be detected by
monitoring efforts) from finer scales to seasonal and annual time frames. It is realistic to
presume that high-resolution sampling for chlorophyll (e.g., moorings, towed in situ
profiling, or frequent standard surveys) may provide early warning of meaningful change in
the ecosystem, but at the same time care also must be exercised in its use. We do not yet _
know the importance of localized and acute peaks in chlorophyll (in space or time) and one
must recognize that this type of monitoring indicator (cf. Kelly and Harwell, 1989) can raise

concern where no meaningful change ever becomes realized.
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4.0 Influence of Nutrients on Plankton Species Composition

In addition to stimulation of overall phytoplankton biomass measured as chlorophyll, the
influence of nutrients on plankton species in Massachusetts Bay is a concern, for some
changes potentially could affect food webs. Moreover, a principal issue is stimulation of
certain problem species. This includes species often classed as “nuisance” because they may
cause a surface scum or cause discoloration of otherwise clear water and those classed as
“noxious” for their toxins, either accumulated in the next link of grazing food chain
(endotoxins) or spewed into the water itself (ectotoxins). The influence of nutrients on
species composition is inherently difficult to predict. The 1992 monitoring data is examined
here to update our knowledge on these topics. In considering the potential effects, the
previous discussion on nutrients must be kept in mind, particularly that changes are expected

to be localized near the outfall.
4.1 Nutrients and Plankton Species

It is generally recognized that there is a limited ability to predict species-level variation in
the plankton as a function of nutrient concentrations (or loading) (Cura, 1991; Townsend et
al., 1991; Kelly, 1991; Smayda, 1992; ASA, 1993). There is a substantial ability in the
monitoring design to relate the total phytoplankton biomass response to nutrients and other
aspects of the environment (e.g., Section 2); however, both the strength and limitation of a
biomass indicator is that it is essentially blind to individual species fluctuations. With
biomass regulated by energetic and nutritional constraints and, therefore, bound by the laws
of physics and thermodynamics, it is somewhat “robust” to many types of species
replacements, where any of several species capable of playing a similar functional role and

having fairly similar physiological requirements may flourish in a specific time or place.
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Smayda (1992), in reviewing species successional patterns and available geographic

distributions at that time, wrote (p. 8)

“The general conclusion from this limited data set is that despite some regional
variations in successional patterns, the phytoplankton composition and dominant
species throughout the region are generally the same. The phytoplankton flora of
neither Massachusetts Bay, nor Cape Cod Bay stand out as regionally distinctive
communities. In fact, the winter-spring bloom component is similar to that south of
Cape Cod Bay, including Narragansett Bay, Long Island Sound and New York Bight
(Smayda, 1973). Features distinctive from the flora south of Cape Cod include: the
prominence of the nuisance species Phaeocystis pouchetii; the occurrence, spreading
and blooming of the toxic dinoflagellate Alexandrium tamarense, and Emiliania
huxleyii events.”

A Massachusetts and Cape Cod Bays-wide bloom of Phaeocystis pouchetii in April 1992 (cf.
Kelly et al., 1993a,c; Turner, 1993) was also observed by Turner (personal communication)
in Buzzards Bay, to the south of the Cape. There are indeed scores of resident plankton
species common to the Bays, as revealed by Borkman’s and Turner’s (MWRA Water
Column Monitoring Reports) careful identification of species from nearly 200 samples

collected in 1992.

The possibility of “red tide” or other noxious/nuisance species being encouraged by
nutrients, as suggested by Don Anderson (e.g., Franks and Anderson, 1992), has been
acknowledged. But this issue “for the moment has to be considered of a relatively low order
given the observations already made about expected [small] changes in Massachusetts Bay”
(ASA, 1993). To track possible noxious/nuisance species, the 1992 monitoring program
included additional special sampling designed to quantify the less-numerous, but larger (>20
pm) cells of dinoflagellate species considered by phytoplankton specialists to be of greatest

ecological concern .

Most scientists (e.g., Nixon et al., 1986; Franks and Anderson, 1992; Smayda, 1992; ASA,
1993) argue effectively that the problem is complex, that factors other than nutrients can

often be primary influences, and that the complexity of the marine ecological response to
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enrichment begs for controlled experimental work to address issues of the level and quality
(i.e., ratios of elements) of nutrient enrichment. Suitable experiments are difficult to design
and interpret, so the limitations of the results must always be recognized, as should the fact
that results are also “rarely wholly unambiguous” (ASA, 1993). Historically, controlled
enrichment experiments have taken two forms: e.g., short-term (days-weeks) bottle-size
container studies (cf. Smayda, 1992, for MWRA, 1988, 1990) and larger-scale, longer-term
(years) mesocosm studies conducted at the URI MERL facility (Nixon et al., 1986, Oviatt
et al., 1986; Doering et al., 1989).

Short-term, bottle-type enrichment studies conducted with water samples from western
Massachusetts Bay in July and September 1987 resulted in several general conclusions
(Smayda, 1992):

L] “Nuisance species did not bloom in the 2-day enrichment experiments. The
community structure remained more or less intact.

[ The most abundant species were stimulated to higher growth rates, although
the highest nutrient levels used appeared to have repressed growth of
individual species.”

Smayda (1992) also reviewed results of some longer experiments. Selected conclusions that
speak to the issue of species changes, from among many of his conclusions (MWRA, 1990)
on results of 7-day experiments using water samples collected approximately in the middle

of the nearfield and enriched with “secondary effluent,” follow:

1. “The phytoplankton community at station P2 (42° 22°42" N, 70° 47°10" W)
sampled on 18 April 1988 (see MCA Rpt. No. 88-1 for companion field
studies) was dominated by diatoms typical of late-spring bloom communities
in New England coastal waters. This bloom studied between 2 March — 4
May was in decline.

2. Chronic exposure of this community to nine secondary sewage effluent
treatments, including two controls; three treatments at 40:1 seawater:effluent
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25.

26.

29.

30.

enrichment; two treatments at 90:1; and two treatments at 150:1 did not alter
community structure.

The dominant species present initially persisted irrespective of effluent
treatment. The following diatoms dominated: Thalassiosira nordenskioeldii,
Skeletonema  costatum,  Nitzschia delicatissima, Nitzschia  seriata,
Thalassionema nitzschiodes and several Chaetoceros species. Thalassiosira
pseudonana and Nitzschia closterium were of secondary importance.

Nannophytoplankton < 10 um, which considerably exceeded diatom
abundance numerically, but contributed only 25% of the chlorophyll biomass
in the initial community, did not increase dramatically with effluent level,
contrary to expectations.

Nuisance algae blooms of nannophytoplanktonic species would not be
expected during the winter-spring period in response to the above sewage
effluent treatments; the diatom component would be stimulated to greater
abundance.

Rapid utilization of Si(OH), by diatoms suggests both an export of surplus
nitrogenous nutrient and increased N:Si ratio with downstream distance would
occur along the dispersal gradient. The availability of Si(OH), will determine
the duration, magnitude, and spatial pattern of diatom blooms stimulated by
nitrogenous nutrient in the discharged effluent.

The winter-spring diatom bloom in recipient waters can be expected to be
more intense and more prolonged. Summer blooms of nannophytoplankton,
predominantly non-diatoms, are likewise expected to be more prolonged and
intense.

The potential for nuisance algal blooms during summer-autumn periods will
be increased, and should be evaluated experimentally.

Whatever else is done with regard to regulation of nutrient delivery, the

maintenance of high silica loading is strongly recommended to ameliorate
potential nuisance bloom stimulation and hypoxia by nitrogen loading.”
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The latter few conclusions, whether or not fulIy Warranted from the short April experiments,
raise interesting issues. Some of these have been examined in the second type of controlled
experiments mentioned above us,ing.the MERL mesocosms. The mesocosms have used water
from Narragansett Bay, thereby including much of the same phytoplankton community as in
Massachusetts and Cape Cod Bays (see above); many experiments have dealt with well-
mixed conditions simulating a well-mixed 5-m water column and others have studied
stratified systems. ASA scientists, among the many researchers involved in MERL studies,

have written that

“In the few studies which have addressed these questions (i.e. response of plankton
communities to long term nutrient enrichment) the results have been complex, and
often not in accord with the preconceived wisdom. In particular, there have not been
blooms of noxious species, and often the relative proportions of diatoms to flagellates
have not followed expected scenarios (Nixon e al., 1984; Doering et al., 1989;
Oviatt e al., 1989).” (ASA, 1993) '

Recent experimental results suggest that manipulating the N/Si ratio had little overall
metabolic or chlorophyll biomass effect at a given N loading (Doering ez al., 1989). Thus,
some long-term, large scale results are counter to some conventional notions, such as the

prediction in the last Smayda conclusion (No. 30) above. Doering et al. (1989) wrote:

“With respect to the ideas expressed in the 2 papers by Officer and Ryther (1980)
and Ryther and Officer (1981) our results are equivocal. On the one hand, alteration
of the N: Si ratio of nutrients in sewage effluent did nothing dramatic by way of
’ecosystem improvement’. Although enhanced fish growth resulted, this was not as
dramatic as that caused by addition of nutrients in a ratio resembling sewage effluent.
By contrast, however, our results do support many of the ideas concerning diatoms,
especially the importance of N:Si supply ratio and grazing by both zooplankton and
benthos in regulating diatom abundance.”

Results.of Doering ef al. (1989) did confirm that N/Si ratios can affect the phytoplankton
species composition. Large manipulations of the ratio can alter the flow of energy
partitioned between the pelagic and benthic/demersal consumers (including fish) and even

perhaps modify trophic efficiency with respect to biomass realized by fish which prefer to
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graze on diatoms. However, we should always remain cautious in using experjmental results
conducted at scales and conditions that imperfectly mimic those relevant in nature and in this
case one must be conscious of the experimental nutrient concentrations relative to
environments of concern. The Doering et al. (1989) experiment used enrichments typical
of very highly-enriched coastal systems. Their time-weighted average DIN concentrations
in enriched tanks, independent of the Si loading, were in the range of 53-65 uM — a factor
of 8 or more greater than the annual average for the Harbor-edge station F23P in 1992.
Recognizing such differences and drawing from other MERL results, including those of ‘
Oviatt er al. (1989), it has been suggested that nutrient enrichment with silica-limited,
nitrogen-rich wastewater, at concentrations likely to occur at the proposed MWRA outfall
site, are not likely to affect dinoflagellate populations (ASA, 1993). This statement seems
well-reasoned but, of course, one must still maintain a monitoring program that is attentive

to less probable, but perhaps consequential events.
4.2 Results from 1992

Nutrient export from the Harbor into the surface of the Bay in a sense provides an
experiment in nature that has continued for decades. The monitoring data at different
stations in the Bay occur across a nutrient concentration gradient and therefore provide an
appropriate database to review for evidence of broad differences in species composition in

relation to nutrients.

Species composition and nitrogen concentration. Coastal stations (F23P and F13P), nearfield
“P” stations, and Cape Cod Bay stations (FO1P and FO2P), receive different quantities and
maintain slightly different levels of nutrients (e.g., see Section 2). On average, the coastal
stations have the highest nutrient concentrations. The Cape Cod Bay stations have nutrient
concentrations similar to the mid-range of the nearfield stations. Within the nearfield,
stations NO4P and NO7P to the eastern side of the nearfield characteristically have lowest,
and stations N10P and NO1P highest, nutrient concentrations. Chlorophyll levels reflect

these nutrient differences (Section 3). The taxonomic composition by major phytoplankton
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groups is given in Figure 4-1a,b for these stations. Further details are in the sources cited
in the figures. There is seasonal variation, especially from higher dominance of diatoms
(February and March) to strong dominance by Phaeocystis in April, to a mixed community
in summer and fall. Station F23P, highest in nutrients, has an overall balance of major
phytoplankton groups quite similar to less nutrient-enriched conditions, and, like chlorophyll,
often did not have highest total cell counts. Figure 4-1 presents a coarse view; multivariate
analyses have not yet been conducted and such techniques might be able to discriminate fine
differences in communities across some groups of stations. But notably from the summary
in Figure 4-1, the seasonal pattern is stronger than the individual station variability; i.e.,
overall the stations are relatively similar in spite of nutrient differences. A similar
observation is apparent for zooplankton, as described in more detail by Turner (1993) and
shown in Figure 4-2. For zooplankton, about the only major distinction was the presence _

of more estuarine species at F23P, which has slightly lower salinity most of the year.

Species composition and nitrogen/silicate ratios. Two aspects are of interest, a difference
between Cape Cod Bay and Massachusetts Bay during 1992 and comparison of the present

outfall area at the edge of the Harbor with the future outfall area in Massachusetts Bay.

First, a brief discussion is provided regarding Cape Cod Bay and Massachusetts Bay relative
to biology and N/Si ratios in the water column; Kelly ef al. (1993c) summarized differences
fully. In 1992, two blooms of potentially-noxious phytoplankton (Phaeocystis pouchetti in
April, and Ceratium longipes in June) appeared to relate to changing N/Si ratios in Cape Cod
Bay. The Phaeocystis bloom occurred also in Massachusetts Bay but the Ceratium bloom
was not detected there. In Cape Cod Bay (but not Massachusetts Bay), silicate, along with
nitrogen, was virtually depleted by the time Phaeocystis bloomed in April; Cape Cod Bay
was lower than Massachusetts Bay with respect to silicate concentrations at this timé (Figure
4-3a). By June, the mid-water in Cape Cod Bay had adequate N and P supplies for the
intense development of Ceratium, which does not require silicate; subsequently, when
. Ceratium was detected in very high numbers, silicate was higher in Cape Cod Bay than
elsewhere (Figure 4-3b). Looking at the data for June, one would think that Cape Cod Bay
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water, because of higher Si (and lower N/Si ratios) would be prime for diatoms. Following
this period it may have been, but at this time the conditions were probably a consequence
of dinoflagellate bloom. One important suggestion from these data is that biology is not just
passively influence by water chemistry; biology can actively influence chemistry as well.
A second suggestion is that winter-spring diatoms do appear to have the potential to create
a nutritional situation advantageous for nuisance dinoflagellates to exploit, a sequence that

may be part of the normal cycle of events in coastal and shelf waters.

In the case just described, it appears that a successional scenario, as alluded to in Smayda’s
conclusions above (No. 25), may occur in the development of many nuisance blooms. It is
“not clear why the Cape Cod Bay winter-spring bloom appears to be initiated earlier and may
characteristically be more prolonged (cf. Kelly et al., 1992), but this appeared to be in part
why silicate became more depleted. Higher Si depletion does not seem related to more
available N; levels of TN in February were not high relative to other stations. Interestingly,
Cape Cod Bay stations in 1992 had more biological attributes of a eutrophied system than
Massachusetts Bay stations (Kelly ez al. 1993c) but there is no evidence linking Cape Cod
Bay attributes to higher nitrogen concentrations or external loading, which both appear to
be much higher near Boston. Additional studies funded by the Massachusetts Bays Program
in 1995/ 1994 will help understand the unusual character and dynamics in Cape Cod Bay.

N/Si ratios in the principal areas of concern. Figure 4-4 compares the near-Harbor stations
and the nearfield stations (ali depths) in winter 1992. A clear relation between DIN and
silicate is evident for both, particularly the Harbor-edge. There, the N/Si ratio from a
functional regression is about 2.8:1 (R*=0.90, n= 17; Figure 4-4). The majority of data
for the nearfield had slightly less N per atom of Si but most had ratios greater than 1:1..

In the summer (Figure 4-5), the Harbor-edge stations had a ratio of about 1.7 (functional
regression slope; R?2=0.62, n= 39). There were some cases where DIN was very low and
silicate was still easily detectable; these of course have a lower ratio. The bottom waters for_

the nearfield that are indicated in Figure 4-5 are where the future outfall will discharge,
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subsequently acting as a source td the surface layer. Bottorﬁ water N/Si ratios approached
1.7 but were generally lower than this. The scatter in the ratio in summer data reinforces
the' notion of the nearfield as‘ a complex mixing zone for inshore and offshore waters (Kelly
et al. 1992, 1993a,b). At times during 1992, silicate in bottom waters to the offshore was
observed mixing into the nearfield area. The fact that ratios can be lower offshore also may
relate to discharges to the Harbor that are relatively N-enriched. The recent inclusion of
silicate as a part of effluent chemistry analysis will help characterize the MWRA effluent
source. The Harbor’s relative enrichment in N in summer may also be a partial consequence
of a larger role of sediments in nutrient cycles at higher temperatures. With respect to this,
Giblin ez al. (1994) noted that N/Si ratios in Harbor sediment fluxes are generally higher

than for depositional sediments in the nearfield.

It is not simple to predict how sediment fluxes will affect Harbor water quality in the future,
after effluent diversion. Since sediment fluxes will also affect the Harbor’s future nutrient
export (concentrations and nutrient ratios) to the Bay, nutrient export is likewise difficult to
predict, but it must be included to predict future surface water concentrations and ratios in

the nearfield, especially during summer.

The principal point of the comparison, though, is to provide an empirical basis for
understanding the present and expected variation in N/Si ratios. Some of the nearfield area
now has N/Si ratios that are as high as the Harbor area where effluent is presently
discharged, in part because those western stations receive exported Harbor water. The rest
of the area, especially the deeper bottom waters will, in the future, likely become more
enriched in N than silicate and the ratios may rise, but probably no more than presently
observed in the Harbor. Overall, the present nutritional differences between Harbor and
nearfield are most pronounced during stratification, yet even then are not large and do not

appear to create major community shifts.

The Harbor and nearfield station phytoplankton species composition were similar in 1992.

Diatoms, not dinoflagellates of nuisance/noxious nature, were a substantial component of the
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community even during summer. This indirect evidence supports the premise that the
expected N/Si ratio changes by themselves may not induce major undesirable shifts in
phytoplankton species. This notion will be controversial, but it is a basis for examining the
facts of the problem and seems in accord with some controlled experimental mesocosm

results summarized earlier.

In general, the 1992 monitoring results show similarity, with some exceptions, in species
composition throughout the Bays, as earlier noted by Cura (1991) and Smayda (1992). The
Bays therefore may be viewed as biologically well-mixed, much as the system is physically
well-mixed and open. The present monitoring design captures major seasonal events and
allows some limited insight into the influence of nutrients on plankton species. An improved
study design, and the best “experimental analog” to when the future outfall is in operation,
might be to follow the “blobs” (Signell and Buttman, 1992) of Harbor water with higher
nutrients and chronicle the plankton response as these are advected through and mixed with
the Bay water. Although perhaps difficult to do, the technology exists to perform such
studies.
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5.0 Nutrients, Metabolism, and Bottom-Water Dissolved Oxygen

A prime concern with nutrient enrichment is depletion of dissolved oxygen (DO) caused by
excessive production coupled with rapid consumption of organic matter. Mid-water
hypoxia/anoxia, which has been documented in the New York Bight (e.g., Falkowski er al.,
1980), is possible with rapid decay of particulate organic matter. Another concern is with
progressive depletion of bottom water, as has occurred in recent years in other U.S. coastal
waters. Kelly et al. (1993c) have previously reviewed the 1992 annual cycle of DO in
Massachusetts Bay. Frequently, surface waters were supersaturated, not surprising for a
productive system. In general, mid-depth waters of Massachusetts Bay were near saturation
for most of the year; at some stations, water within the pycnocline was, at times,
supersaturated during summer stratification. The lowest DO saturation levels measured were
in the range of 70-75% and the lowest concentrations were near 7 mg L' or about 1.0 mg
L1 above the stéte standard of 6 mg ! used as a “site determinative measure” in outfall

siting (EPA, 1988).

Depression of dissolved oxygen (DO) is a principal issue in Massachusetts Bay since the
nearfield area and most of the Bay is seasonally stratified from about late April to mid-
October. Some production may be continuously or rapidly transferred to bottom waters and
therefore not really observable in any chlorophyll-averaging scheme. Metabolism
(production and consumption of organic matter) is a measure complimentary to chlorophyll
and may provide a useful indicator for monitoring; metabolism in the water column and
sediments is reviewed in this section. A preliminary nitrogen budget is assembled to
illustrate relative strengths of sources supporting nearfield production and 1992 bottom-water

DO trends are discussed in the context of consumption of primary production.
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5.1 Metabolism in Massachusetts Bay

Figure 5-1a shows estimates of integrated water column production, derived from oxygen
changes across a light-dark gradient (Kelly e al., 1993c) for six nearfield “P” stations
sampled in 1992. The production rates for 1992 were converted to carbon from oxygen.
They may be biased towards high estimates because the assumed Photosynthetic Quotient
(PQ) of 1.25 may underestimate the actual PQ (Doering et al., 1993). Also plotted in Figure
5-1a are the 1973/1974 Parker (1974) data for in situ measurements made a few kilometers
south of the proposed outfall diffuser; these data were summarized by Cura (1991, Table 9)
and are also shown in Smayda (1992, Figure 6B). A third data set displayed in Figure 5-1a
was summarized by Smayda (1992, Appendix Table IV). Originally reported in MWRA
(1988, 1990), these data were derived from incubator measurements of water from three
stations in western Massachusetts Bay in 1987/1988. Those three stations were near stations
N10P, N21 and F24 of the 1992 water quality monitoring program. Some of the pre-1992
measurements, notably in 1987/1988, were made at approximately weekly intervals but, in

this comparison, are plotted all under the same month, thereby obscuring the rapid rise and

- fall (one to two weeks) in peak' winter-spring production rates. The three annual-cycle

studies are not strictly comparable because of differences in methods, but they represent
virtually all of the available computations of daily primary production rates in Massachusetts
Bay. Townsend et al. (1991.) made suitable measurements but did not present integrated

daily rates.

Figure 5-1a illustrates the considerable variability in production evident in each study both
in space and over short time periods. Considerable time-space variability is expected for
production, because integrated water column production is strongly influenced by chlorophyll
concentrations (see Section 3). Two seasonal peaks in production nevertheless seem
suggested, characteristically occurring in late spring (March) and late summer/early fall (late
August or September). Both within and across studies, the production rate within any

month often varies by an order of magnitude, so results will depend on the week and location
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chosen for each production measurement. This observation is most evident in March and

in summer, when more measurements have been made.

The three studies in Figure 5-1a have fairly similar patterns and roughly equivalent rates.
Comparability is difficult to assess, given high time-space variability, differences in
methodology, and the sensitivity of calculations to assumptions (cf. Doering et al., 1993;
Kelly et al., 1993c; Frenette et al., 1993). With a relative insensitivity of production to
nutrient loading at the high nutrient loads typical of most estuaries (e.g., Kelly, 1991; Nixon,
1992; ASA, 1993), and where light limitation may also complicate the picture, it may be
difficult to determine changes in integrated water column production with the present
“monitoring design. Regardless, the measurements give some indication of the energy flow,
which is required for understanding carbon and nutrient flow in the region of the proposed

outfall.

Annual primary productivity has only been coarsely estimated. Reflecting on the data in
Figure 5-1a, it seems reasonable to assume an annual productivity near 350 g C m? in the
nearfield (cf. Cura, 1991). An appropriate range may be 350 to 500 g C m? y! (Smayda,
1992) but, for the sake of computations, 350 g C m? y! will be used; this amount! hﬁplies

a nitrogen requirement of about 4400 mmols N m? y!,

Using an empirical model derived from many marine areas, Kelly (1991) suggested that
about 15 to 27% of produced carbon (at about 350 g C m? y'!) might be consumed by an
underlying soft-sediment benthic community at the water depth (about 32 m) and mixed-layer
depth (about 15 m) in the nearfield. The few empirical measurements of benthic flux
available in 1991 suggested that a smaller percentage might be consumed. New data
obtained in 1992/1993 by Anne Giblin, Charles Hopkinson, and Jane Tucker of the Marine -

Biological Laboratory have recorded somewhat higher rates than previously measured (Giblin

1350 g C m? y! divided by 12 g C/mole, divided by 6.625 mole C/mole N = 4.4 moles N m2
y’!, or 4400 mmols N m?2 y'!. The 6.625 C/N conversion is a standard assumption based on the
Redfield ratio.
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et al. , 1994). Using high and low temperature oxygen uptake rates (October and February),
an exponential relationship with temperature was derived: Flux (mmol 0, m? d1) = 9.33
e0-066(Temp) (R2= 0.49, n= 11). This is a normal pattern that suggests a Q,y ~2.0, or
roughly a doubling of rates for each 10 °C increase in temperature — approximately the
annual rise in nearfield bottom waters from winter to early fall. Using the equation, the
monthly average temperature distribution in bottom water, and assuming a Respiratory
Quotient (RQ) of 1.0 to convert from oxygen to carbon, roughly 62 g C m2 y! would be
consumed in softer, depositional (silt-clay and/or fine sand) sediments found in the

nearfield®. This value represents about 18% of primary production.

The bottom in the nearfield area is not highly depositional, so the value and percentage
estimate may be high. Knebel’s (1992) assessment suggests that, at most, about 29% of the
entire Massachusetts Bay area may be similar to the soft sediments sampled for benthic
fluxes (including both Knebel’s “depositional” and “sediment reworking” bottom types).
The percentage of soft sediments typical of those surveyed for benthic fluxes likely includes
only a small portion of the “sediment-reworking” type; this type might be as low as 5-10%

of the bottom in the nearfield.

Metabolism in non-depositional, coarse sands and hard-bottom areas has not been measured.
However, fluxes for most elements and compounds may be low, an expectation based on
results of benthic fluxes from an initially bare hard bottom in mesocosm studies (5 m water
column). In mesocosms at the Marihe Ecosystems Research Center (MERL) at the
University of Rhode Island, a sedimented flocculent layer accumulated in a short-term study
(about a week following a large diatom bloom — Hunt, 1983; Kelly and Nixon, 1984) as
well as a one-year eXperiment (Doering, 1989). In both experiments, opportunistic benthic
macrofauna (including spionid polychaetes dominant in Massachusetts Bay) colonized and

“bound” sediment, similar to what may happen during stratification in Massachusetts Bay

2Approximate monthly temperatures were used to calculate a rate for each month from the model.
The average rate of these months was 14.1 mmols O, m2d"!. That rate, multiplied by 365d/y x 1
mmol C/mmol O, x 12 mg C/mmol C) and divided by 1000 mg/g = 61.7 g C m? y!.
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(Shea et al., 1991). Concurrent with this, initially clean hard bottom in the mesocosms
achieved oxygen and nitrogen flux rates that were about 10-20% compared to tanks with
intact depositional sediments from Narragansett Bay. Note that the mesocosm studies were
conducted in a shallower and warmer ecosystem than that of interest in Massachusetts Bay
and experimental results likely produced relatively high fluxes; but in the absence of other
information, the 10-20% range is useful as a guide to a calculation made next. Assuming
that a maximum of 29% of the area consumes carbon at the annual rate given above and the
remaining area (71%) consumes carbon at 20% of this rate, the consumption of pelagic
carbon by the nearfield benthos would be less than 8% of the overlying production®. The
calculation suggests a relatively small role for the benthos in pelagic carbon consumption

Processes.

Calculations, similar to those for oxygen flux above, for regeneration of dissolved inorganic
nitrogen (DIN) and loss as N, (based on direct denitrification measurements of Barbara
Nowicki in 1992/1993) yield annual values on the order of 550 mmols N m? y! for DIN
and 175 mmols N m? y™! for N,. Without correction for the percent of bottom that is soft-
sediment, the sum of these rates represents 725 mmols N m2 y'l, or about 16% of the
surface layer production as N, which is similar to that calculated for summer by Giblin et

al. (1994). Correction, as above, lowers the value to about 7%.

Some annual N production must be buried, not returned as remineralized flux. However,
this is usually only a small fraction of the flux itself. A calculation, using 0.1 cm y!
deposition (probably maximal — see Knebel, 1992) and about 0.15% N in surface sediment
(Giblin er al., 1993), yields an estimate of about 96 mmols N m? y! possibly buried or,
after the 29% area correction, well less than 1% of primary production, which is comparable

to estimates for other coastal and shelf systems.

362gCm?y!1x029) + (62gCm?y!x02x0.71) =27g Cm?y!, or 7.7% of
annual primary production.
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These preliminary annual calculations will be improved as more data are collected for Bay
sediments. For the critical summer period, Figure 5-1b draws together data and calculations
on various flows of nitrogen (e.g., from Section 2) that might furnish nutrients to primary
producers. Although preliminary, this figure conveys the significant progress that has been
made in quantitative understanding of the nearfield area*. Since the indicated flows are
calculated for the whole nearfield, the input flux at the western side of the nearfield must be
higher than the eastern side; the gradient is therefore not emphasized by these average flows.
Nonetheless, the figure illustrates that in the present situation of MWRA effluent discharge
to the Harbor, the flow of nitrogen from the Harbor is the dominant supply to the surface
photic layer and could nearly supply the nutrients required for observed rates of net primary
production (NPP). Pelagic nutrient recycling has not been assessed directly and is not
included in the diagram, but it is likely substantial. The DIN flux from bottom sediments
supports a DIN flux across the pycnocline into the photic layer; each rate is small compared

to primary production needs and to the present supply from inshore.

As effluent is diverted and becomes a direct input to subpycnocline bottom waters of the
nearfield, flows will change dramatically. As suggested in Section 2, the input from inshore
then will be restricted to roughly 10% of the present flow. Benthic fluxes in the nearfield
are expected to increase (Hunt and Steinhauer, 1994) and crude calculations (Section 2)
suggest that the diffusive flux across the pycnocline might be 1 mmol N m?2 d-l. Therefore,
the inshore and bottom-water fluxes of N to the nearfield photic zone would become more
balanced than at present. Because of these expected shifts in relative strengths of the major
nitrogen sources, it is likely that the vertical distribution of phytoplankton and NPP will shift
and chlorophyll-NPP maxima should be observed near the depth where the dominant nitrogen
flow enters the photic layer. Additionally, however, the projections indicate that the total

nitrogen flux to the photic zone will be reduced compared to the present; because of this

4The reader is invited to compare this Figure 5-1b to the similar, but purely qualitative,
schematics of major processes in the nearfield presented as Figures 18-19 in Kelly (1991).
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Nearfield During Summer Stratification

<123TN

0.6-1.5DIN

Units are mmol N m-2 d-1

Figure 5-1b. Net primary production (NPP) and supporting nitrogen flows during

summer stratification. Flow estimates are indicated for near-surface
input from inshore (as Total N, TN), flux across the pycnocline into the
photic layer (as Dissolved Inorganic Nitrogen, DIN) and flux into the
bottom water from benthic recycling (DIN). The view is to the north,
with the inshore to the left and offshore to the right. The approximate
depth ranges are indicated for the photic layer and the pycnocline
between surface and bottom layers; these ranges often grade slightly
from inshore to offshore. The horizontal distance is greater than 10km
and the depth scale is in meters, so the vertical exaggeration is

>200:1.
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NPP in the nearfield can be expected, on average, to decrease, rather than increase, with the

diversion of effluent to the new offshore outfall.

Besides predictions, a basic conclusion is suggested at both annual or seasonal timescales and
evident in Figure 5-1b — rates of benthic metabolism and nitrogen recycling are significant
to the nearfield nitrogen budget, but do not indicate that the benthos is presently the major
supplier for production or consumer of pelagic organic matter. If only a small fraction of
pelagic production reaches the bottom in the nearfield, then it must be consumed in the water
column or transported away as particles to depositional areas, some of which are outside of
the nearfield region. Trends in water column DO are reviewed next to aid understanding
of oxygen consumption in the water column. Changes in bottom-water DO over the
stratified period in Massachusetts Bay during 1992 are examined for two regions: the
nearfield stations and a group of five stations positioned in deep water along the north-to-
south axis of Stellwagen Basin. Stellwagen Basin is of particular interest because of low DO
values observed there by Townsend er al. (1991) and also because it may be a regional
depositional area, collecting organic matter from a wide area, perhaps including transport

from the nearfield.
5.2 Time Trends of Bbttom-Water DO in the Nearfield .

In 1992, the lowest DO concentrations in nearfield bottom waters (below 20 m) were
measured in October. Lowest values were just below 7 mg L1, about 75% of the saturation
value (Figure 5-2). The temporal trend showed a decrease in DO concentration (and %
saturation) in May, a rebound through the next few surveys in June and July, followed by
a period of continuous decrease starting in late July-early August and extending to October,

after which DO concentrations began to rise again (Figure 5-2).

The downward trend in DO observed in May followed the cessation of the winter-spring
bloom, sinking of chlorophyll, and initiation of strong stratification. As noted by Kelly et
al. (1993c), the May 1992 DO data seem suspiciously low. In 1993, however, a DO
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decrease also has been observed in late Spring and subsequently followed by a slight rise in
DO concentration in early summer (Kelly ez al. , 1994). The May data may indeed suggest
 an initial respiration response to the winter-spring events as bottom waters began to warm.
After May, an upward trend continues for more than one survey in 1992; thus, there must
also be a phenomenon which allows the bottom water to be partially reoxygenated and
produce the early summer rebound. Two mechanisms are possible. First, production at low
light within the pycnocline may contribute. This has been noted as higher DO concentrations
at the subsurface chlorophyll maximum (Kelly e al 1993a,b). Second, the variability in the
density structure of many nearfield stations suggests that physical stratification may, on .
occasion, be at least partially disrupted and this could contribute to increased oxygen in

bottom waters following an initial depletion (Kelly er al. 1993a,c).

Related to this, Figure 5-3 shows an interesting trend, using a single nearfield station as an
example. . The DO concentration for the sample closest to the surface (about 1.5-2.5 m
below) and the sample nearest the bottom (about 5 m above) were strikingly similar,
differing only slightly in July and August, when the bottom waters were actually a bit higher
in DO. Since diffusive flux is a function of a concentration gradient, little flux between
surface and bottom waters can be implied from data shown in Figure 5-3; the changes in
bottom waters during stratification therefore would not seem to be artificially low due to
atmospheric-originating, diffusive-driven replenishment and would seem instead to be a
function of pycnocline metabolism and/or advection. When examined as % of saturation
(Figure 5-3), the bottom sample was characteristically below saturation during the stratified
period. The degree of saturation was lower in spite of similar or higher concentrations
because the bottom waters are much colder during this time, so the saturation value is
higher. This observation may provide an argument to use the saturation deficit and a concept
like Apparent Oxygen Utilization (AOU) (Redfield, 1958) in an effort to characterize
changes in DO that are due solely to biological processes. However, in this case where,
over the summer some advection may occur, a more sophisticated approach seems

unwarranted.
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If partial or full resaturation of DO does occur, by any mechanism, then neither production
nor sedimentation of organic matter from the winter-spring bloom can be a reliable harbinger
of the potential oxygen depletion later in the summer, contrary to expectations for a fully
stratified system. The pace of dissolved oxygen change during seasonal stratification may
be an important monitoring indicator, but the factors governing change need to better

understood.

The fluctuation in DO in nearfield bottom water (Figure 5-2) during the stratiﬁed period
(April to October) makes use of the time-trend data problematic for directly estimating in situ
respiration rates. For example, using data from April to October, a linear regression of DO
concentration on time is significant (R?= 0.496, n= 349), with the slope suggesting a
decrease of 0.0136 (£ 0.0007, stnd. error) mg O, L' d"!. However, the rates for both the
first DO decrease (April to May) and the second DO decrease (late July to October) are
higher than this, roughly 0.037 to 0.060 mg O, L1d!. Assuming the range of these rates,
10.013 to 0.06 mg O, L! d"! and applying them over a 15 m subpycnocline bottom water
layer, one calculates oxygen consumption® as 0.2 to 0.9 g O, m2 d’!. Compared to an
average primary production near 2.6 g O, m? d! (=1 g C m? d'!) during the stratified
period, such rates, if indicative of respiration, would represent consumption of about 8 to
35% of overlying primary production. As for benthic fluxes, estimates may be improved
as more monitoring data are accumulated and particularly with improvements in
measurements of in situ respiration (below). Recognizing their limitation, these rough
calculations, which include any benthic contribution to oxygen consumption, presently
suggest a minor role for consumption of overlying production by the water and sediments

below the pynocline.

3E.g., 0.0136 mg O, L' d"! x 15 m x 1000 L/m® = 0.2 g O, m2 d'l.
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5.3 Time Trends of Bottom-Water DO in Stellwagen Basin

Using data for five Stellwagen Basin stations and focusing on waters deeper than 50 m, the
trend for DO concentration in 1992 is shown in Figure 5-4. The pattern for these stations
was similar over time, eéch event showing values within about 1 mg L™! of each other and
often much tighter than that. For these stations, there was less frequent sampling and none
in May. The results suggest a more consistent, progressive decrease in DO for these bottom
waters than was observed in the nearfield (cf. Figure 5-2). During stratification (April to
October) the DO decrease was essentially linear (R>= 0.88, n= 30) and estimated as 0.015
(£0.001, stnd. error) mg O, L! d!, coinciding with an increase in bottom-water
temperature from a low of 3.3 °C in February to a high of 7.2 °C in October. The rate
implied for June to October was a bit faster, 0.023 (+0.001, stnd. error) mg O, L1 d'!
(R%*= 0.98, n= 19).

Interestingly, only in April and October was the bottom water lower in DO than the surface
water (Figure 5-5). As for the nearfield, no large diffusive flux from the surface to the
bottom seems implied, although flux from subsurface production within a deep chlorophyll
maximum in the pycnocline may occur. However, an increasing saturation deficit is shown
for the stratified period from April to October, compared to the surface waters which were
always slightly supersaturated. In comparison to the nearfield, bottom waters may be

somewhat sealed from the surface for the entire stratified period.

With the same cautionary notes as given for the nearfield, using the time trends (about 0.015
to 0.023 mg O, L! d'!) as an approximation to respiration for a 30-m bottom layer (the total
depth is about 80 m), an areal rate was calculated. The result is 0.45 to 0.69 g 0o, m?2d7l,
Assuming a 50-m bottom layer (all subpycnocline water), resultant rates would be about 0.75
to 1.15 g O, m? d!. Calculated rates are thus comparable to results for the thinner,
shallower nearfield bottom layer. Another perspective on the depletion is that, from the
saturation deficit achieved between April and October, a net depletion of about 2.5 g O, L*!

is implied. This suggests consumption of about 0.9 g C L-! assuming a Respiratory Quotient
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(RQ) of 1. For the 30-m bottom layer, roughly 27 g C m2 would appear to be consumed
by oxidative processes. The bottom layer and sediments thus might consume about 10% of
the overlying water’s annual primary production from about April to October, assuming that
production is slightly lower than in the nearfield — in the range of — 250 to 300 g C m‘2 y'l
over the Basin. These calculations, as for the nearfield, leave the impression that
production, unless transported out of the area, is primarily consumed and recycled in the
upper layers. Results of USGS efforts on sedimentation and particle transport may help
clarify transport issues, but in the case of Stellwagen Basin, the observed subpycnocline
oxygen decrease can be supported by production in the overlying water without significant

import of organic matter that was produced elsewhere.

Calculations notwithstanding, there seem at least three interesting aspects of this review with
respect to monitoring of Stellwagen Basin DO. One important observation is that the rate
of DO decrease in Stellwagen Basin is quite low and therefore well-monitored by repeated
surveys during the year at about the frequency conducted in 1992. A second important
observation is that the five stations, arrayed on the axis of Stellwagen Basin running from
well north to well south of the nearfield (see Section 2), had similar time trends for bottom
waters in 1992. Tentatively, the rough synchrony across stations could be evidence that
processes shaping DO changes were more a function of in sifu respiration and vertical
(diffusive and sedimentation) exchanges than a function of directional advection of water or
import of organic matter. From the monitoring perspective, the Basin’s seeming axial
bottom-water similarity, if consistent across years, provides a stable baseline against which
to detect change from directional transport of oxygen consuming organic matter if significant
transport does occur from the nearfield in the future. Thirdly, it should also be recognized
that we do not know the lowest DO concentrations attained in 1992 in these deep waters of
Stellwagen Basin. The water column was still stratified in October 1992 and no further

sampling was conducted in the farfield until February 1993,
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5.4 Scales of Variability

Calculated peak bottom-water respiration rates in either the nearfield or in Stellwagen Basin
are on the order of 0.01 to 0.06 mg O, L' d'. Those rates are established from gradual
changes monitored over months and are not without problems of interpretation. The
monitoring program also includes measurements of subpycnocline respiration using dark
BOD bottles and incubation times of about 6 hours. Unfortunately, the rates do appear to
be low enough that this short incubation time is inadequate for directly measuring water
respiration changes. A minimum detectable respiration rate in short incubations is about 0.1
mg O, L'! d!, or as much as an order of magnitude greater than what actually may occur
in bottom water. It is therefore not surprising that the bottle incubations have not been
successful at detecting respiration rates in general and that they have been more successful
in waters with high temperatures and high chlorophyll concentrations. In short, the 6-hour
incubations presently do not fulfill the intended role of detecting the potential for lowered
oxygen in cold bottom waters. The bottle incubation times could be increased, and/or time
series studies conducted, to improve the ability to monitor, and therefore detect changes in,
respiration rates and to provide better estimates for comparison to water-quality modeling.
Moreover, it would be useful to have good rate estimates for water éolumn processes to
confirm the strong, but indirectly reached: impression from calculations presented here that
most of the organic consumption appears in the upper water column of the seasonally
stratified Massachusetts Bay ecosystem. Even without such rates, however, the present
monitoring design maintains frequent visits to the nearfield area and the record of changes

over time should be adequate to detect gradual and significant trends in DO.
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6.0 Summary

Three principal eutrophication issues are addressed in this report. For each, the main results

from available evidence and theoretical calculations are provided in this summary.

The first issue centers on the present and future influence of the MWRA outfall effluent on

nitrogen distribution in Massachusetts Bay.

The available evidence strongly and consistently supports the concept that
most of the nitrogen in the MWRA effluent presently discharged to Boston
Harbor is exported to the Bay.

There are sharp differences in the form of nitrogen exported seasonally from
the Harbor to the Bay. The implication from a variety of data is that organic
N dominates the N exported from the Harbor during the summer, whereas
DIN export is high and dominant in winter.

Presently, the nutrients exported into the area surrounding the future diffuser
track are delivered directly to the surface layers, especially during the
stratified period and, thus, are completely available to the phytoplankton. In
the future, the initial dilution will be faster than that presently occurring at the
edge of the Harbor. Also, in the nearfield, vertical flux of nutrients to the
surface productive layers is constrained during stratification by vertical density
gradients. With the new outfall the vertical nutrient flux will increase;
however, calculations suggest that the increased flux from bottom waters will
still be much less than the present horizontal transport from inshore to surface
layers surrounding the outfall diffuser. Thus, the overall nutrient supply to
surface productive layers may decrease.

From these conclusions one can argue that the principal scale of monitoring for change is
more local than regional. At the regional scale, the nutrients being discharged today are
circulated throughout the Bays, just as they will be in the future. While monitoring efforts
principally need to focus on local ecological changes that are likely and detectable, research
and monitoring should also continue to identify factors that could influence broad-scale
variability in nutrients in Massachusetts and Cape Cod Bays.
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The second issue involves several facets of potential response by plankton to nutrients with
diversion of the outfall to the offshore site.

For 1992, the range in annual average surface chlorophyll fluorescence was
about 1.4 to 4.3 ug L! at 46 stations in Massachusetts and Cape Cod Bays.
The higher chlorophyll concentrations were found at the edge of Boston
Harbor and, as with nutrients, there was a gradient of decreasing
concentration of chlorophyll concentration with distance away from the
Harbor into Massachusetts Bay.

Significant linear regressions were obtained using the annual average
chlorophyll concentrations versus the annual average concentration of different
forms of nitrogen in the water column. Similarly strong trends were also
evident at a seasonal scale, using data summarized for the surface layer of 21
nearfield stations sampled intensively during the stratified period of 1992.
The regressions provide some predictive capability of the influence of
nutrients on chlorophyll, but the capability is restricted because factors other
than nutrients also influence chlorophyll along the Harbor-Bay gradient.

Stations near the Harbor have, on average, chlorophyll concentrations that are
less than might be predicted for their high nutrient concentrations. High
turbidity may influence light availability near the Harbor and thus limit
chlorophyll relative to clearer offshore waters.

Some thought experiments were conducted to consider the nutrient-chlorophyll
response around the new outfall. These employ regressions developed from
the 1992 data, including one that, in principle, provides for possible
interactive effects of nutrients and light upon chlorophyll. Results suggest
that upon transfer of the present nutrient concentration within the Harbor to
the middle of the nearfield, the chlorophyll concentration, on average, could
increase by about a factor of two, but this does not consider the additional
dilution imparted at the offshore discharge site. Moreover, since we now can
project that a decrease in surface nutrient flux from Harbor export will
accompany the effluent diversion, the projections of surface chlorophyll
change include the possibility of a decrease, on average, throughout the
nearfield. Therefore, the principal change due to relocation of the outfall may
not be the average chlorophyll concentration, but a shift in the vertical
distribution of chlorophyll to a lower depth. Such a shift would accompany
the projected sharp decrease in the present supply from inshore to surface
waters offshore, an increase in the future nutrient supply from nearfield
bottom-waters, and presence of a relatively deep photic zone in the nearfield.

Patterns between chlorophyll and salinity were revealed from analysis of the
summer season and higher-resolution sampling in the nearfield/Harbor area.
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Several lines of evidence suggest there is stimulation of chlorophyll
concentration (perhaps 1-2 ug L)) in immediate receiving waters several
kilometers outside the Harbor, a phenomenon which may relate to export of
nutrients into an area with increased water clarity.

Review of the influence of nutrients on plankton species indicates that the
present capacity to formulate predictions is limited. The results from the few
experimental studies that have examined the response of plankton communities
to long-term nutrient enrichment have been complex, but blooms of noxious
species and shifts in relative proportions of diatoms to flagellates have been
infrequent and often have not followed scenarios inferred from short-term,
simple experiments. 1992 monitoring data provide information relevant to the -
potential alteration of nitrogen/silicate ratios in the future nearfield area.
Initial comparisons of stations with differing nutrient concentrations or ratios
suggest that the relatively small changes in nearfield nutrient levels that are
projected are within the bounds already experienced within the Bay. Thus,
it would be difficult to conclude from the data that projected nutrient changes
will yield major species composition shifts to nuisance/noxious forms.

The third issue concerns a characterization of metabolism, the status of bottom-water
dissolved oxygen (DO) concentrations, and the factors influencing metabolism and DO in
Massachusetts Bay.

Variability in primary production is high and small changes in time and space
will be difficult to detect. Rates of benthic metabolism do not indicate a
major role for the benthos in the consumption of primary production within
the nearfield region of the Bay.

An analysis of the nutrient sources supporting primary production in the
nearfield shows that nitrogen presently exported from the Harbor
quantitatively dominates nitrogen input to the surface layers and could support
virtually all the primary production. In contrast, benthic regeneration and
diffusive fluxes across the pycnocline into euphotic surface layers supply only
on the order of 10% of the needs of primary producers. In the future, the
flux from inshore will be curtailed and the flux from bottom-waters to the
surface layer will increase. Calculations suggest that the overall nitrogen to
the surface layer will be substantially diminished and primary production may
therefore decline in much of the nearfield.

Bottom-water DO declines during the stratified season in the nearfield and in
Stellwagen Basin. Sustained rates of consumption appear to be about 0.01-
0.06 mg O, L! d!. These rates were estimated from gradual changes
monitored over weeks to months, and may imperfectly estimate respiration
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rates. Unfortunately, attempts to measure water column respiration directly
in bottle incubations were unsatisfactory. In 1992, rates were often below
‘limits of detection using a short-term (hours) incubation method.
Nonetheless, the data suggest that a relatively small fraction of primary
production is presently consumed within the bottom waters of Massachusetts
Bay. Preliminary calculations suggest that much of the organic matter
produced in the surface layers may be consumed within the upper water
column.

= Because changes occur slowly, DO concentration trends across surveys should
suffice as a principal tool to unambiguously record DO and monitor its rate
of change. '

Even though bottom-water DO concentrations change slowly enough to be monitored by the
present frequency of summer and early fall surveys, it is argued that improved estimates of
‘water column rates of oxygen consumption would be beneficial to understand the ecosystem.
Precise respiration rate estimates would enable us to confirm or refute the notion that
consumption of organic matter presently occurs rapidly within the upper water column and
would also provide data useful to validate or improve water-quality modeling and
predictions.
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DATA SUMMARIES FOR NITROGEN AND CHLOROPHYLL IN 1992

This appendix contains three tables, each of which summarizes nitrogen forms and
chlorophyll at MWRA water column monitoring stations over a certain period of time and
over a specified depth range. Values from these tables are used extensively in Sections 2

and 3 of the accompanying text report.

Table 1 presents data for all stations surveyed during the six farfield/nearfield surveys in
1992. These include surveys in February, March, April, June, August, and October. N is
usually six, but varies with station: it is less than six if the station was not occupied at each
survey and it is more than six for the six nearfield “P” stations because each was occupied ;
more than once during some combined farfield/nearfield surveys. Means for various
parameters are presented; means represent the simple average of the values determined on
samples for the surfacemost Niskin bottle at each occupation. A sample N is provided which
applies to chlorophyll and DIN, fewer samples were analyzed for organic nitrogen forms.
The maximum depth of a this sample for these surveys is shown for each station. CHL is
chlorophyll, post-calibrated from in situ fluorescence readings, and is in ug L'!. BEAM
ATTEN is beam attenuation, taken from in situ transmissometer readings, and has units of
m'!. DIN is dissolved inorganic nitrogen, which was measured at all stations. PON
(particulate organic nitrogen) and TDN (total dissolved nitrogen, includes dissolved organic
nitrogen [DON] plus DIN) was measured at select stations and TOT N (total nitrogen) is the
sum of PON + TDN. The concentration for all N forms is uM.

Note that this surface annual average differs from an integrated surface layer annual average

calculated previously by Kelly (1991) from Townsend et al. (1991) data.

Table 2 presents similar parameters for nearfield stations only, for the stratified period of
1992, including all seven surveys and station eccupations from June to October. However,

for this “surface layer” summary, all data from the surface Niskin bottle to the depth of the
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subsurface chlorophyll maximum sample (usually n=3 on each cast) have been used in
calculating mean values. The units are the same as in Table 1; also reported here are the
mean salinity, as well as the minimum chlorophyll and maximum chlorophyll values (for any

individual reading) for each station.

Table 3 presents data for select stations only and for only the summer period, including oﬁly
the two farfield/nearfield surveys in June and August 1992. This surface layer summary,
as in Table 2, includes all data from the surface Niskin bottle to the depth of the subsurface
chlorophyll maximum sample (usually n=3 on each cast) to calculate mean values. Units
are the same as Table 1. Organic nitrogen forms were measured at the surface and
subsurface chlorophyll maximum at all station except F24. Note that this table presents
DON rather than TDN. DON + DIN = TDN.
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Table 1: SURFACE ANNUAL MEANS FOR ALL STATIONS IN 1992

STATION N __|MAXz IMEAN CHL |MEAN BEAM ATTEN |[MEAN DIN |MEAN PON |MEAN TDN |MEAN PON +DIN|MEAN TOT N
FOIP 6 2.42 224 1.155 1.69 3.28 10.07 4.97 13.35
FO2P 6 5.48 1.34 1.163 0.6 3.27 9.56 387 12.83
FO03 [+ 23 2.83 1.323 1.52

F04 5 5.05 3.13 1119 0.76

FO5 6 2.5 2.28 1.151 1.65

F06 [ 244 2.03 1.044 23

FO7 [ 4.67 1.83 0.986 1.78

FO8 5 3.17 23 1.147 111

F09 6 22 1.99 1123 2.35

F10 6 3.78 1.43 0.878 1.85

F11 6 234 172 0.982 2.03

E"IZ 5 2.4 1.62 1164 1.46

F13P 6 2.32 2.62 1.258 2.23 331 11.21 5.54 14.52
F14 6 2.26 233 1.44 2.75

F15 6 2.5 1.8 0.992 1.47

F16 6 298 1.37 1.185 1.92

F17 5 24 179 1111 16

F18 6 27 3.46 1.81 217

F19 6 2.2 2.05 0.935 2.03

F20 6 2.3 2.9 0971 1.465

F21 6 2.19 3.04 0.912 1.83

F22 6 24 2.28 1.047 1.675

F25 6 336 3.88 1.81 3.47 4.73 11.04 82 15.77
NO1P 10 2.7 3.52 1.264 3.08 4.41 1234 7.49 16.75
NO2 5 4.76 2.64 0.951 175

NO3 4 227 3.28 0913 1.38

NO4P 9 36 1.57 0.905 217 3.56, 9.04 5.73 12.6
NOS 4 19 248 0.851 21

NO6 4 24 1.73 0.834 1.59

NO7P 11 5.36 1.88 0.961 271 379 9.62 6.5 1341
NO8 5. 247 233 0.989 1.84

NO9 S 2.1 2.63 1.161 2.15

N10P 11 3.22 373 167 3.05 5.01 14.06 8.06 19.07
N1t 5 2.2 336 1.354 2.51

N12 5 231 29 1237 2.96

N13 ) 2.6 1.87] 0.927 221

Ni14 4 2.7 2.58 0.903 221

N15 4 2.5 268 0.85 1.57

N16P 10 2.7 2.15 0.925 1.86 295 10.2 4.81 13.15
N17 4 26 2.495 0.944 1

N18 5 24 2.8 1.034 22

N19 5 27 3.6 1.261 2.64

N20P 11 284 2.46 1.102 243 394 11.86 6.37 15.8
N21 5 25 2.27 0914 175

F23P 6 2.8 4.26 2.11 6.77 6.28 17.83 13.05 24.11
F24 6 25 3.45 1.661 6.13
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The Massachusetts Water Resources Authority
Charlestown Navy Yard
100 First Avenue
Charlestown, MA 02129
(617) 242-6000



